Total Marks - 100
Attempt Questions 1-4

Question 1 (25 marks) Use a SEPARATE writing booklet.
Marks
(a) Evaluate $\int_{0}^{4} \frac{x d x}{\sqrt{16-x^{2}}}$.
(b) Find $\int \sec ^{3} x \tan x d x$.
(c) Evaluate $\int_{0}^{2} \frac{d x}{x^{2}-4 x+8}$
(d) (i) Prove $2 \sin A \cos B=\sin (A-B)+\sin (A+B)$.
(ii) Hence, evaluate $\int_{0}^{\frac{\pi}{12}} \sin 4 x \cos 2 x d x$.
(e) (i) Find real numbers A, B, C such that

$$
\frac{2 x}{(1+x)\left(x^{2}+1\right)}=\frac{A}{1+x}+\frac{B x+C}{x^{2}+1} .
$$

(ii) Hence find $\int \frac{2 x}{(1+x)\left(x^{2}+1\right)} d x$.
(f) (i) Show that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$.
(ii) Hence, evaluate $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$
(g) (i) If $I_{n}=\int \frac{d x}{\left(x^{2}+1\right)^{n}}$ prove that

$$
I_{n}=\frac{1}{2(n-1)}\left[\frac{x}{\left(x^{2}+1\right)^{n-1}}+(2 n-3) I_{n-1}\right] .
$$

(ii) Hence evaluate $\int_{0}^{1} \frac{d x}{\left(x^{2}+1\right)^{2}}$.

Question 2 (25 marks) Use a SEPARATE writing booklet.

Marks

(a) $z_{1}=1+i$ and $z_{2}=\sqrt{3}-i$.
(i) Find $\frac{Z_{1}}{z_{2}}$ in the form $a+i b$ where a and b are real.
(ii) Write z_{1} and z_{2} in modulus - argument form.
(iii) By equating equivalent expressions for $\frac{z_{1}}{z_{2}}$, write $\cos \frac{5 \pi}{12}$ as a surd.
(b) (i) Express in modulus argument form, $1-\sqrt{3} i$.
(ii) Hence evaluate $(1-\sqrt{3} i)^{5}$ in the form $x+i y$.
(c) Given $|z+i| \leq 2$ and $0 \leq \arg (z+1) \leq \frac{\pi}{4}$. Sketch the region in an Argand diagram which contains the point P representing z.
(d)

The points $O A B C$ are the vertices of a rectangle on the Argand diagram with $|O A|=2|O C|$. If $O C$ represents the complex number $p+i q$, write down the complex numbers represented by:
(i) $O A$ 1
(ii) $\overrightarrow{O B}$ 1
(iii) $\overrightarrow{B C}$ 1
(iv) $\overrightarrow{A C}$ 1
(e) Consider the five $5^{\text {th }}$ roots of unity.
(i) Solve $z^{5}-1=0$ over the complex field giving your answers in modulus-argument form.
(ii) Hence express $z^{5}-1$ as the product of real linear and quadratic factors.
(iii) Write down the complex roots of $z^{4}+z^{3}+z^{2}+z+1=0$ giving your answers in modulus-argument form.
(iv) Hence prove that $\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=-\frac{1}{2}$. 2

Question 3 (15 marks) Use a SEPARATE writing booklet.
(a)

The diagram shows the graph of $f(x)=2 e^{-x}-1$. On separate diagrams sketch the following graphs, showing the intercepts on the axes and the equations of any asymptotes:
(i) $\quad y=|f(x)|$.
(ii) $y=\{f(x)\}^{2}$.
(iii) $y=\frac{1}{f(x)}$.
(iv) $y=\ln \{\mathrm{f}(\mathrm{x})\}$.
(v) $\quad y=x f(x)$.
(b) Consider the curve $y^{2}=x^{4}(4+x)$
(i) Sketch the curve. 2
(ii) Find the area of the loop of the curve from $x=-4$ to $x=0$. 3

Question 4 (15 marks) Use a SEPARATE writing booklet.

