QUESTION ONE (3 Marks) START A NEW BOOKLET

MULTIPLE CHOICE: Write the correct alternative on your writing paper.

1. Which of the following gives $|z|=2 \sqrt{5}$ and $\arg z=-\pi+\tan ^{-1} 2$
(A) $2+4 i$
(B) $-2+4 i$
(C) $-2-4 i$
(D) $2-4 i$
2. Which of the following represent the three cubed roots of -8
(A) $-2,1-\sqrt{3} i, 1+\sqrt{3} i$
(B) $-2,-1-\sqrt{3} i, 1+\sqrt{3} i$
(C) $-2,1-\sqrt{3} i, 1-\sqrt{3} i$
(D) $2,1-\sqrt{3} i, 1+\sqrt{3} i$
3. If z and w are the roots of the equation $3 x^{2}+(2-i) x+(4+i)=0$, which of the following represent $\frac{1}{\bar{Z}}+\frac{1}{\bar{W}}$
(A) $\frac{-7-6 i}{17}$
(B) $\frac{-7+6 i}{15}$
(C) $\frac{-7-6 i}{15}$
(D) $\frac{7+6 i}{17}$

QUESTION TWO (23Marks)

(a) Let $z=3+i$ and $w=2-5 i$. Find in the form $x+i y$,
(i) $\mathrm{z}^{2} \quad 1$
(ii) $\bar{z}+w \longrightarrow \mathbf{1}$
(iii) $\frac{w}{z}$
(b) Find all pairs of integers x and y that satisfy $(x+i y)^{2}=24+10 i$
(c) Sketch the region in the complex plane where the inequalities

$$
|z-1-i| \leq 2 \text { and } 0<\arg (z-1-i)<\frac{\pi}{4}
$$

hold simultaneously.
(d) (i) Write $1+i$ in the form $r(\cos \theta+i \sin \theta)$
(ii) Hence, or otherwise, find $(1+i)^{17}$ in the form $x+i y$, 3 where a and b are integers.
(e) Prove by Mathematical Induction that $(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)$ for all integers $n \geq 1$.
(e) If ω is the non real cube root of 1 ,
(i) Prove that $\left(1+2 \omega+3 \omega^{2}\right)\left(1+3 \omega+2 \omega^{2}\right)=3$.
(ii) Prove that. $\left(1+2 \omega+3 \omega^{2}\right)+\left(1+3 \omega+2 \omega^{2}\right)=-3$ 1
(iii) Hence find the exact values of $\left(1+2 \omega+3 \omega^{2}\right)$ and $\left(1+3 \omega+2 \omega^{2}\right)$.

QUESTION THREE (28 Marks) START A NEW BOOKLET

(a) Draw separate sketches of the following, clearly indicating any critical points. asymptotes, discontinuities etc. Make each sketch about half a page.
(i) $y=(x+1)(x-1)$
(ii) $y=\frac{1}{(x+1)(x-1)}$

2
(iii) $y=\sqrt{(x+1)(x-1)}$
(iv) $y^{2}=(x+1)(x-1)$
(v) $\quad y=|(x+1)(x-1)|$
(vi) $y=[(x+1)(x-1)]^{2}$
(vii) $\quad|y|=(x+1)(x-1)$
(viii) $y=\log _{e}(x+1)(x-1)$
(b) For the function $f(x)=\frac{x^{4}}{x^{2}-1}$.
(i) Determine whether $f(x)$ is odd, even or neither.
(ii) Find the coordinates of the stationary points.
(iii) By considering large values of $|x|$ and any discontinuities, sketch
the graph of $f(x)=\frac{x^{4}}{x^{2}-1}$ showing all essential features.
(c) The equation of a curve is given by $3 x^{2}+y^{2}-2 x y-8 x+2=0$.
(i) Find $\frac{d y}{d x}$.
(ii) Find the coordinates of the points on the curve where the tangent to the curve is parallel to the line $y=2 x$.

