Total Marks – 100 Attempt Questions 1-4 All questions are of equal value

Question 1 (25 marks) Use a SEPARATE writing booklet.

(a) Evaluate
$$\int_0^3 \frac{2dx}{\sqrt{x^2 + 16}}$$
.

(b) Find
$$\int \frac{\sin x}{\cos^3 x} dx$$
. 2

(c) Find
$$\int \sin^3 x dx$$
. 3

(d) (i) Prove
$$2\cos A \sin B = \sin(A+B) - \sin(A-B)$$
. 1

(ii) Hence, evaluate
$$\int_{0}^{\frac{\pi}{12}} \cos 4x \sin 2x \, dx \, . \qquad 2$$

(e) Find, by completing the square
$$\int \frac{1}{x^2 + 6x + 10} dx$$
. 2

$$\frac{3x^2 - x + 8}{(1 - x)(x^2 + 1)} = \frac{A}{1 - x} + \frac{Bx + C}{x^2 + 1}$$
3

(ii) Hence find
$$\int \frac{3x^2 - x + 8}{(1 - x)(x^2 + 1)} dx$$
. 2

(g) Evaluate,
$$\int_{0}^{\frac{1}{2}} \tan^{-1}x dx$$
 using integration by parts. 4

(h) Use the substitution
$$t = \tan \frac{x}{2}$$
 to find $\int_{0}^{\frac{\pi}{2}} \frac{1}{5 + 3\cos x - 4\sin x} dx$. 4

Marks

(g)

Question 2 (25 marks)Use a SEPARATE writing booklet.Marks

(a) If z = 3 - 4i and w = 2 + 5i, Express in the form (x + iy) where x and y are real.

(i)	Z,W			1

(ii) \overline{zw} 1

(iii)
$$\sqrt{z}$$
 2

(iv)
$$\frac{z}{w}$$
 2

(b) (i) Express in modulus argument form,
$$\sqrt{3} + i$$
. 1

(ii) Hence evaluate
$$(\sqrt{3} + i)^5$$
 in the form $x + iy$. 3

(c) Graph the region in the Argand diagram which satisfies $|z + \overline{z}| \le 2$ and $|z - i| \le 2$ simultaneously.

- (d) Let ω be on of the non real cube roots of 1.
 - (i) Show $1 + \omega + \omega^2 = 0$. 1
 - (ii) Hence find the value of $(2-\omega)(2-\omega^2)(2-\omega^4)(2-\omega^5)$. 2

(e) By applying de Moivre's Theorem and by also expanding $(\cos \theta + i \sin \theta)^5$ 4 express $\cos 5\theta$ as a polynomial in $\cos \theta$.

(f) The origin O and points A, B, C representing the numbers z, $\frac{1}{z}$ and $z + \frac{1}{z}$ respectively are joined to form a quadrilateral. Write down the condition or conditions for z so that the quadrilateral OABC will be

(i	a rhombus	1
(i) a square	1
(i	Find all solutions of $z^6 = -1$.	2
(i) Plot the solutions on the Argand diagram, indicating z_1 .	1

Mathematics Extension 2

Question 3 (25 marks) Use a SEPARATE writing booklet.

(a) Draw neat sketches of the each following, clearly indicating any intercepts, asymptotes, endpoints, turning points and discontinuities. Make each separate one-third page.

(i)
$$f(x) = 4 - x^2$$
 1

(ii)
$$y = \frac{1}{f(x)}$$
 2

(iii)
$$y = \sqrt{f(x)}$$
 2

(iv)
$$y^2 = f(x)$$
 2

(vi)
$$y = \left[f(x)\right]^2$$
 2

(vii)
$$|y| = f(x)$$
 2

(viii)
$$y = f(|x|)$$
 2

(ix)
$$y = \log_e f(x)$$
 2

$$(\mathbf{x}) \qquad \mathbf{y} = f\left(e^{\mathbf{x}}\right)$$

(b)	Find	the gradient of the tangent to the curve, $x^2 - xy + y^3 = 5$ at the point $(1, -2)$.	2
(c)	(i)	State the domain and range of $y = \sin^{-1}(e^x)$.	2

