Total Marks - 100
Attempt Questions 1-4
All questions are of equal value

Question 1 (25 marks) Use a SEPARATE writing booklet.
Marks
(a) Evaluate $\int_{0}^{3} \frac{2 d x}{\sqrt{x^{2}+16}}$.

2

2
(e) Find, by completing the square $\int \frac{1}{x^{2}+6 x+10} d x$.
(f) (i) Find real numbers A, B, C such that

$$
\frac{3 x^{2}-x+8}{(1-x)\left(x^{2}+1\right)}=\frac{A}{1-x}+\frac{B x+C}{x^{2}+1}
$$

(ii) Hence find $\int \frac{3 x^{2}-x+8}{(1-x)\left(x^{2}+1\right)} d x$.
(g) Evaluate, $\int_{0}^{\frac{1}{2}} \tan ^{-1} x d x$ using integration by parts.
(h) Use the substitution $t=\tan \frac{x}{2}$ to find $\int_{0}^{\frac{\pi}{2}} \frac{1}{5+3 \cos x-4 \sin x} d x$.

Question 2 (25 marks) Use a SEPARATE writing booklet.
(a) If $z=3-4 i$ and $w=2+5 i$, Express in the form $(x+i y)$ where x and y are real.
(i) $Z w$
(b) (i) Express in modulus argument form, $\sqrt{3}+i$.
(ii) Hence evaluate $(\sqrt{3}+i)^{5}$ in the form $x+i y$.
(c) Graph the region in the Argand diagram which satisfies $|z+\bar{z}| \leq 2$ and $|z-i| \leq 2$ simultaneously.
(d) Let ω be on of the non real cube roots of 1 .
(i) Show $1+\omega+\omega^{2}=0$.
(ii) Hence find the value of $(2-\omega)\left(2-\omega^{2}\right)\left(2-\omega^{4}\right)\left(2-\omega^{5}\right)$.
(e) By applying de Moivre's Theorem and by also expanding $(\cos \theta+i \sin \theta)^{5}$ express $\cos 5 \theta$ as a polynomial in $\cos \theta$.
(f) The origin O and points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ representing the numbers $\mathrm{z}, \frac{1}{\mathrm{z}}$ and $\mathrm{z}+\frac{1}{\mathrm{z}}$ respectively are joined to form a quadrilateral. Write down the condition or conditions for z so that the quadrilateral OABC will be
(i) a rhombus

1
(ii) a square
(g) (i) Find all solutions of $z^{6}=-1$.
(ii) Plot the solutions on the Argand diagram, indicating z_{1}.

Question 3 (25 marks) Use a SEPARATE writing booklet.
Marks
(a) Draw neat sketches of the each following, clearly indicating any intercepts, asymptotes, endpoints, turning points and discontinuities. Make each separate one-third page.
(i) $\quad f(x)=4-x^{2}$
(ii) $y=\frac{1}{f(x)}$

1
(iii) $y=\sqrt{f(x)}$
(iv) $y^{2}=f(x)$
(v) $\quad y=|f(x)|$
(vi) $y=[f(x)]^{2}$

2
(vii) $|y|=f(x)$

2
(viii) $\quad y=f(|x|)$

2
(ix) $y=\log _{e} f(x)$

2
(x) $y=f\left(e^{x}\right) \quad \mathbf{2}$
(b) Find the gradient of the tangent to the curve, $x^{2}-x y+y^{3}=5$ at the point $(1,-2)$.
(c) (i) State the domain and range of $y=\sin ^{-1}\left(e^{x}\right)$.
(ii) Sketch the graph of $y=\sin ^{-1}\left(e^{x}\right)$ showing clearly the co-ordinates of any endpoints and the equation of any asymptotes.

Question 4 (25 marks) Use a SEPARATE writing booklet.
(a) Given that $3-i$ is a zero of the function $P(x)=x^{3}+a x^{2}+b x-10$, where and b are real, find the other zeros and the values of a and b.
(b) (i) Find all the roots of the equation $x^{4}+x^{3}-3 x^{2}-5 x-2=0$, given there

4 is a root of multiplicity 3 .
(ii) Sketch $y=x^{4}+x^{3}-3 x^{2}-5 x-2$, showing all intercepts.
(c) The roots of a certain cubic equation are α, β and γ. Given the following

$$
\begin{aligned}
& \alpha+\beta+\gamma=-3 \\
& \alpha^{2}+\beta^{2}+\gamma^{2}=29 \\
& \alpha \beta \gamma=-6
\end{aligned}
$$

Form the cubic equation whose roots are α, β and γ.
(d) Factorise $P(x)=x^{4}-5 x^{3}+4 x^{2}+2 x-8$ over
(i) R (all real numbers)
(ii) C (all complex numbers)
(e) The equation $x^{3}+2 x^{2}+b x-16=0$ has roots α, β, γ such that. $\alpha \beta=4$
(i) Show that $b=-20$.
(ii) Find the cubic equation with roots given by α^{2}, β^{2} and γ^{2}.
(iii) Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.