QUESTION FOUR (3 Marks) START A NEW BOOKLET

MULTIPLE CHOICE: Write the correct alternative on your writing paper

1. When $P(x)=x^{4}-1$ is factorised over the complex field it may be written as
(A) $\quad P(x)=\left(x^{2}-1\right)\left(x^{2}+1\right)$
(B) $\quad P(x)=(x-1)(x+1)\left(x^{2}+1\right)$
(C) $\quad P(x)=(x-1)(x+1)(x+i)(x-i)$
(D) $\quad P(x)=\left(x^{2}-1\right)(x-i)^{2}$
2. If α, β, γ are the roots of the equation $x^{3}-8 x^{2}-4 x+12=0$, then the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$ is
(A) $\frac{8}{3}$
(B) $1+\frac{1}{-8}+\frac{1}{-12}$
(C) $\frac{1}{3}$
(D) $\frac{1}{-12}$
3. Given $\frac{1}{(x+1)(x-3)}=\frac{A}{x+1}+\frac{B}{x-3}$, the values of A and B respectively are
(A) $1,-1$
(B) $-1,1$
(C) $\frac{1}{4},-\frac{1}{4}$
(D) $-\frac{1}{4}, \frac{1}{4}$

QUESTION FIVE (23Marks) START A NEW BOOKLET

(a) The equation $x^{3}-4 x^{2}+5 x+2=0$ has roots α, β and γ.

Find (i) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(ii) $\alpha^{3}+\beta^{3}+\gamma^{3}$
(b) Factorise $3 x^{4}+17 x^{3}+30 x^{2}+12 x-8=0$ completely if it has a root of multiplicity 3 .
(c) (i) Show that $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.
(ii) Find the roots of the equation $8 x^{3}-6 x-1=0$ in terms of $\cos \theta$.
(iii) Hence evaluate $\cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \cos \frac{4 \pi}{9}$.
(d) If $\frac{2 x+31}{(x+1)^{3}(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+1)^{3}}+\frac{D}{(x+2)}$
find the values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
(e) The roots of $x^{3}+3 p x+q=0$ are α, β and γ (none of which are equal to 0).
(i) Find the monic equation with roots $\frac{\beta \gamma}{\alpha}, \frac{\alpha \gamma}{\beta}$ and $\frac{\alpha \beta}{\gamma}$, giving the coefficients in terms of p and q.
(ii) Deduce that if $\gamma=\alpha \beta$ then $(3 p-q)^{2}+q=0$. 2

END OF PAPER

Year 12
Question 1

1. $|z|=2 \sqrt{5} \quad$ arg $z=-\pi+\tan ^{-1} 2$ z lies in the 3rd quadrant

$$
\begin{equation*}
\therefore z=-2-4 i \tag{c}
\end{equation*}
$$

2. Let $z^{3}=-5$

$$
\begin{gathered}
z^{3}+8=0 \\
(z+2)\left(z^{2}-2 z+4\right)=0 \\
(z+2)\left[(z-1)^{2}+3\right] \div 0 \\
(z+2)(z-1+\sqrt{3} i)(z-1-\sqrt{3} i)=0 \\
\therefore z=-2,1-\sqrt{3} i, 1+\sqrt{3} i \quad \text { (A) }
\end{gathered}
$$

3. $3 x^{2}+(2-i) x+(4+i)=0$

$\frac{1}{z}+\frac{1}{w}=\frac{w+z}{w z}$

$$
\therefore \frac{1}{3}+\frac{1}{\bar{w}}=\frac{-7-6 i}{17} \text { (A) }
$$

Question 2
a) $z=3+i \quad \omega=2-5 i$
(i)

$$
\begin{aligned}
3^{2} & =(3+i)^{2} \\
& =9+b i+i^{2} \\
& =8+6 i
\end{aligned}
$$

(iI)

$$
\begin{aligned}
\overline{3}+w & =3-i+2-5 i \\
& =5-6 i
\end{aligned}
$$

(iii) $\frac{w}{z}=\frac{2-5 i}{3+i}$

$$
\begin{aligned}
& =\frac{2-5 i}{3+i} \times \frac{3-i}{3-i} \\
& =\frac{6-17 i+5 i^{2}}{10} \\
& =\frac{1}{10}-\frac{17}{10} i
\end{aligned}
$$

b)

$$
\begin{gathered}
(x+4 y)^{2}=24+10 i \\
x^{2}-y^{2}=24 \\
x y=5
\end{gathered}
$$