(ii) Sketch the graph of $y = \sin^{-1}(e^x)$ showing clearly the co-ordinates of any endpoints and the equation of any asymptotes. 2

Marks

Newington College

Mathematics Extension 2

HSC Mini 2008

Quest	ion 4	(25 marks) Use a SEPARATE writing booklet.	Marks	
(a)	Give	en that $3-i$ is a zero of the function $P(x) = x^3 + ax^2 + bx - 10$, re and b are real, find the other zeros and the values of a and b.	4	
(b)	(i)	Find all the roots of the equation $x^4 + x^3 - 3x^2 - 5x - 2 = 0$, given there is a root of multiplicity 3.	4	
	(ii)	Sketch $y = x^4 + x^3 - 3x^2 - 5x - 2$, showing all intercepts.	2	
(c)	The	roots of a certain cubic equation are α , β and γ . Given the following $\alpha + \beta + \gamma = -3$ $\alpha^2 + \beta^2 + \gamma^2 = 29$	2	
	Form	a the cubic equation whose roots are α , β and γ .		
(d)	Factorise $P(x) = x^4 - 5x^3 + 4x^2 + 2x - 8$ over			
	(i)	R (all real numbers)	3	
	(ii)	C (all complex numbers)	2	
(e)	The	The equation $x^3 + 2x^2 + bx - 16 = 0$ has roots α , β , γ such that. $\alpha\beta = 4$		
	(i)	Show that $b = -20$.	2	
	(ii)	Find the cubic equation with roots given by α^2 , β^2 and γ^2 .	3	
	(iii)	Find the value of $\alpha^3 + \beta^3 + \gamma^3$.	3	

End of paper

Year 12
Extension 2 Mattematics Mini 2008
Question 1
a)
$$\int_{0}^{32} \frac{1}{32^{4}+16} = 2 \ln [2x + 32^{5}+16]^{3}}{2 \ln [2x + 32^{5}+16]^{2} - 2 \ln [2x + 5x + 6]^{3}}$$

 $= 2 \ln [2x + 32^{5}+16]^{2} - 2 \ln [2x + 5x + 6]^{3}}$
 $= 2 \ln [2x + 32^{5}+16]^{2} - 2 \ln [2x + 5x + 6]^{3}}$
 $= 2 \ln 2$
b) $\int \frac{\sin 2x}{\cos^{2} 2x} dx = -\int cos^{-3} 2x (-\sin 2x) dx$
 $= \frac{1}{2} cos^{-3} 2x + c$
 $= \int (1 - cos^{-3} 2x) sum 2x dx$
 $= \int (1 - cos^{-3} 2x) sum 2x dx$
 $= \int (1 - cos^{-3} 2x) sum 2x dx$
 $= \int (1 - cos^{-3} 2x) sum 2x dx$
 $= \int (2\pi - 2x + 3 cos^{-3} 2x + c)$
 $= \frac{1}{2} cos^{-3} 2x - cos 2x + c$
d) (a) $2 cos A Sin B = Sin (A+B) - Sin (A-B)$
L As $= Sin A coaB + cos A Sin B - (Sin A cos B + cos A Sin B - (Sin B + cos B + cos A Sin B - (Sin A cos B + cos A Sin B - (Sin A cos B + cos A Sin B - (Sin A cos B + cos A Sin B - (Sin A cos B + cos A Sin B - (Sin A cos B + cos A Sin B - (Sin A cos B + cos A Sin B - (Sin A cos B + cos A Sin B - (Sin A cos B + cos A Sin B - (Sin A cos B + cos A Sin B - (Sin A cos B + cos A - (Sin A -$