End of paper

Year 12
Extension 2 Mathematics

Question 1
a)

$$
\begin{aligned}
\int_{0}^{3} \frac{2}{\sqrt{x^{2}+16}} & =2 \ln \left[x+\sqrt{x^{2}+16}\right]_{0}^{3} \\
& =2 \ln \left[3+\sqrt{3^{2}+16}\right]-2 \ln [0+\sqrt{0+16}] \\
& =2 \ln 8-2 \ln 4 \\
& =2 \ln \left(\frac{8}{4}\right) \\
& =2 \ln 2
\end{aligned}
$$

b)

$$
\begin{aligned}
\int \frac{\sin x}{\cos ^{3} x} d x & =-\int \cos ^{-3} x(-\sin x) d x \\
& =\frac{1}{2} \cos ^{-2} x+c \\
& =\frac{1}{2 \cos ^{2} x}+c \\
& =\frac{1}{2} \sec ^{2} x+c
\end{aligned}
$$

c)

$$
\begin{aligned}
\int \sin ^{3} x d x & =\int \sin ^{2} x \sin x d x \\
& =\int\left(1-\cos ^{2} x\right) \sin x d x \\
& =\int\left(\sin x-\cos ^{2} x \sin x\right) d x \\
& =-\cos x+\frac{1}{3} \cos ^{3} x+c \\
& =\frac{1}{3} \cos ^{3} x-\cos x+c
\end{aligned}
$$

d) (1) $2 \cos A \sin B=\sin (A+B)-\sin (A-B)$

$$
\begin{aligned}
L \cdot H S & =\sin A \cos B+\cos A \sin B-(\sin A \cos B \\
& -\cos A \sin B) \\
& =2 \cos A \sin B \\
& =R H S
\end{aligned}
$$

$$
\therefore 2 \cos A \sin B=\sin (A+B)-\sin (A-B)
$$

(II) $\int_{0}^{\frac{\pi}{12}} \cos 4 x \sin 2 x d x=\frac{1}{2} \int_{0}^{\frac{\pi}{12}}(\sin 6 x-\sin 2 x) d x$

$$
=\frac{1}{2}\left[\frac{-1}{6} \cos x+\frac{1}{2} \cos 2 x\right]_{0}^{\frac{\pi}{12}}
$$

$$
=\frac{1}{2}\left\{\left[-\frac{1}{6} \cos \frac{\pi}{2}+\frac{1}{2} \cos \frac{\pi}{6}\right]-\left[-\frac{1}{6} \cos 0+\frac{1}{2} \cos 0\right]\right\}
$$

$$
=\frac{1}{2}\left\{\frac{\sqrt{3}}{4}-\left[-\frac{1}{6}+\frac{1}{2}\right]\right\}
$$

$$
=\frac{\sqrt{3}}{8}-\frac{1}{6}
$$

e)

$$
\begin{aligned}
\int \frac{1}{x^{2}+6 x+10} d x & =\int \frac{d x}{(x+3)^{2}+1} \\
& =\tan ^{-1}(x+3)+c
\end{aligned}
$$

f)

$$
\begin{aligned}
\frac{3 x^{2}-x+8}{(1-x)\left(x^{2}+1\right)}= & \frac{A}{1-x}+\frac{B x+C}{x^{2}+1} \\
\therefore 3 x^{2}-x+8 & =A\left(x^{2}+1\right)+(B x+C)(1-x) \\
10 & =2 A \\
A & =5
\end{aligned}
$$