\therefore The 2 square roots are $\pm(5+i)$
c) $|z-1-i| \leq 2 \quad 0<\arg \left(3^{-1-i}\right)<\frac{\pi}{4}$

d) (1)

$$
\begin{aligned}
z= & 1+i \\
|z| & =\sqrt{1^{2}+1^{2}} \quad \text { arg } z=\tan ^{-1} 1 \\
& =\sqrt{2} \quad=\frac{\pi}{4} \\
\therefore 1+i & =\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) \\
(1+i)^{17} & =(\sqrt{2})^{17}\left(\cos \frac{17 \pi}{4}+i \sin \frac{17 \pi}{4}\right) \\
& =256 \sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) \\
& =256+256 i
\end{aligned}
$$

$$
\arg z=\tan ^{-1} 1-\pi<\theta \leqslant \pi
$$

e) Show $(\cos \theta+4 \sin \theta)^{n}=\cos (n \theta)+4 \sin (n \theta) n \geqslant 1$

Step Test $n=1$

$$
\begin{aligned}
\text { L.HS } & =(\cos \theta+L \sin \theta)^{\prime} \\
& =\cos \theta+L \sin \theta \\
\text { R.HS } & =\cos \theta+L \sin \theta \\
\text { HHS } & =\text { RUS }
\end{aligned}
$$

\therefore Result is true for $n=1$
Step 2. Assume that the result is tree for $n=k$ that is $(\cos \theta+L \sin \theta)^{k}=\cos (k \theta)+L \sin (k \theta)$
Step 3
Hence show the result is true for $n=k+1$ that is $(\cos \theta+i \sin \theta)^{k+1}=\cos (k+1) \theta+i \sin (k+1) \theta$

$$
\begin{aligned}
L \cdot H S= & (\cos \theta+L \sin \theta)^{k+1} \\
= & (\cos \theta+i \sin \theta)^{k}(\cos \theta+L \sin \theta) \\
= & (\cos k \theta+L \sin k \theta)(\cos \theta+i \sin \theta) b y \operatorname{step} 2 \\
= & \cos k \theta \cos \theta+L \sin \theta \cos k \theta+L \sin k \theta \cos \theta \\
& +L^{2} \sin \theta \sin k \theta \\
= & (\cos k \theta \cos \theta-\sin k \theta \sin \theta)+ \\
& \quad((\cos k \theta \sin \theta+\sin k \theta \cos \theta) \\
= & \cos (k+1) \theta+L \sin (k+1) \theta \\
= & R . H S
\end{aligned}
$$

Step 4 Sirice the results true for $n=1$ then from step 3 it is true for $n=1+1=2$, and then for $n=3$. and so on by the process of mathematical induction it is true for all positive integral values of n
e)

$$
\begin{aligned}
& \text { e) } \omega^{3}=1 \\
& \omega^{3}-1=0 \\
& (\omega-1)\left(\omega^{2}+\omega+1\right)=0 \\
& \omega-1 \neq 0 \quad \therefore \omega^{2}+\omega+1=0
\end{aligned}
$$

(1) $\left(1+2 \omega+3 \omega^{2}\right)\left(1+3 \omega+2 \omega^{2}\right)$

$$
\begin{aligned}
& =1+3 \omega+2 \omega^{2}+2 \omega^{2}+6 \omega^{2}+4 \omega^{3}+3 \omega^{2}+9 \omega^{3}+b \omega^{4} \\
& =1+5 \omega+11 \omega^{2}+13 \omega^{3}+6 \omega^{4}
\end{aligned}
$$

$$
=1+5 w+11 w^{2}+13+6 w
$$

$N B\left(\omega^{3}=1\right.$

$$
=14+11 w+11 w^{2}
$$

$$
\text { (2) } w^{4}=w
$$

$$
\text { (3) } w^{2}+w+1=0
$$

$$
=14-11
$$

$$
w^{2}+w=-1
$$

$$
=3
$$

$$
\text { (11) } \begin{aligned}
1+2 \omega+3 \omega^{2}+1+3 \omega+2 \omega^{2} & =2+5 \omega+5 \omega^{2} \\
& =2+5\left(\omega+\omega^{2}\right) \\
& =2-5 \\
& =-3
\end{aligned}
$$