(U) T - T

(1)
$$\int_{0}^{\frac{\pi}{2}} \cos 4x \sin 2x dx := \int_{0}^{\frac{\pi}{2}} (\sin 6x^{2} - \sin 2x) dx$$
$$= \frac{1}{2} \left[\frac{1}{6} \cos 6x + \frac{1}{2} \cos 2x \right]_{0}^{\frac{\pi}{2}}$$
$$= \frac{1}{2} \left[\frac{1}{6} \cos 6x + \frac{1}{2} \cos 2x \right]_{0}^{\frac{\pi}{2}}$$
$$= \frac{1}{2} \left\{ \frac{1}{2} \left[-\frac{1}{6} - \frac{1}{6} + \frac{1}{2} \right] \right\}$$
$$= \frac{1}{2} \left\{ \frac{1}{2} \left[-\frac{1}{6} - \frac{1}{6} + \frac{1}{2} \right] \right\}$$
$$= \frac{1}{2} \left\{ \frac{1}{2} \left[-\frac{1}{6} + \frac{1}{2} \right] \right\}$$
$$= \frac{1}{2} \left\{ \frac{1}{2} \left[-\frac{1}{6} + \frac{1}{2} \right] \right\}$$
$$= \frac{1}{2} \left\{ \frac{1}{2} \left[-\frac{1}{6} + \frac{1}{2} \right] \right\}$$
$$= \frac{1}{2} \left\{ \frac{1}{2} \left[-\frac{1}{6} + \frac{1}{2} \right] \right\}$$
$$= \frac{1}{2} \left\{ \frac{1}{2} \left[-\frac{1}{6} + \frac{1}{2} \right] \right\}$$
$$= \frac{1}{2} \left\{ \frac{1}{2} \left[-\frac{1}{6} + \frac{1}{2} \right] \right\}$$
$$= \frac{1}{2} \left\{ \frac{1}{2} \left[-\frac{1}{6} + \frac{1}{2} \right] \right\}$$
$$= \frac{1}{2} \left\{ \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2}$$

r. .

$$a) \int_{0}^{\frac{1}{2}} \tan^{-1} x \, dx \qquad let u = \tan^{-1} x \, dx^{-1} \\ du = \frac{1}{1+x^{2}} \quad v = x \\ \int u \, dx \, dx = uv - \int v \, dx \, dx \qquad dx \qquad dx^{-1} + \frac{1}{x^{2}} \quad v = x \\ \int \frac{1}{1+x^{2}} \, dx = \left[x + an^{-1} x \right]_{0}^{\frac{1}{2}} - \frac{1}{2} \left[\ln (z^{2} + 1) \right]_{0}^{\frac{1}{2}} \\ = \left[x + an^{-1} x \right]_{0}^{\frac{1}{2}} - \frac{1}{2} \left[\ln (z^{2} + 1) \right]_{0}^{\frac{1}{2}} \\ = \frac{1}{2} + an^{-1} \frac{1}{2} - \frac{1}{2} \left[\ln (z^{2} + 1) \right]_{0}^{\frac{1}{2}} \\ = \frac{1}{2} + an^{-1} \frac{1}{2} - \frac{1}{2} \left[\ln (z^{2} + 1) \right]_{0}^{\frac{1}{2}} \\ = \frac{1}{2} + an^{-1} \frac{1}{2} - \frac{1}{2} \left[\ln (z^{2} + 1) \right]_{0}^{\frac{1}{2}} \\ = \frac{1}{2} + an^{-1} \frac{1}{2} - \frac{1}{2} \left[\ln (z^{2} + 1) \right]_{0}^{\frac{1}{2}} \\ = \frac{1}{2} + an^{-1} \frac{1}{2} - \frac{1}{2} \left[\ln (z^{2} + 1) \right]_{0}^{\frac{1}{2}} \\ = \frac{1}{2} + an^{-1} \frac{1}{2} - \frac{1}{2} \left[\ln (z^{2} + 1) \right]_{0}^{\frac{1}{2}} \\ = \frac{1}{2} + an^{-1} \frac{1}{2} - \frac{1}{2} \left[\ln (z^{2} + 1) \right]_{0}^{\frac{1}{2}} \\ = \frac{1}{2} + an^{-1} \frac{1}{2} - \frac{1}{2} \left[\ln (z^{2} + 1) \right]_{0}^{\frac{1}{2}} \\ = \frac{1}{2} + an^{-1} \frac{1}{2} - \frac{1}{2} \left[\ln (z^{2} + 1) \right]_{0}^{\frac{1}{2}} \\ = \frac{1}{2} + an^{-1} \frac{1}{2} - \frac{1}{2} \left[\ln (z^{2} + 1) \right]_{0}^{\frac{1}{2}} \\ = \frac{1}{2} + an^{-1} \frac{1}{2} - \frac{1}{2} \left[\ln (z^{2} + 1) \right]_{0}^{\frac{1}{2}} \\ = \frac{1}{2} + an^{-1} \frac{1}{2} - \frac{1}{2} \left[\ln (z^{2} + 1) \right]_{0}^{\frac{1}{2}} \\ = \frac{1}{2} + an^{-1} \frac{1}{2} - \frac{1}{2} \left[\ln (z^{2} + 1) \right]_{0}^{\frac{1}{2}} \\ = \frac{1}{2} + an^{-1} \frac{1}{2} + an^{-1} \frac{1}{2} \left[\frac{1}{2} + an^{-1} \frac{1}{2} + an^{-1} \frac{1}{2} \right] \\ = \frac{1}{2} + an^{-1} \frac{1}{2} + an^{-1}$$