Marks

(a) (i) Show that $(2 x+1)$ is a factor of $P(x)=2 x^{3}-3 x^{2}+8 x+5$

1
(ii) Hence solve $P(x)=0$ over the complex field.
(b) Consider the polynomial $P(x)=(x+2)^{2} Q(x)+R(x)$
(i) Explain why $R(x)$ is a linear polynomial 1
(ii) When $P(x)$ and $P^{\prime}(x)$ are both divided by $(x+2)$, the remainder in each case is 6 . Find $R(x)$.
(c) The roots of $x^{4}+x^{3}+2 x^{2}+3 x+1=0$ are $\alpha, \beta, \gamma, \delta$
(i) Find the polynomial with roots $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}, \frac{1}{\delta}$.
(ii) Hence, or otherwise, show that

$$
\begin{equation*}
\left(\alpha+\frac{1}{\alpha}\right)+\left(\beta+\frac{1}{\beta}\right)+\left(\gamma+\frac{1}{\gamma}\right)+\left(\delta+\frac{1}{\delta}\right)=-4 \tag{1}
\end{equation*}
$$

(d) (i) Explain why $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}$ has no double zeros.
(note: $3!=3 \times 2 \times 1$)
(ii) Find the relationship between a, b and c if $a x^{4}+b x^{2}+c$ has a double zero.

End of paper

$Q 1$
(a)

$$
\begin{aligned}
& \int_{0}^{4} \frac{x}{\sqrt{16-x^{2}}} d x \\
= & -\left[\sqrt{16-x^{2}}\right]_{0}^{4} \\
= & -(0-4) \\
= & 4
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int \operatorname{Sec}^{3} x \tan x d x \\
= & \int \operatorname{Sec}^{2} x \cdot \operatorname{Sec} x \tan x d x, \quad \text { UsingStandor } \\
= & \frac{\operatorname{Sec}^{3} x}{3}+C \quad \text { Integral Ser } \\
& \text { Seccetander=x }
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \int_{0}^{2} \frac{d x}{x^{2}-4 x+8} \\
= & \int_{0}^{2} \frac{d x}{(x-2)^{2}+4} \\
= & \frac{1}{2}\left[\tan ^{-1} \frac{(x-2)}{2}\right]_{0}^{2} \\
= & \frac{1}{2}\left(0-\tan ^{-1}(-1)\right) \\
= & \frac{\pi}{8}
\end{aligned}
$$

1(d) (i) Prove $2 \operatorname{Sin} A \operatorname{Cos} B=\operatorname{Sin}(A-B)+\operatorname{Sin}(A+B)$

$$
\begin{aligned}
& \operatorname{Sin}(A-B)=\operatorname{Sin} A \operatorname{Cos}-\operatorname{Cos} A \operatorname{Sin} B \\
& \operatorname{Sin}(A+B)=\operatorname{Sin} A \operatorname{Cos} B+\operatorname{Cos} A \operatorname{Sin} B \\
\therefore \quad & \operatorname{Sin}(A-B)+\operatorname{Sin}(A+B)=2 \operatorname{Sin} A \operatorname{Cos} B
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{12}} \operatorname{Sin} 4 x \cos 2 x d x \\
= & \frac{1}{2} \int_{0}^{\frac{\pi}{12}}[\operatorname{Sin}(4 x-2 x)+\operatorname{Sin}(4 x+2 x)] d x \\
= & \frac{1}{2} \int_{0}^{\frac{\pi}{12}}[\sin 2 x+\sin 6 x] d x \\
= & -\frac{1}{2}\left[\frac{\cos 2 x}{2}+\frac{\cos 6 x}{6}\right]_{0}^{\frac{\pi}{2}} \\
= & -\frac{1}{2}\left[\frac{\cos \frac{\pi}{6}}{2}+\frac{\cos \frac{\pi}{2}}{6}-\frac{1}{2}-\frac{1}{6}-\right. \\
= & -\frac{1}{2}\left[\frac{43}{4}-\frac{2}{3}\right] \\
= & \frac{8-3 \sqrt{3}}{24}
\end{aligned}
$$

$$
\begin{aligned}
& (1+x)\left(x^{2}+1\right) \quad 1+x \quad x+1 \\
& 2 x=A\left(x^{2}+1\right)+(1+x)(B x+C) \\
& \text { bt } x=0 \\
& \therefore 0=A+C \quad \text { let } x=1 \\
& \therefore 2=-2+2(B+1)
\end{aligned}
$$

let $x=-1$

$$
\therefore B+1=2
$$

$$
-2=2 A
$$

$$
B=1 .
$$

$$
A=-1
$$

$$
\therefore c=1
$$

$$
\frac{2 x}{(1+x)\left(x^{2}+1\right)} \equiv \frac{-1}{1+x}+\frac{x+1}{x^{2}+1}
$$