(iii) From parts (1) and (i) $\left(1+2 \omega+3 \omega^{2}\right)$ and $\left(1+3 \omega+2 \omega^{2}\right)$ are reots of $x^{2}+3=x+3=0$

$$
\begin{aligned}
\therefore & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-3 \pm \sqrt{3^{2}-4 \times 1 \times 3}}{2 \times 1} \\
& =\frac{-3 \pm 1 \sqrt{3}}{2}
\end{aligned}
$$

$$
\begin{array}{r}
\therefore \quad 1+2 \omega+3 \omega^{2}=\frac{-3-2 \sqrt{3}}{2} \\
1+3 \omega+2 \omega^{2}=\frac{-3+4 \sqrt{3}}{2}
\end{array}
$$

$N B \operatorname{lm}(\omega)=-\ln \left(\omega^{2}\right)$

$$
\begin{aligned}
& \operatorname{lm}\left(2 \omega+3 \omega^{2}\right)=\operatorname{lm}\left(\omega^{2}\right)<0 \\
& \operatorname{lm}\left(3 \omega+2 \omega^{2}\right)=\operatorname{lm} \omega>0
\end{aligned}
$$

Question 3
a) (1) $y=(x+1)(x-1)$

ii) $y=\frac{1}{(x-1)(x+1)}$

(iII) $y=\sqrt{(x-1)(x+1)}$

(v) $y^{2}=(x+1)(x-1)$

v) $y=|(x-1)(x+1)|$

(vi) $y=[(x+1)(x-1)]^{2}$

viII) $y=\log _{e}(x+1)(x-1)$

b) $f(x)=\frac{x^{4}}{x^{2}-1}$

$$
\begin{aligned}
f(-x) & =\frac{(-x)^{4}}{(-x)^{2}-1} \\
& =\frac{x^{4}}{x^{2}-1} \\
\therefore f(x) & =f(-x)
\end{aligned}
$$

$\therefore f(x)=\frac{x^{4}}{x^{2}-1}$ is an even function.
ii) $f(x)=\frac{x^{4}}{x^{2}-1}$

$$
\begin{array}{rl}
v=x^{4} & v=x^{2}-1 \\
\frac{d u}{d x} & =4 x^{3} \quad \frac{d v}{d x}=2 x \\
f^{\prime}(x) & =\frac{v^{\frac{d u}{d x}-v \frac{d v}{d x}}}{v^{2}} \\
& =\frac{\left(x^{2}-1\right) 4 x^{3}-x^{4} \times 2 x}{\left(x^{2}-1\right)^{2}} \\
& =\frac{2 x^{3}\left(2 x^{2}-2-x^{2}\right)}{\left(x^{2}-1\right)^{2}} \\
& =\frac{2 x^{2}\left(x^{2}-2\right)}{\left(x^{2}-1\right)^{2}} \\
& =\frac{2 x^{2}(x-\sqrt{2})(x+\sqrt{2})}{\left(x^{2}-1\right)^{2}}
\end{array}
$$

For stationary points

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& \therefore 2 x^{3}(x-\sqrt{2})(x+\sqrt{2})=0 \\
& \therefore \quad x=0, \pm \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =\frac{x^{4}}{x^{2}-1} \\
f(0) & =0 \\
f(\sqrt{2}) & =\frac{(\sqrt{2})^{4}}{(\sqrt{2})^{2}-1} \\
& =4 \\
f(-\sqrt{2}) & =\frac{(-\sqrt{2})^{4}}{(-\sqrt{2})^{2}-1} \\
& =4
\end{aligned}
$$

