Total Marks – 100 Attempt Questions 1-4

Question 1 (25 marks) Use a SEPARATE writing booklet.

(a) Evaluate
$$\int_0^4 \frac{x \, dx}{\sqrt{16 - x^2}}$$
.

(b) Find
$$\int \sec^3 x \tan x \, dx$$
. 2

(c) Evaluate
$$\int_0^2 \frac{dx}{x^2 - 4x + 8}$$
 3

(d) (i) Prove
$$2\sin A \cos B = \sin(A - B) + \sin(A + B)$$
. 1

(ii) Hence, evaluate
$$\int_{0}^{\frac{\pi}{12}} \sin 4x \cos 2x \, dx \, .$$

(e) (i) Find real numbers A, B, C such that

$$\frac{2x}{(1+x)(x^2+1)} = \frac{A}{1+x} + \frac{Bx+C}{x^2+1}.$$
 3

(ii) Hence find
$$\int \frac{2x}{(1+x)(x^2+1)} dx$$
. 2

Marks

Newington College

(f) (i) Show that
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$
. 2

(ii) Hence, evaluate
$$\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$$
 3

(g) (i) If
$$I_n = \int \frac{dx}{(x^2 + 1)^n}$$
 prove that

$$I_n = \frac{1}{2(n-1)} \left[\frac{x}{(x^2 + 1)^{n-1}} + (2n-3)I_{n-1} \right].$$
3

(ii) Hence evaluate
$$\int_{0}^{1} \frac{dx}{(x^2+1)^2}$$
. 2

(d)

Question 2 (25 marks) Use a SEPARATE writing booklet. Marks

(a)
$$z_1 = 1 + i$$
 and $z_2 = \sqrt{3} - i$.
(i) Find $\frac{z_1}{z_2}$ in the form $a + ib$ where a and b are real.
(ii) Write z_1 and z_2 in modulus – argument form.
(iii) By equating equivalent expressions for $\frac{z_1}{z_2}$, write $\cos \frac{5\pi}{12}$ as a surd.
2

(b) (i) Express in modulus argument form,
$$1 - \sqrt{3}i$$
. 1
(ii) Hence evaluate $(1 - \sqrt{3}i)^5$ in the form $x + iy$. 3

ii) Hence evaluate
$$(1 - \sqrt{3}i)$$
 in the form $x + iy$. 3

- Given $|z+i| \le 2$ and $0 \le arg(z+1) \le \frac{\pi}{4}$. Sketch the region in an Argand (c) 3 diagram which contains the point P representing z.
 - y A С 0 х

The points OABC are the vertices of a rectangle on the Argand diagram with |OA| = 2|OC|. If OC represents the complex number p+iq, write down the complex numbers represented by:

(i)
$$\overrightarrow{OA}$$
1(ii) \overrightarrow{OB} 1(iii) \overrightarrow{BC} 1(iv) \overrightarrow{AC} 1

- (e) Consider the five 5^{th} roots of unity.
 - (i) Solve $z^5 1 = 0$ over the complex field giving your answers **3** in modulus-argument form.
 - (ii) Hence express $z^5 1$ as the product of real linear and quadratic **3** factors.
 - (iii) Write down the complex roots of $z^4 + z^3 + z^2 + z + 1 = 0$ giving your answers in modulus-argument form. 1

(iv) Hence prove that
$$\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$$
.

Question 3 (15 marks) Use a SEPARATE writing booklet.

(a)

The diagram shows the graph of $f(x) = 2e^{-x} - 1$. On separate diagrams sketch the following graphs, showing the intercepts on the axes and the equations of any asymptotes:

(i)	y = f(x) .	2
(-)		—

(ii)
$$y = \{f(x)\}^2$$
. 2

(iii)
$$y = \frac{1}{f(x)}.$$
 2

(iv)
$$y = ln \{f(x)\}.$$
 2

$$(v) y = xf(x). 2$$

(b) Consider the curve $y^2 = x^4(4+x)$

(ii) Find the area of the loop of the curve from
$$x = -4$$
 to $x = 0$. 3

Mathematics Extension 2

HSC Mini 2009

Question 4 (15 marks) Use a SEPARATE writing booklet.			Marks
(a)	(i)	Show that $(2x+1)$ is a factor of $P(x) = 2x^3 - 3x^2 + 8x + 5$	1
	(ii)	Hence solve $P(x) = 0$ over the complex field.	3
(b)	Consider the polynomial $P(x) = (x+2)^2 Q(x) + R(x)$		
	(i)	Explain why $R(x)$ is a linear polynomial	1
	(ii)	When $P(x)$ and $P'(x)$ are both divided by $(x+2)$, the remainder in each case is 6. Find $R(x)$.	3
(c)	The roots of $x^4 + x^3 + 2x^2 + 3x + 1 = 0$ are $\alpha, \beta, \gamma, \delta$		
	(i) (ii)	Find the polynomial with roots $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}, \frac{1}{\delta}$. Hence, or otherwise, show that	2
	(11)	$\left(\alpha + \frac{1}{\alpha}\right) + \left(\beta + \frac{1}{\beta}\right) + \left(\gamma + \frac{1}{\gamma}\right) + \left(\delta + \frac{1}{\delta}\right) = -4$	1
(d)	(i)	Explain why $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}$ has no double zeros. (note: $3!=3\times2\times1$)	2

(ii) Find the relationship between a,b and c if $ax^4 + bx^2 + c$ has a double zero. 2

End of paper

(a)

(b)

(c)

Secientana da = S Secientana da = Seci

 $\int_0^2 \frac{d_{sc}}{zc^2 - 4x + 8}$ $= \int_{0}^{2} \frac{d\alpha}{(x-2)^{2}+4}$ $= \frac{1}{2} \left[\frac{1}{4} \operatorname{Ans}^{-1} \frac{(x-2)}{2} \right]^{2}$ $=\frac{1}{2}\left(O-tan^{-1}(-1)\right)$ FIR

I(d) (i) Prove 25mA (0B = Sin(A-B) + Sm(A+B) Sin(A-B) = Sin A GB - Los A Sin B Sin(A+B) = Sin A GB + Cos A Sin BSin(A-B) + Sin(A+B) = 25in A Cos B Sinkse Coszada (ii) $=\frac{1}{2}\int_{0}^{\pi}\int Sin(4x-2x) + Sin(4x+2x) dc$ = 1 5th [Sm2x + Sm6x] doc $= -\frac{1}{2} \int \frac{1}{2} \int \frac$ $= -\frac{1}{2} \left[\frac{C_{5} \overline{E}}{2} + \frac{C_{5} \overline{E}}{2} - \frac{1}{2} - \frac{$ $= \frac{1}{2} \left[\frac{v_3}{4} - \frac{2}{3} \right]_{4}$ $=\frac{8-3/3}{24}$

(1+3)(x+1) 1+3 $2x \equiv A(x^{2}+1) + (1+x)(Bx+c)$ x = 0 $b \neq x = 1$ 0 = A + C2 = -2 + 2(B+1)b = x = 0let x = -1. . B+1 = 2-2 = 2AB =A = - 1 · · C = | $\frac{2x}{(1+x)(x^2+1)} = \frac{-1}{1+x} + \frac{x+1}{x^2+1}$ $\int \frac{2x}{(tox)(x^2+i)} dx = -\ln|Hx| + \int \frac{x}{y^2+i} dx + \int \frac{1}{1+i}$ (11) $= -l_{n}[1+x] + \frac{1}{2}l_{n}[x+1] + t_{m}[x]$

 $\left(S\right)(i)$ $-:RHS = -\int_{a}^{b} f(u) \cdot \frac{du}{du} du$ $= -\int_{-}^{0} f(u) du$ = Sa floc) doc = <1+5 So I + God 20 [ĉi] $= \int_{0}^{11} \frac{(t_{1} - y_{2})}{1 + (C_{3}(t_{1} - x))^{2}} dx$ $= \int_{0}^{\infty} \frac{(m-x)Sinse}{1+Co^{2}x} ds \sqrt{1+Co^{2}x}$ $2\int_{0}^{\pi} \frac{x \sin x}{1 + 6s^{2}x} ds = i \int_{0}^{\pi} \frac{\sin x}{1 + 6s^{2}x} ds$ $\int_{0}^{\pi} \frac{x \sin x}{1 + \log^2 x} dx = -\frac{\pi}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{\log^2 x} dx$