(ii)

$$
\begin{aligned}
\int \frac{2 x}{(+x)\left(x^{2}+1\right)} d x & =-\ln |1+x|+\int \frac{x}{x^{2}+1} d x+\int \frac{1}{1+} \\
& =-\ln |1+x|+\frac{1}{2} \ln \left|x^{2}+1\right|+\tan ^{-1} x
\end{aligned}
$$

$(f)(i)$

$$
\left.\begin{array}{rl}
\int_{0}^{a} f(x) d x & =\int_{0}^{a} f(a-x) d d x=a-x \\
\frac{d u}{d x}=-1
\end{array}\right)=-\int_{a}^{0} f(u) \cdot \frac{d u}{d x} d x
$$

(ii)

$$
\begin{aligned}
& \int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x \\
& =\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+(\cos (\pi-x))^{2}} d x \\
& =\int_{0}^{\pi} \frac{(\pi-x) \operatorname{Sin} x}{i+\operatorname{Cos}^{2} x} d x \\
& 2 \int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x=\pi \int_{0}^{\pi} \frac{\operatorname{Sin} x}{1+\cos ^{2} x} d x \\
& \int_{0}^{\pi} \frac{x \sin x}{1+\operatorname{Cos}^{2} x} d x=-\frac{\pi}{2}\left[\tan ^{-1}(\operatorname{Cos} x)\right. \\
& =\frac{-\pi}{2}\left[\left(-\frac{\pi}{4}\right)-\frac{\pi}{5}\right. \\
& =\frac{\pi^{2}}{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& I_{n}=\int \frac{d x}{\left(x^{2}+1\right)^{n}} \\
& I_{n}=\int \frac{\frac{d(x)}{d x} \cdot d x}{\left(x^{2}+1\right)^{n}} u=x, v=\left(x^{2}+1\right)^{-n} \\
&=\frac{x}{\left(x^{2}+1\right)^{n}}+2 n \int \frac{x^{2}}{\left(x^{2}+1\right)^{n+1}} d x \quad \text { as } \quad d \frac{d\left(x^{2}+i\right.}{d x} \\
&=\frac{x}{\left(x^{2}+1\right)^{n}}+2 n \int \frac{x^{2}+1}{\left(x^{2}+1\right)^{n+1}}-2 n \int \frac{1}{\left(x^{2}+1\right)^{n+1}} d x \\
&=\frac{x}{\left(x^{2}+1\right)^{n}}+2 n I_{n}-2 n I_{n+1}^{\left(x^{2}+\right.} \\
& \therefore 2 n I_{n+1}=\frac{x}{\left(x^{2}+1\right)^{n}}+(2 n-1) I_{n} \\
& \therefore \therefore I_{n+1}=\frac{1}{2 n}\left[\frac{x}{\left(x^{2}+1\right)^{n}}\right]+\frac{2 n-1}{2 n} I_{n}
\end{aligned}
$$

Let: $n=m-1$

$$
\begin{aligned}
& \therefore I_{N}=\frac{1}{2(N-1)}\left[\frac{x}{\left(x^{2}+1\right)^{n-1}}+(2 N-3) I_{N-1}\right. \\
& \therefore I_{n}=\frac{1}{2(n-1)}\left[\frac{x}{\left(x^{2}+1\right)^{n-1}}+(2 n-3) I_{n-1}\right.
\end{aligned}
$$

(ii) $\int_{0}^{1} \frac{d x}{\left(x^{2}+1\right)^{2}}=I_{2}$

QC sotwhons
(a) (i)

$$
\begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{1+i}{\sqrt{3}-i} \times \frac{\sqrt{3}+i}{\sqrt{3}+i} \\
& =\frac{\sqrt{3}-i}{4}+\frac{(1+\sqrt{3}) i}{4}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& z_{1}=\sqrt{2} \operatorname{cis} \frac{\pi}{4} \\
& z_{2}=2 \cos \left(-\frac{\pi}{6}\right)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\therefore \frac{z_{1}}{z_{2}} & =\frac{\sqrt{2} \operatorname{cis}\left(\frac{\pi}{4}\right)}{2 \cos \left(-\frac{\pi}{6}\right)} \\
& =\frac{1}{\sqrt{2}} \operatorname{cis} \frac{5 \pi}{12}
\end{aligned}
$$