\therefore The stationary points are $(0,0)(\sqrt{2}, 4)$ and $(-\sqrt{2}, 4)$
(iii) Vertical asymptotes are $x= \pm 1$

$$
\begin{aligned}
f(x) & =\frac{x^{4}}{x^{2}-1} \\
& =x^{2}+1+\frac{1}{x^{2}-1}
\end{aligned}
$$

as $x \rightarrow \infty \quad f(x) \rightarrow x^{2}+1$

$$
\text { as } x \rightarrow-\infty f(x) \rightarrow x^{2}+1
$$

$$
y=x^{2}+1
$$

c)

$$
\begin{gathered}
3 x^{2}+y^{2}-2 x y-8 x+2=0 \\
6 x+2 y \frac{d y}{d x}-\left(2 x \frac{d y}{d x}+2 y\right)-8=0 \\
(2 y-2 x) \frac{d y}{d x}=8+2 y-6 x \\
\frac{d y}{d x}=\frac{8+2 y-6 x}{2 y-2 x} \\
\therefore \frac{d y}{d x}=\frac{4+y-3 x}{y-x}
\end{gathered}
$$

(ii) As the tangent is parallel to $y=2 x, \frac{d y}{d x}=2$

$$
\begin{align*}
\frac{4+y-3 x}{y-x} & =2 \\
4+y-3 x & =2 y-2 x \\
y & =4-x \tag{2}
\end{align*}
$$

sure (2) in (i)

$$
\begin{gathered}
3 x^{2}+y^{2}-2 x y-8 x+2=0 \\
3 x^{2}+(4-x)^{2}-2 x(4-x)-8 x+2=0 \\
3 x^{2}+16-8 x+x^{2}-8 x+2 x^{2}-8 x+2=0 \\
6 x^{2}-24 x+18=0 \\
x^{2}-4 x+3=0 \\
(x-3)(x-1)=0 \\
x=3,1
\end{gathered}
$$

when $x=3$
suds (2)

$$
\begin{aligned}
y & =4-x \\
& =4-3 \\
& =1
\end{aligned}
$$

when $x=1$
sues (2)

$$
\begin{aligned}
y & =4^{-x} \\
& =4^{-1} \\
& =3
\end{aligned}
$$

\therefore The points are $(3,1)(1,3)$

Question 4

$$
\text { 1. } \quad \begin{align*}
\quad P(x) & =x^{4}-1 \\
& =\left(x^{2}-1\right)\left(x^{2}+1\right) \\
& =(x-1)(x+1)(x-1)(x+1) \tag{c}
\end{align*}
$$

2.

$$
\text { 2. } \begin{aligned}
& x^{3}-8 x^{2}-4 x+12=0 \\
& \alpha+\beta+\gamma=\frac{-b}{a} \\
&=8 \\
& \begin{aligned}
\alpha \beta+\alpha \gamma+\beta \gamma & =\frac{c}{a} \\
& =-4 \\
\alpha \beta \gamma & =-\frac{d}{a} \\
& =-12
\end{aligned}
\end{aligned}
$$

$$
\begin{align*}
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\alpha \beta+\alpha \gamma+\beta \gamma}{\alpha \beta \gamma} \\
& =\frac{-4}{-12} \\
& =\frac{1}{3} \tag{c}
\end{align*}
$$

3. $\frac{1}{(x+1)(x-3)}=\frac{A}{x+1}+\frac{B}{x-3}$

$$
1=A(x-3)+B(x+1)
$$

sub $x=3$

$$
\begin{aligned}
1 & =B(3+1) \\
B & =\frac{1}{4}
\end{aligned}
$$

sub $x=-1$

$$
\begin{align*}
1 & =A(-1-3) \\
A & =-\frac{1}{4} \\
\therefore \quad A=-\frac{1}{4}, & B=\frac{1}{4} \tag{D}
\end{align*}
$$

Question 5

$$
\text { a) } \begin{aligned}
& x^{3}-4 x^{2}+5 x+2=0 \\
& \alpha+\beta+\gamma=\frac{-b}{a} \\
&=4 \\
& \alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a} \\
&=5 \\
& \alpha \beta \gamma=-\frac{d}{a} \\
&=-2
\end{aligned}
$$

d)

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
& =4^{2}-2 \times 5 \\
& =6
\end{aligned}
$$