Question 2
a)
$$g = 3 - 4i$$
, $w = 2 + 5i$
(1) $gw = (3 - 4i)(2 + 5i)$
 $= 26 + 7i$
(1) $\overline{3w} = 26 - 7i$
(11) $x + iy = \sqrt{3}$
 $(x + iy)^2 = 3 - 4i$
 $x = \pm 2, y = \mp i$
 $x = \pm 2, y = \mp i$
 $x = \pm 2, y = \mp i$
(12) $\overline{w} = \frac{3 - 4i}{2 + 5i}$
 $= \frac{3 - 4i}{2 + 5i} \times \frac{3 - 5i}{2 - 5i}$
 $= \frac{3 - 4i}{2 + 5i} \times \frac{3 - 5i}{2 - 5i}$
 $= \frac{3 - 4i}{2 + 5i} \times \frac{3 - 5i}{2 - 5i}$
 $= \frac{3 - 4i}{2 + 5i} \times \frac{3 - 5i}{2 - 5i}$
 $= \frac{3 - 4i}{2 + 5i} \times \frac{3 - 5i}{2 - 5i}$
 $= \frac{-14 - 33i}{29}i$
 $b (1) = \sqrt{(3)^2 + i^2}$
 $= 2$
 $argg = 4an^{-1}(\frac{1}{\sqrt{3}}) - \pi x + 6 \le \pi$
 $= \frac{7}{16}$
(1) $(\sqrt{3} + i)^2 = 2^5 \cos \frac{5\pi}{16}$
 $= 32(\cos \frac{5\pi}{16} + i - 5in \frac{5\pi}{16})$
 $= 32(\cos \frac{5\pi}{16} + i - 5in \frac{5\pi}{16})$
 $= 32(\sqrt{3} + i - 5in \frac{5\pi}{16})$

ñ

Ð

$$(b)$$

$$(c)$$

(b)
$$x^2 - xy + y^3 = 5$$

 $2x - (y + x \frac{dy}{dx}) + 3y^3 \frac{dy}{dx} = 0$
 $3x - y - x \frac{dy}{dx} + 3y^3 \frac{dy}{dx} = 0$
 $\frac{dy}{dx}(3y^2 - x) = y - 2x$
 $\frac{dy}{dx} = \frac{y - 2x}{3y^3 - x} \quad dt = x = 1, y = -2$
 $= \frac{-2x - 2}{12x - 1}$
 $= \frac{-2x - 2}{$

(I)

Question 4

b)

a) If 3-i is a root then 3+i is also a root by the conjugate root theorem $P(x) = x^3 + ax^2 + bx - 10$ $a \beta X = 10$ (3-i)(3+i)X = 10 10Y = 10 Y = 1The roots are 3-i, 3+i, 1 $Z = -\alpha$ $3-i+3+i+1=-\alpha$ a = -7 Z = 1 3-i+3+i+(3-i)(3+i)=bb = 16