Put $x=1$

Equating coefficients of $x^{2} \quad 3=A-B$

$$
\begin{aligned}
& 3=5-B \\
& B=2
\end{aligned}
$$

Equating constants

$$
\begin{gathered}
8=A+C \\
8=5+C \\
C=3
\end{gathered}
$$

$$
\begin{aligned}
\int \frac{3 x^{2}-x+8}{(1-x)\left(x^{2}+1\right)} d x & =\int\left(\frac{5}{(1-x)}+\frac{2 x+3}{x^{2}+1}\right) d x \\
& =\int\left(\frac{5}{1-x}+\frac{2 x}{x^{2}+1}+\frac{3}{x^{2}+1}\right) d x \\
& =-5 \ln |1-x|+\ln \left(x^{2}+1\right)+3 \tan ^{-1} x+c \\
& =\ln \left[\frac{\left(x^{2}+1\right)}{|1-x| 5}\right]+3 \tan ^{-1} x+c
\end{aligned}
$$

9) $\int_{0}^{\frac{1}{2}} \tan ^{-1} x d x$

Let $u=\tan ^{-1} x \quad \frac{d v}{d x}=1$

$$
\begin{aligned}
\int u \frac{d v}{d x} d x & =u v-\int v \frac{d u}{d x} d x \quad \frac{d u}{d x}=\frac{1}{1+x^{2}} \\
\int_{0}^{\frac{1}{2}} \tan ^{-1} x d x & =\left[x \tan ^{-1} x\right]_{0}^{\frac{1}{2}}-\int_{0}^{\frac{1}{2}} \frac{x}{1+x^{2}} d x \\
& =\left[x \tan ^{-1} x\right]_{0}^{\frac{1}{2}}-\frac{1}{2}\left[\ln \left(x^{2}+1\right)\right]_{0}^{\frac{1}{2}} \\
& =\frac{1}{2} \tan ^{-1} \frac{1}{2}-\frac{1}{2}\left(\ln \frac{5}{4}-\ln 1\right) \\
& =\frac{1}{2} \tan ^{-1} \frac{1}{2}-\frac{1}{2} \ln \frac{5}{4}
\end{aligned}
$$

$$
v=x
$$

h)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \frac{1}{5+3 \cos x-4 \sin x} d x \\
= & \int_{0}^{1} \frac{1}{5+3\left(\frac{1-t^{2}}{1+t^{2}}\right)-4\left(\frac{2 t}{1+t^{2}}\right)} \times \frac{2}{1+t^{2}} d t \\
= & \int_{0}^{1} \frac{2 d t}{5\left(1+t^{2}\right)+3\left(1-t^{2}\right)-4(2 t)} \\
= & \int_{0}^{1} \frac{2 d t}{5+5 t^{2}+3-3 t^{2}-8 t} \\
= & \int_{0}^{1} \frac{2 d t}{2\left(t^{2}-4 t+4\right)} \\
= & \int_{0}^{1} \frac{d t}{(t-2)^{2}} \\
= & {\left[\frac{-1}{t-2}\right]_{0}^{1} } \\
= & {\left[\frac{-1}{1-2}\right]-\left[\frac{-1}{0-2}\right] } \\
= & 1-\frac{1}{2} \\
= & \frac{1}{2}
\end{aligned}
$$

Question 2
a) $z=3-4 i, \quad \omega=2+5 i$

$$
\text { (1) } \begin{aligned}
z \omega & =(3-4 i)(2+5 i) \\
& =26+7 i
\end{aligned}
$$

(ii) $\overline{3^{\omega}}=26-7 i$
(III)

$$
\text { (iii) } \begin{gathered}
x+4 y=\sqrt{z} \\
(x+i y)^{2}=3-4 i \\
x-y^{2}=3 \\
2 x y=-4 \\
x y=-2 \\
x= \pm 2, y=\mp 1 \\
\therefore \quad \sqrt{z}=2-i,-2+i \\
\text { (iv) } \frac{3}{w}=\frac{3-4 i}{2+5 i} \\
=\frac{3-4 i}{2+5 i} \times \frac{2-5 i}{2-5 i} \\
=\frac{-14-23 i}{29}
\end{gathered}
$$

b (1) $z=\sqrt{3}+i$

$$
\begin{aligned}
|z| & =\sqrt{(\sqrt{3})^{2}+1^{2}} \\
& =2 \\
\arg z & =\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right) \quad-\pi<\theta \leqslant \pi \\
& =\frac{\pi}{6} \\
\therefore \sqrt{3}+i & =2 \operatorname{cis} \frac{\pi}{6}
\end{aligned}
$$

(ii) $(\sqrt{3}+i)^{5}=2^{5} \operatorname{cis} \frac{5 \pi}{6}$

$$
\begin{aligned}
& =32\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right) \\
& =32\left(-\frac{\sqrt{3}}{2}+1 \frac{1}{2}\right) \\
& =-16 \sqrt{3}+116
\end{aligned}
$$