\therefore Equation real pants fran (i) sici

$$
\begin{aligned}
& \frac{1}{\sqrt{2}} \operatorname{Cos} \frac{5 \pi}{12}=\frac{\sqrt{3}-1}{4} \\
& \operatorname{Cos} \frac{5 \pi}{12}=\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

(b) $(i) 1-\sqrt{3} i=2 \operatorname{cis}\left(-\frac{\pi}{3}\right)$

(ii)

$$
\begin{aligned}
(1-\sqrt{3} i)^{5} & =2^{5} \operatorname{Cis}\left(-\frac{5 \pi}{3}\right) \\
& =2^{5} \operatorname{Cis} \frac{\pi}{3} \\
& =32\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
& =16+16 \sqrt{3} i
\end{aligned}
$$

Q2 (c)

(ii)

$$
\begin{aligned}
\overrightarrow{O B} & =\overrightarrow{O A}+\overrightarrow{O C} \\
& =(p-2 q)+(2 p+q) i
\end{aligned}
$$

(iii) $\quad \overrightarrow{B_{C}}=2 q-2 i p$
(iv) $\overrightarrow{A C}$

$$
\begin{aligned}
\overrightarrow{O C} & +\overrightarrow{C A}
\end{aligned}=\overrightarrow{O A}, ~ \begin{aligned}
\overrightarrow{O C} & \overrightarrow{A C} \\
\overrightarrow{A C} & =\overrightarrow{O C} \\
& =p+i q-(-2 q+2 \\
& =(p+2 q)+(q-2 p)
\end{aligned}
$$

$2(e) i) l$

$$
\begin{aligned}
& z=\cos \theta+i \sin \theta \\
& 5^{5}=\cos 5 \theta+i \sin 5 \theta
\end{aligned}
$$

let $\operatorname{Ces} 5 \theta+i \sin \theta=1$

$$
\begin{aligned}
\therefore \cos 5 \theta & =0 \\
5 \theta & =0,2 \pi, 4 \pi, 6 \pi, 8 \pi \\
\theta & =0, \frac{2 \pi}{5}, \frac{4 \pi}{5}, \frac{6 \pi}{5}, \frac{8 \pi}{5}
\end{aligned}
$$

\therefore Trots one $\operatorname{Cis} 0, \operatorname{Cis} \frac{2 \pi}{5}, \operatorname{Cis} \frac{4 \pi}{5}, \operatorname{Cis}\left(-\frac{2 \pi}{5}\right), \operatorname{lis}\left(-\frac{4 \pi}{5}\right.$
(ii)

$$
\begin{aligned}
z^{5}-1 & =\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{x}\right)\left(z-z_{5}\right) \\
& =(z-1)\left(z^{2}-2 \cos \frac{2 \pi}{5} z+1\right)\left(z^{2}-2 \cos ^{4 \pi} 5+1\right)
\end{aligned}
$$

is Sum if corijugte root $=2 \cos \frac{2 \pi}{5}, 2 \cos \frac{4 \pi}{5}$
(iv) Sunn of roots $=0$.

$$
\begin{aligned}
\therefore \quad 1+2 \cos \frac{2 \pi}{5}+2 \cos \frac{4 \pi}{5} & =0 \\
\therefore \cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5} & =-\frac{1}{2}
\end{aligned}
$$

(a) (i)

(i)

(iii)
(IV)

3(b) (i) $y^{2}=x^{4}(4+x)$

(ii) Arenfloop $=2 \int_{-4}^{4} x^{2} \sqrt{4+x} d x$
let $u=4+x \quad \therefore \frac{d u}{d x}=1$

$$
\begin{aligned}
\because \text { Area } & =2 \int_{0}^{4}(u-4)^{2} \sqrt{u} d u \\
& =2 \int_{0}^{4}\left(u^{2}-8 u+16\right) u^{\frac{1}{2}} d u \\
& =2 \int_{0}^{4}\left(u^{5 / 2}-8 u^{3 / 2}+16 u^{\frac{1}{2}}\right) d u \\
& =2\left[\frac{2}{7} u^{2 / 2}-\frac{16}{5} u^{5 / 2}+\frac{32}{3} u^{3 / 2}\right]_{0}^{6} \\
& =\frac{4096}{105} \\
& =39 \frac{1}{105} u^{2}
\end{aligned}
$$