 $=\frac{\overline{n}}{C}$

 $\overline{T_n} = \begin{cases} \frac{d\sigma}{(sr+1)^n} \end{cases}$ $\overline{I_n} = \int \frac{d(x)}{dx} dx \frac{d(x)}{(x^2 + 1)^n}$ $u = x, V = (x^2 + i)^n$ as d S(x2+1) dx $= \frac{3x}{(x^{2}+i)^{n}} + 2n \left(\frac{x^{2}}{(x^{2}+i)^{n+1}} dx \right)$ $= \frac{3c}{(3c^{2}+1)^{n}} + 2n \int \frac{3c^{2}+1}{(3c^{2}+1)^{n+1}} - 2n \int \frac{1}{(3c^{2}+1)^{n+1}} dx$ $= \frac{\chi}{(\chi^2 + j)^n} + 2n \frac{T}{2n} - 2n \frac{T}{2n+j}$ $- 2n \prod_{n+1} = \frac{x}{(2n+1)^n} + (2n-1) \prod_{n+1} \sum_{n=1}^{\infty} \frac{x}{(2n+1)^n} + (2n-1) \prod_{n=1}^{\infty} \frac{x}{(2n+1)^n}$ $:: I_{n+1} = \frac{1}{2n} \left[\frac{x}{x^2 + 1} \right] + \frac{2n-1}{2n} I_n$ let à n = N - I $I_{N} = \frac{1}{2(N-1)} \left[\frac{x}{5c^{2}+1} + (2N-3) I_{N-1} \right]$ $T_{n} = \frac{1}{2(n-1)} \left[\frac{x}{(x^{2}+1)^{n-1}} + (2n-3)T_{n-1} \right]$ $(ii) \int_{S} \frac{dx}{(x^2+1)^2} = I_{a}$ $T = -\int \underbrace{x}_{T} T'$ 1 1

5

X'L Solutions $\frac{Z_1}{Z_1} = \frac{H_c}{\sqrt{3-c}} \times \frac{\sqrt{3+c}}{\sqrt{3+c}}$ (a) (i) $= \frac{\sqrt{3}-1}{4} + \frac{(1+\sqrt{3})^{2}}{4}$ ('ii) Z, = 52 (is II $Z_2 = 2 \operatorname{Gis}\left(-\frac{T}{4}\right)$ (iii) $\frac{Z_{I}}{Z_{I}} = \frac{\sqrt{2} \operatorname{Lis}(\frac{\overline{Z}}{2})}{2 \operatorname{Lis}(-\frac{\overline{Z}}{2})}$ $= \frac{1}{\sqrt{2}} \left(is \frac{5\pi}{\sqrt{2}} \right)$. . Equating real parts from (i) sici $\frac{1}{V_2} \left(c_0 \frac{5T}{12} = \frac{53-1}{4} \right)$ $\int_{CD} \frac{5\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4} V$ $(b)(i) 1 - J_3 i = 2 \operatorname{Ga}(-\frac{T_3}{3})$ 1 $(ii) (1 - \sqrt{3}i)^5 = 2^5 (in \left(-\frac{5\pi}{3}\right))$ = 25 (1) = 3 $= 32\left(\frac{1}{2} + \frac{5}{2}i\right)$

= 16 + 16 JZ C

Q2(c)= 2+ (y+1) 0 (d) Assumine 10A = 2 oct AN (i) IS OC is prig $\overrightarrow{OA} = 2 \times (p + iq) \times i$ = -2q + 2ip i(ii) $= \overrightarrow{OA} + \overrightarrow{OC}$ $= (p^{-2}q) + (^{2}p+q) i$ OB BC = 2g - zip (iii) OC + CA = OA (10) AC 02 - 72 = 0A AC = 02 - 0A $= p + iq - l^{-2}q + iq$ = (p + 2q) + (q - 2p)

2(e)i)(e)Z= Cootisino 55 = 6550 + i Sin 50 67 6350+iSin 0=1 (ii) $z^{-1} = (z - z_1)(z - z_2)(z - z_3)(z - z_4)(z - z_5)$ $= (z-i)(z^{2}-2(z^{2})(z^{2})(z^{2}-2(z^{2})(z^{2})(z^{2})(z^{2})(z^{2})(z^{2}-2(z^{2})(z^{2}-2(z^{2})$ is Sum of conjugte root = $260\frac{2\pi}{5}$, $260\frac{4\pi}{5}$ (iii) Sandroots = 0. $-\frac{1}{3} + 26 \frac{27}{5} + 26 \frac{27}{5} = 0$ î,