C)

$$
\begin{aligned}
&|z+\bar{z}| \leqslant 2 \\
&|x+c y+x-x y| \leqslant 2 \\
&|2 x| \leqslant 2 \\
&|x| \leqslant 1
\end{aligned}
$$

d) is

$$
\begin{gathered}
\omega^{3}=1 \\
\omega^{2}-1=0 \\
(\omega-1)\left(\omega^{2}+\omega+1\right)=0
\end{gathered}
$$

since $\omega-1 \neq 0, \omega \neq 1 \omega$ is not rational

$$
\omega^{2}+\omega+1=0
$$

(ii)

$$
\begin{aligned}
& (2-\omega)\left(2-\omega^{2}\right)\left(2-\omega^{4}\right)\left(2-\omega^{5}\right) \\
= & (2-\omega)\left(2-\omega^{2}\right)(2-\omega)\left(2-\omega^{2}\right) \\
= & {\left[(2-\omega)\left(2-\omega^{2}\right)\right]^{2} } \\
= & \left(4-2 \omega-2 \omega^{2}+\omega^{3}\right)^{2} \quad \omega^{3}=1 \\
= & {\left[5-2\left(\omega+\omega^{2}\right)\right]^{2} \quad \omega^{2}+\omega+1=0 } \\
= & \left(5-2(-13)^{2}\right. \\
= & \omega^{2}+\omega=-1 \\
= & 49
\end{aligned}
$$

e) $(\cos \theta+i \sin \theta)^{5}=\cos ^{5} \theta+5 \cos ^{4} \theta(i \sin \theta)+10 \cos ^{3} \theta\left(l^{2} \sin ^{2} \theta\right)$

$$
+10 \cos ^{2} \theta\left(2^{3} \sin ^{3} \theta\right)+5 \cos ^{\theta}\left(i^{4} \sin ^{4} \theta\right)+\left(1^{5} \sin ^{5} \theta\right.
$$

$$
\cos 5 \theta+1 \sin 5 \theta=\cos ^{5} \theta+5 \cos ^{4}(1 \sin \theta)-10 \sin ^{2} \theta \cos ^{3} \theta
$$

$$
-10 \cos ^{2} \theta(1 \sin \theta)+5 \cos \theta \sin ^{4} \theta+1 \sin ^{5} \theta
$$

Equating real parts

$$
\cos 5 \theta=\cos ^{5} \theta-10 \sin ^{2} \theta \cos ^{3} \theta+5 \cos \theta \sin ^{2} \theta
$$

$\therefore \cos 5 \theta=\cos ^{5} \theta-10 \sin ^{2} \theta \cos ^{3} \theta+5 \cos \theta \sin ^{4} \theta$

$$
\begin{aligned}
& =\cos ^{5} \theta-10\left(1-\cos ^{2} \theta\right) \cos ^{3} \theta+5 \cos \theta\left(1-\cos ^{2} \theta\right)^{2} \\
& =\cos ^{5} \theta-10 \cos ^{3} \theta+10 \cos ^{5} \theta+5 \cos \theta\left(1-2 \cos ^{2} \theta+\cos ^{2} \theta\right) \\
& =\cos ^{5} \theta-10 \cos ^{3} \theta+10 \cos ^{5} \theta+5 \cos \theta-10 \cos ^{3} \theta \\
& =16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta
\end{aligned}
$$

f) (1) $|z|=1$
(ii) $|z|=1$ and arg $z=\frac{\pi}{2}$

$$
|z|=1,\left|z+\frac{1}{z}\right|=\left|z-\frac{1}{z}\right|
$$

or $\arg \left(\frac{1}{z}\right)-\arg z=\frac{\pi}{2}$ or $z^{2}+\frac{1}{z^{2}}=0$
9) $z^{0}=-1$