$\alpha \times(d)$

$$
\text { (i) } \begin{aligned}
P\left(-\frac{1}{2}\right) & =-\frac{2}{8}-\frac{3}{4}-\frac{8}{2}+5 \\
& =0
\end{aligned}
$$

$\therefore 2 x+3$ is a fator
(ii)

$$
\begin{array}{r}
2 x+1 \frac{x^{2}-2 x+5}{2 x^{3}-3 x^{2}+8 x+5} \\
\frac{2 x^{3}+x^{2}}{-6 x^{2}+8 x} \\
\frac{-4 x^{2}-2 x}{10 x}+5 \\
10 x+5
\end{array}
$$

$$
\begin{aligned}
& \therefore P(x)=(2 x+1)\left(x^{2}-2 x+5\right) \\
&=(2 x+1)\left[(x-1)^{2}+4\right] \\
&=(2 x+1)\left[(x-1)^{2}-(4 i)^{2}\right] \\
&=(2 x+1)[x-1-2 i][x-1+2 i] \\
& \therefore P(x)=0 \\
& x=-\frac{1}{2}, 1+2 i, 1-2 i
\end{aligned}
$$

(i) $P(x)$ is divided by a quadratic $(x+2)^{2}$, therefore the remainder must he in the form $a x+b$
(ii)

$$
\begin{align*}
& P^{\prime}(x)=2(x+2) Q(x)+Q^{\prime}(x)(x+2)^{2}+R^{\prime}(x) \\
& \therefore \text { as } R(x)=a x+b \\
& R^{\prime}(x)=a \quad \therefore a=6 \\
& \text { Now os } P(-z)=6 \quad \therefore \quad-2 a+b=6 \\
& \therefore b=18 \\
& \therefore R(x)=6 x+18
\end{align*}
$$

(C) $x^{4}+x^{3}+2 x^{2}+3 x+1=0$
(i) $\operatorname{let} \alpha=\frac{1}{x}$

$$
\begin{aligned}
& \therefore\left(\frac{1}{x}\right)^{4}+3\left(\frac{1}{x}\right)^{3}+2\left(\frac{1}{x}\right)^{2}+3\left(\frac{1}{x}\right)+1=0 \\
& \therefore x^{4}+3 x^{3}+2 x^{2}+x+1=0 \text { hard } \quad \frac{1}{x}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}
\end{aligned}
$$

(ii) Simproots $(x)=-1$

Sun if vote $\theta=-3$

$$
\begin{aligned}
& \text { Sun if root } \theta=-3 \\
\therefore & \left(\alpha+\frac{1}{\alpha}\right)+\left(\beta+\frac{1}{\beta}\right)+\left(\alpha+\frac{1}{\gamma}\right)+\left(+\frac{1}{\delta}\right)=-4
\end{aligned}
$$

$$
f^{\prime}(x)=1+\frac{x}{1!}+\frac{x^{2}}{2!}
$$

Let $x=\alpha$ be the double root

$$
\begin{gathered}
\therefore 1+\alpha+\frac{\alpha^{2}}{2}+\frac{\alpha^{3}}{8}=1+\alpha+\frac{\alpha^{2}}{2} \\
\therefore \alpha=0
\end{gathered}
$$

Now $f(0) \neq 0$ No double rot
(ii) Let: $f(x)=a x^{4}+b x^{2}+c$

$$
\therefore \quad f^{\prime}(x)=4 a x^{3}+2 b x
$$

Gam (2) $4 a x^{3}+2 b x=0$

$$
\begin{aligned}
& 2 x\left(2 a x^{2}+b\right)=0 \\
& \operatorname{as} x \neq 0 \quad \therefore x^{2}=-\frac{b}{2 a}
\end{aligned}
$$

\therefore Sub into (1)

$$
\begin{array}{r}
a\left(-\frac{b}{2 a}\right)^{2}+b\left(-\frac{b}{2 a}\right)+c=0 \\
\frac{a b^{2}}{4 a^{2}}-\frac{b}{2 a}+c=0 \\
b^{2}-2 b^{2}+c a c^{2}=0 \\
c a c-b^{2}=0
\end{array}
$$