Let
$$P(x) = x^{4} + x^{3} - 3x^{2} - 5x - 2$$

 $P'(x) = 4xx^{3} + 3x^{2} - 6x - 5$
 $P''(x) = 12x^{2} + 6x - 6$
By the Multiple Root Theorem
 $P''(x) = P'(x) = P(x) = 0$
 $12x^{2} + 6x - 6 = 6$
 $2x^{2} + x - 1 = 0$
 $(2x - 1)(x + 1) = 0$
 $x = \frac{1}{2}, -1$
 $P(1) = P(1) = P'(1) = 0$
 $x = -1$ is a triple root
 $x = -1$ is a triple root
 -1 0 $2 - 2$
 $P(x) = (2x + 1)^{3}(x - 2)$

ļQ

c)
$$d+\beta+\gamma=-3$$
 -
 $d^{2}+\beta^{2}+\gamma^{2}=2q$
 $d\beta\gamma = -6$
 $d\beta\gamma = -6$
 $d\beta\gamma = (-3)^{2}-2(d\beta+d\gamma+\beta\gamma)$
 $2q = (-3)^{2}-2(d\beta+d\gamma+\beta\gamma)$
 $2q = (-3)^{2}-2(d\beta+d\gamma+\beta\gamma)$
 $d\beta+d\gamma+\beta\gamma = -10$
 $d\beta\gamma = 2^{4}-5x^{3}+4x^{2}+2x-8$
 $\beta(-1) = 1+5+4-2-8$
 $(x+1) = (x+1)(x^{2}-2x+2) + \frac{1-6+10-8}{1-2-2-0}$
 $(x+1) = (x+1)(x^{2}-2x+2) + \frac{1-6+10-8}{1-2-2-0}$
 $(x+1) = (x+1)(x-4)(x^{2}-2x+1+1)$
 $= (x+1)(x-4)(x^{2}-2x+1+1)$
 $x\beta+d\gamma+d\gamma+d\gamma=b$
 $4\beta^{2}=4$
 $4\beta^{2}=4$
 $4\beta^{2}=6$
 $(x+\beta^{2}=-6)$
 $(x+\beta^{2}=-6)$
 $(x+\beta^{2}=-6)$
 $(x+\beta^{2}=-6)$
 $(x+\beta^{2}=-20)$

(1) If
$$\alpha$$
, β , γ satisfy $x^{3}+2x^{2}-20x-16=0$
Then $u^{2}, \beta^{2}, \gamma^{2}$ satisfy
 $(z^{\frac{1}{2}})^{3}+2(z^{\frac{1}{2}})^{2}-20(z^{\frac{1}{2}})^{-16=0}$
 $x^{\frac{3}{2}}+2x-20x^{\frac{1}{2}}-16=0$
 $x^{\frac{3}{2}}+2x-20x^{\frac{1}{2}}=16-2x$
 $x^{\frac{1}{2}}(x-20)=16-2x$
 $x(x-20)^{2}=(16-2x)^{2}$
 $x(x^{2}-40x+4x0)=256-64x+4x^{2}$
 $x^{2}-40x+4x0)=256-64x+4x^{2}$
 $x^{3}-440x+4x^{2}+464x-256=0$
 $x^{3}-44x^{2}+464x-256=0$
(11) $P(x) = x^{\frac{3}{2}}+2x^{2}-20x-16=0$
 $u^{3}+2d^{2}-20d-16=0$
 $u^{3}+2d^{2}-20d-16=0$
 $y^{3}+2d^{2}-20x-16=0$
 $x^{3}+2d^{2}-20x-16=0$
 $x^{3}+2x^{2}-20x-16=0$
 $x^{3}+2x^{3}-20x-16=0$
 $x^{3}+2x^{3}+2(4x^{2}+\beta^{2}+x^{3})-20(4x^{2}+\beta^{2}x^{3})-48=0$
 $x^{3}+\beta^{3}+x^{3}+2(4x^{2}+\beta^{2}+x^{3})-20(4x^{2}+\beta^{2}+x^{3})=-80$
 $x^{3}+\beta^{3}+x^{3}+2(4x^{2}+\beta^{2}+x^{3})=20(4x^{2}+\beta^{2}+x^{3})=-80$
 $x^{3}+\beta^{3}+x^{3}=-80$
NB $x^{2}+\beta^{3}+x^{3}=-\frac{b}{a}$
 $=44x$ from part(11)

$$d + \beta + \delta = \frac{-b}{\alpha}$$

= 2 from part()

- -

,12 , -