ŢĿ

Z(b) (i) $y^2 = x^4 (4 + x)$ y== + (304(x+x) (ii) Aneroloop = 2 S x Junx doc $bt \quad u = 4 + > c \quad \therefore \quad \frac{du}{dx} = 1$ $-Pre=2\int (v-u)^2 J u \, du$ = 2 5⁴ (u²-su +16) u² du $= 2 \int \left(u^{\frac{5}{2}} - 8 u^{\frac{3}{2}} + 16 u^{\frac{1}{2}} \right) du$ $= 2 \left[\frac{12}{7} u^{2} - \frac{16}{5} u^{2} + \frac{32}{3} u^{3} \right]_{0}^{7}$ 4046 = 39/05

$$(4)(1)P(-\frac{1}{2}) = -\frac{2}{8} - \frac{2}{8} - \frac{8}{2} + 5$$

= 0
$$\therefore 2x+3 \text{ is } \text{ is } \text{ functor}$$

$$(1)
$$2x+1 \sqrt{2x^{2}-2x+5}$$

$$2x+1 \sqrt{2x^{2}-3x^{2}+8x+5}$$

$$\frac{2x^{3}+x^{2}}{-6x^{2}+88}$$

$$\frac{-6x^{2}-2x}{10x+5}$$$$

 $P(x) = (x+1)(x^2-2x+5)$ $= (2x+1)[(x-1)^2+4]$ $= (2x+1) \int (2x-1)^2 - (2xi)^2 \int$ =(2x+1) [x-1-2i][x-1+2i] P(x) = 0 $\chi = -\frac{1}{2}$, 1 + 2i, 1 - 2iĽ

419 rej-regarder i (i) P(z) is divided by a quadratic (x+2)², Herefore the remainder must be in the form axtb (ii) $P'(z) = 2(x+z)Q(x) + Q'(x)(x+z)^{2} + R'(x)$ as R(x) = ax + b $R'(x) = a \quad a = 6$ Now $\cos P(\mathbf{z}) = 6$ \therefore -2a+b=6 $\therefore b=18$ R(x) = 6x + 18(C) $\chi^{4} + \chi^{3} + 2\chi^{2} + 3\chi + 1 = 0$ ---:(*) (i) let $\alpha = \frac{1}{2}$ $(\frac{1}{x})^{4} + 3(\frac{1}{x})^{3} + 2(\frac{1}{x})^{2} + 3(\frac{1}{x}) + 1 = 0$ $= x^{4} + 3x^{3} + 2x^{2} + x + 1 = 0 \quad herroots = \int_{z_{1}, z_{2}, z_{3}, z_{4}}^{z_{4}} \frac{1}{z_{1}, z_{2}, z_{3}, z_{4}} \frac{1}{z_{1}, z_{2}, z_{3}, z_{4}} \frac{1}{z_{1}, z_{2}, z_{3}, z_{4}} \frac{1}{z_{1}, z_{2}, z_{3}, z_{4}} \frac{1}{z_{1}, z_{2}, z_{4}} \frac{1}{z_{1}, z_{1}, z_{2}} \frac{1}{z_{1}, z_{1}, z_{2}} \frac{1}{z_{1}, z_{2}} \frac{1}{z_{1}$ (ii) Simprovid (=-1 Sum if vot $\mathcal{B} = -3$ $(\alpha + \frac{1}{\alpha}) + (\beta + \frac{1}{\beta}) + (\alpha + \frac{1}{\beta}) + (\delta + \frac{1}{\beta}) = -4$

4(-,)), 2! 3! $f'(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!}$ It x = x be the double root $-\frac{1}{1} + \frac{1}{12} + \frac{1}{2} + \frac{1}{3} = 1 + \frac{1}{2} + \frac{1}{2}$ $\dot{}$ $\chi = 0$ Now f(0) 70 . No double root

(et f(z) = a 2+bx2+c --() $(\tilde{l}i)$ $= \frac{g'(x)}{g(x)} = \frac{g(x)^3 + 2bx}{g(x)} = \frac{g(x)}{g(x)} = \frac$

Jen 2 4a x + 2bx = 0 $2x(2ax^2+b)=0$ $\cos x \neq 0 \quad - \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad - \quad \frac{b}{2a}$

: Sub into ()

 $a\left(-\frac{b}{2a}\right)^{2} + b\left(\frac{b}{2a}\right) + c = 0$ $\frac{ab^2}{4a^2} - \frac{b}{2a} + C = 0$ 2 b + cac = 0 62 -4ac-62=0