Let $r(\cos \theta+i \sin \theta)=\sqrt[6]{-1}$
$r^{6}(\cos 6 \theta+c \sin 6 \theta)=-1$

$$
\begin{aligned}
\cos 6 \theta & =-1 \\
6 \theta & =(2 k+1) \pi \\
\theta & =\frac{(2 k+1) \pi}{6} \quad k=0,1,2,3,4,3
\end{aligned}
$$

$$
=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{7 \pi}{6}=\frac{-5 \pi}{6}
$$

$$
\frac{9 \pi}{6}=-\frac{\pi}{2}, \frac{11 \pi}{6}=-\frac{\pi}{6}
$$

Question 3
a) 1 $y=4-x^{2}$

(ii) $y=\frac{1}{f(x)} \quad x \neq \pm 2$

(iii) $y=\sqrt{f(x)} \quad 4-x^{2} \geq 0$ $-2 \leqslant x \leqslant 2$

(iv)
$y^{2}=f(x)$
$y= \pm \sqrt{f(x)}$

v) $y=|f(x)|$

vi) $y=[f(x)]^{2}$

vii) $|y|=f(x)$

viii) $y=f(|x|)$

ix) $y=\log _{e} f(x)$

$$
f(x)>0
$$

x-intercept $\Rightarrow y=0$

$$
\begin{aligned}
\therefore \quad 4-x^{2} & =1 \\
x^{2} & =3 \\
x & = \pm \sqrt{3}
\end{aligned}
$$

$$
x) \quad \begin{aligned}
y & =f\left(e^{x}\right) \\
& =4-\left(e^{x}\right)^{2} \\
& =4-e^{2 x}
\end{aligned}
$$

x-intercept $\Rightarrow y=0$

$$
\begin{aligned}
4-e^{2 x} & =0 \\
e^{2 x} & =4 \\
2 x & =\ln 4 \\
x & =\ln 2
\end{aligned}
$$

b)

$$
\begin{aligned}
& x^{2}-x y+y^{3}=5 \\
& 2 x-\left(y+x \frac{d y}{d x}\right)+3 y^{2} \frac{d y}{d x}=0 \\
& 2 x-y-x \frac{d y}{d x}+3 y^{2} \frac{d y}{d x}
\end{aligned}=0 \quad \begin{aligned}
\frac{d y}{d x}\left(3 y^{2}-x\right) & =y-2 x \\
\frac{d y}{d x} & =\frac{y-2 x}{3 y^{2}-x} \text { at } x=1, y=-2 \\
& =\frac{-2-2}{12-1} \\
& =\frac{-4}{11}
\end{aligned}
$$

c) 1) $y=\sin ^{-1}\left(e^{x}\right)$
domain $\quad-1 \leqslant e^{x} \leqslant 1$
Range $0<e^{x} \leqslant 1$

$$
\begin{aligned}
& 0 \leqslant e^{x} \leqslant 1 \\
& x \leqslant 0
\end{aligned}
$$

$$
\begin{aligned}
& 0<\sin ^{-1} e^{x} \leqslant \frac{\pi}{2} \\
& 0<y \leqslant \frac{\pi}{2}
\end{aligned}
$$

Question 4
a) If $3-i$ is a root then $3+i$ is also a root by the conjugate root theorem

$$
\begin{gathered}
P(x)=x^{3}+a x^{2}+b x-10 \\
\alpha \beta \gamma=10 \\
(3-1)(3+c) \gamma=10 \\
10 \gamma=10 \\
\gamma=1
\end{gathered}
$$

\therefore The roots are $3-i, 3+c, 1$

$$
\begin{array}{rlrl}
\sum \alpha=-a & \sum \alpha \beta & =b \\
3-c+3+c+1 & =-a & & 3-c+3+c+(3-c)(3+c)=b \\
a & =-7 & b=16
\end{array}
$$

b) Let $f(x)=x^{4}+x^{3}-3 x^{2}-5 x-2$

$$
\begin{aligned}
& P^{\prime}(x)=4 x^{3}+3 x^{2}-6 x-5 \\
& P^{\prime \prime}(x)=12 x^{2}+6 x-6
\end{aligned}
$$

By the Multiple Root Theorem

$$
\begin{gathered}
P^{\prime \prime}(x)=P^{\prime}(x)=P(x)=0 \\
12 x^{2}+6 x-6=0 \\
2 x^{2}+x-1=0 \\
(2 x-1)(x+1)=0 \\
x=\frac{1}{2},-1 \\
\therefore P^{\prime \prime}(1)=P^{\prime}(1)=P^{\prime}(1)=0
\end{gathered}
$$