(II)

$$
\begin{align*}
& \alpha^{3}=4 \alpha^{2}-5 \alpha-2 \tag{I}\\
& \beta^{3}=4 \beta^{2}-5 \beta-2 \\
& \gamma^{2}=4 \gamma^{2}-5 \gamma-2
\end{align*}
$$

$$
\begin{aligned}
& \text { (1)+2)+3} \begin{aligned}
\alpha^{3}+\beta^{3}+\gamma^{3} & =4\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)-5(\alpha+\beta+\gamma)-2 \times 3 \\
& =4(6)-5(4)-6 \\
& =-2
\end{aligned}
\end{aligned}
$$

b) $3 x^{4}+17 x^{3}+30 x^{2}+12 x-8=6$ $P(x)=3 x^{4}+17 x^{3}+30 x^{2}+12 x-4$ $P^{\prime}(x)=12 x^{3}+51 x^{2}+60 x+12$ $P^{\prime \prime}(x)=36 x^{2}+102 x+60$ $=2\left(18 x^{2}+51 x+30\right)$

$$
=2(x+2)(18 x+15)
$$

$$
\begin{aligned}
& P(-2)=0 \\
& P^{\prime}(-2)=0 \\
& P^{\prime \prime}(-2)=0
\end{aligned}
$$

$\therefore(x+2)$ is a triple root

$$
\begin{gathered}
\therefore \quad 3 x^{4}+17 x^{3}+30 x^{2}+12 x-8=0 \\
(x+2)^{3}(3 x-1)=0
\end{gathered}
$$

by inspection
c) By De Move's Theorem $(\cos \theta+u \sin \theta)^{n}=\cos n \theta+i \sin n \theta$.

1) $(\cos \theta+L \sin \theta)^{3}=\cos 3 \theta+L \sin 3 \theta$

$$
\begin{aligned}
\text { L.HS } & =(\cos \theta+4 \sin \theta)^{3} \\
& =\cos ^{3} \theta+3 \cos ^{2} \theta \cdot \sin \theta+3 \cos \theta(L \sin \theta)^{2}+L^{3} \sin ^{3} \theta \\
& =\cos ^{3} \theta+3 \cos ^{2} \theta-\sin \theta-3 \cos \theta \sin ^{2} \theta-1 \sin ^{3} \theta \\
& =\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta+2\left(3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta\right)
\end{aligned}
$$

Equating real parts

$$
\begin{aligned}
\cos 3 \theta & =\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta \\
& =\cos ^{3} \theta-3 \cos \theta\left(1-\cos ^{2} \theta\right) \\
& =\cos ^{3} \theta-3 \cos \theta+3 \cos ^{3} \theta \\
\therefore \cos 3 \theta & =4 \cos ^{3} \theta-3 \cos \theta
\end{aligned}
$$

ii) $8 x^{3}-6 x-1=0$

$$
4 x^{3}-3 x=\frac{1}{2}
$$

But $\cos 3 \theta=\frac{1}{2}$
NB $3 \theta= \pm \frac{\pi}{3}+2 n \pi$

$$
\begin{aligned}
3 \theta & =\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3} \\
\theta & =\frac{\pi}{9}, \frac{5 \pi}{9}, \frac{7 \pi}{9}
\end{aligned}
$$

\therefore The roots of $8 x^{3}-6 x-1=0$ are $\cos \frac{\pi}{9}$, $\cos \frac{5 \pi}{9}=-\cos \frac{4 \pi}{9}$ and $\cos \frac{7 \pi}{9}=-\cos \frac{2 \pi}{9}$
(iii) $8 x^{3}-6 x-1=0$

$$
\begin{aligned}
& 8 x-6 x-1=0 \\
& \text { product of the roots }=\frac{-d}{a} \\
&=\frac{1}{8} \\
& \therefore \cos \frac{\pi}{9} \times-\cos \frac{4 \pi}{9} x-\cos \frac{2 \pi}{9}=\frac{1}{8} \\
& \therefore \cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \cos \frac{4 \pi}{9}=\frac{1}{8}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \frac{2 x+31}{(x-1)^{3}(x+2)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)^{3}}+\frac{D}{(x+2)} \\
& 2 x+31=A(x-1)^{2}(x+2)+B(x-1)(x+2)+C(x+2)+D(x-1)^{3}
\end{aligned}
$$