$\therefore x=-1$ is a tipple root

$$
\therefore P(x)=(x+1)^{3}(x-2)
$$

c)

$$
\begin{align*}
\alpha+\beta+\gamma & =-3 \tag{1}\\
\alpha^{2}+\beta^{2}+\gamma^{2} & =29 \tag{2}\\
\alpha \beta \gamma & =-6
\end{align*}
$$

$$
\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma)
$$

$$
2 q=(-3)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma)
$$

$$
\alpha \beta+\alpha \gamma+\beta \gamma=-10
$$

$\therefore x^{3}+3 x^{2}-10 x+6=0$ is the requered polynomial
d) 1)

$$
\begin{aligned}
P(x) & =x^{4}-5 x^{3}+4 x^{2}+2 x-8 \\
P(-1) & =1+5+4-2-8 \\
& =0
\end{aligned}
$$

$\therefore(x+1)$ is a factor
By symthetic division

$$
-1 \left\lvert\, \begin{array}{ccccc}
1 & -5 & 4 & 2 & -8 \\
0 & -1 & 6 & -10 & 8 \\
1 & -6 & 10 & -8 & 8
\end{array}\right.
$$

$$
\begin{aligned}
\therefore P(x) & =x^{4}-5 x^{3}+4 x^{2}+2 x-8 \\
& =(x+1)\left(x^{3}-6 x^{2}+10 x-8\right)
\end{aligned}
$$

$$
=(x+1)\left(x^{3}-6 x^{2}+10 x-8\right) \quad \mid-6 \quad 10-8
$$

$$
=(x+1)(x-4)\left(x^{2}-2 x+2\right) \quad 4 \left\lvert\, \begin{array}{cccc}
1 & -6 & 10 & -8 \\
0 & 4 & -8 & 8 \\
1 & -2 & 2 & 0
\end{array}\right.
$$

(II)

$$
\begin{aligned}
P(x) & =(x+1)(x-4)\left(x^{2}-2 x+1+1\right) \\
& =(x+1)(x-4)\left[(x-1)^{2}-1^{2}\right] \\
& =(x+1)(x-4)(x-1-i)(x-1+4)
\end{aligned}
$$

e)

$$
\begin{array}{cc}
x^{3}+2 x^{2}+b x-16=0 & \alpha \beta=4 \\
\alpha \beta \gamma=16 & \alpha \beta+\alpha \gamma+\beta \gamma=b \\
4 \gamma=16 & 4+4(\alpha+\beta)=b \\
\gamma=4 & \alpha+\beta+\gamma=-2 \\
& \alpha+\beta=-6
\end{array}
$$

sub(2) in(1) $4+4(-b)=b$

$$
b=-20
$$

(11) If α, β, γ satisfy $x^{3}+2 x^{2}-20 x-16=0$

Then $\alpha^{2}, \beta^{2}, \gamma^{2}$ satisfy

$$
\begin{aligned}
&\left(x^{\frac{1}{2}}\right)^{3}+2\left(x^{\frac{1}{2}}\right)^{2}-20\left(x^{\frac{1}{2}}\right)-16=0 \\
& x^{\frac{3}{2}}+2 x-20 x^{\frac{1}{2}}-16=0 \\
& x^{\frac{3}{2}}-20 x^{\frac{1}{2}}=16-2 x \\
& x^{\frac{1}{2}}(x-20)=16-2 x \\
& x(x-20)^{2}=(16-2 x)^{2} \\
& x+4 x^{2} \\
& x^{3}\left(x^{2}-40 x+400\right)=256-64 x+4 x^{3}-40 x^{2}+400 x^{2}-4 x^{2}+64 x-256=0 \\
& x^{3}-44 x^{2}+464 x-256=0
\end{aligned}
$$

111)

$$
\begin{array}{r}
P(x)=x^{3}+2 x^{2}-20 x-16=0 \\
\alpha^{3}+2 \alpha^{2}-20 \alpha-16=0 \\
\beta^{3}+2 \beta^{2}-20 \beta-16=0 \\
\gamma^{3}+2 \gamma^{2}-20 \gamma-16=0 \\
\therefore \alpha^{3}+\beta^{3}+\gamma^{3}+2\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)-20(\alpha+\beta+\gamma)-48=0 \\
\alpha^{3}+\beta^{3}+\gamma^{3}+2(4-4)-20(-2)-48=0 \\
\alpha^{3}+\beta^{3}+\gamma^{3}=-80
\end{array}
$$

$N B \alpha^{2}+\beta^{2}+\gamma^{2}=\frac{-b}{a}$
$=44$ from part (iI)

$$
\begin{aligned}
\alpha+\beta+\gamma & =\frac{-b}{a} \\
& =2 \quad \text { from part }(1)
\end{aligned}
$$