Let $x=1 \quad 2(1)+31=c(1+2)$

$$
\begin{aligned}
33 & =3 c \\
c & =11
\end{aligned}
$$

Let $x=-2 \quad 2(-2)+31=D(-2-1)^{3}$

$$
\begin{aligned}
27 & =-27 D \\
D & =-1
\end{aligned}
$$

Let $x=0$

$$
\begin{align*}
2(0)+31 & =A(-1)^{2}(2)+B(-1)(2)+11(2)-1(-1)^{3} \\
31 & =2 A-2 B+22+1 \\
8 & =2 A-2 B \\
4 & =A-B \tag{D}
\end{align*}
$$

Let $x=-1 \quad 2(-1)+31=A(-1-1)^{2}+B(-1-1)(-1+2)+11(-1+2)-1(-1-1)^{3}$

$$
\begin{aligned}
29 & =4 A-2 B+11+8 \\
10 & =4 A-2 B \\
5 & =2 A-B
\end{aligned}
$$

Solve (1) and (2) simultaneously

$$
\begin{align*}
A-B & =4 \tag{1}\\
2 A-B & =5 \tag{2}\\
-A & =-1 \\
A & =1
\end{align*}
$$

(1) -(2)
sub(1)

$$
\begin{aligned}
A-B & =4 \\
1-B & =4 \\
B & =-3 \\
\therefore A=1, \quad B & =-3, \quad C=11, \quad D=-1
\end{aligned}
$$

$$
\text { e) } \quad \begin{array}{rl}
x^{3}+3 p & x+q=0 \\
\alpha+\beta+\gamma & =\frac{-b}{a} \\
& =0 \\
\alpha \beta+\alpha \gamma & +\beta \gamma=\frac{c}{a} \\
& =3 p \\
\alpha \beta \gamma & =\frac{-\alpha}{a} \\
& =-q
\end{array}
$$

$$
\begin{aligned}
\text { sum of the roots } & =\frac{\alpha \beta}{\gamma}+\frac{\beta \gamma}{\alpha}+\frac{\alpha \gamma}{\beta} \\
& =\frac{\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\alpha^{2} \gamma^{2}}{\alpha \beta \gamma} \\
& =\frac{(\alpha \beta+\beta \gamma+\alpha \gamma)^{2}-2 \alpha \beta \gamma(\alpha+\beta+\gamma)}{\alpha \beta \gamma} \\
& =\frac{(3 p)^{2}-q(0)}{-q} \\
& =\frac{9 p^{2}}{-q}
\end{aligned}
$$

sum of the roots 2 atiatime $=\frac{\alpha \beta}{\gamma} \times \frac{\beta \gamma}{\alpha}+\frac{\beta \gamma}{\alpha} \times \frac{\gamma \alpha}{\beta}+\frac{\gamma \alpha}{\beta} \times \frac{\alpha \beta}{\gamma}$

$$
\begin{aligned}
& =\beta^{2}+\gamma^{2}+\alpha^{2} \\
& =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
& =0-2(3 p) \\
& =-6 p
\end{aligned}
$$

$$
\begin{aligned}
\text { Product of the roots } & =\frac{\alpha \beta}{\gamma} \times \frac{\alpha \gamma}{\beta} \times \frac{\beta \gamma}{\alpha} \\
& =-\gamma
\end{aligned}
$$

\therefore The manic equation is $x^{3}+\frac{9 p^{2}}{q} x^{2}-b p x+q=0$
(II) If $\gamma=\alpha \beta$ then ane of the roots, $\frac{\alpha \beta}{\gamma}=\frac{\gamma}{\gamma}=1$

$$
\begin{array}{r}
\therefore \quad x^{3}+\frac{9 p^{2}}{q} x^{2}-6 p x+q=0 \\
1+\frac{9 p^{2}}{q}-6 p+q=0 \\
q+9 p^{2}-6 p q+q^{2}=0 \\
q+(3 p-q)(3 p-q)=0 \\
\therefore(3 p-q)^{2}+q=0
\end{array}
$$

