1

QUESTION ONE (3 Marks) START A NEW BOOKLET

MULTIPLE CHOICE: Write the correct alternative on your writing paper.

1. Which of the following gives
$$|z| = 2\sqrt{5}$$
 and $\arg z = -\pi + \tan^{-1} 2$

- (A) 2+4i
- (B) -2 + 4i
- (C) -2-4i
- (D) 2-4i
- 2. Which of the following represent the three cubed roots of -8
 - (A) $-2, 1-\sqrt{3}i, 1+\sqrt{3}i$
 - (B) $-2, -1 \sqrt{3}i, 1 + \sqrt{3}i$
 - (C) $-2, 1-\sqrt{3}i, 1-\sqrt{3}i$
 - (D) 2, $1 \sqrt{3}i$, $1 + \sqrt{3}i$

3. If z and w are the roots of the equation $3x^2 + (2-i)x + (4+i) = 0$, 1 which of the following represent $\frac{1}{\overline{z}} + \frac{1}{\overline{w}}$

(A) $\frac{-7-6i}{17}$

$$(B) \qquad \frac{-7+6i}{15}$$

(C)
$$\frac{-7-6i}{15}$$

(D)
$$\frac{7+6i}{17}$$

QUESTION TWO (23Marks)

(a)	Let $z = 3 + i$ and $w = 2 - 5i$. Find in the form $x + iy$,		
	(i)	z^2	1
	(ii)	$\overline{z} + w$	1
	(iii)	$\frac{w}{z}$	1
(b)	Find all pairs of integers x and y that satisfy $(x+iy)^2 = 24+10i$		
(c)	Sketch the region in the complex plane where the inequalities		3
	hold s	$ z-1-i \le 2$ and $0 < \arg(z-1-i) < \frac{\pi}{4}$ imultaneously.	
(d)	(i)	Write $1+i$ in the form $r(\cos\theta + i\sin\theta)$	2
	(ii)	Hence, or otherwise, find $(1+i)^{17}$ in the form $x+iy$, where <i>a</i> and <i>b</i> are integers.	3
(e)	Prove by Mathematical Induction that $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$ for all integers $n \ge 1$.		4
(e)	If ω is the non real cube root of 1,		
	(i)	Prove that $(1+2\omega+3\omega^2)(1+3\omega+2\omega^2) = 3$.	2
	(ii)	Prove that $(1 + 2\omega + 3\omega^2) + (1 + 3\omega + 2\omega^2) = -3$	1
	(iii)	Hence find the exact values of $(1 + 2\omega + 3\omega^2)$ and $(1 + 3\omega + 2\omega^2)$.	2

QUESTION THREE (28 Marks) START A NEW BOOKLET

(a) Draw separate sketches of the following, clearly indicating any critical points. asymptotes, discontinuities etc. Make each sketch about half a page.

(i)
$$y = (x+1)(x-1)$$
 1

(ii)
$$y = \frac{1}{(x+1)(x-1)}$$
 2

(iii)
$$y = \sqrt{(x+1)(x-1)}$$
 2

(iv)
$$y^2 = (x+1)(x-1)$$
 2

(v)
$$y = |(x+1)(x-1)|$$
 2

(vi)
$$y = [(x+1)(x-1)]^2$$
 2

(vii)
$$|y| = (x+1)(x-1)$$
 2

(viii)
$$y = \log_e(x+1)(x-1)$$
 2

(b) For the function
$$f(x) = \frac{x^4}{x^2 - 1}$$
.

(i)	Determine whether $f(x)$ is odd, even or neither.	1
(ii)	Find the coordinates of the stationary points.	3

(iii) By considering large values of |x| and any discontinuities, sketch 4 the graph of $f(x) = \frac{x^4}{x^2 - 1}$ showing all essential features.

(c) The equation of a curve is given by $3x^2 + y^2 - 2xy - 8x + 2 = 0$.

(i) Find
$$\frac{dy}{dx}$$
. 2

(ii) Find the coordinates of the points on the curve where the tangent 3 to the curve is parallel to the line y = 2x.

QUESTION FOUR (3 Marks) START A NEW BOOKLET

MULTIPLE CHOICE: Write the correct alternative on your writing paper

When $P(x) = x^4 - 1$ is factorised over the complex field it may be written 1. as

(A)
$$P(x) = (x^2 - 1)(x^2 + 1)$$

(B) $P(x) = (x - 1)(x + 1)(x^2 + 1)$

- (C) P(x) = (x-1)(x+1)(x+i)(x-i)(D) $P(x) = (x^2 1)(x-i)^2$
- If α , β , γ are the roots of the equation $x^3 8x^2 4x + 12 = 0$, then the value 2. of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ is

(A)
$$\frac{8}{3}$$

(B) $1 + \frac{1}{-8} + \frac{1}{-12}$
(C) $\frac{1}{3}$
(D) $\frac{1}{-12}$

- Given $\frac{1}{(x+1)(x-3)} = \frac{A}{x+1} + \frac{B}{x-3}$, the values of A and B respectively 3. are
 - 1, -1 (A)
 - -1,1 (B)

(C)
$$\frac{1}{4}, -\frac{1}{4}$$

(D) $-\frac{1}{4}, \frac{1}{4}$

QUESTION FIVE (23Marks) START A NEW BOOKLET

(a) The equation
$$x^3 - 4x^2 + 5x + 2 = 0$$
 has roots α, β and γ .

Find (i)
$$\alpha^2 + \beta^2 + \gamma^2$$
 2

(ii)
$$\alpha^3 + \beta^3 + \gamma^3$$
 3

(b) Factorise
$$3x^4 + 17x^3 + 30x^2 + 12x - 8 = 0$$
 completely if it has a root of multiplicity 3.

(c) (i) Show that
$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$
. 2

(ii) Find the roots of the equation
$$8x^3 - 6x - 1 = 0$$
 in terms of $\cos \theta$. 2

(iii) Hence evaluate
$$\cos\frac{\pi}{9}\cos\frac{2\pi}{9}\cos\frac{4\pi}{9}$$
. 2

(d) If
$$\frac{2x+31}{(x+1)^3(x+2)} = \frac{A}{(x+1)} + \frac{B}{(x+1)^2} + \frac{C}{(x+1)^3} + \frac{D}{(x+2)}$$
 4

find the values of A, B, C and D.

(e) The roots of
$$x^3 + 3px + q = 0$$
 are α, β and γ (none of which are equal to 0).

(i) Find the monic equation with roots $\frac{\beta\gamma}{\alpha}$, $\frac{\alpha\gamma}{\beta}$ and $\frac{\alpha\beta}{\gamma}$, giving the **3** coefficients in terms of p and q.

(ii) Deduce that if
$$\gamma = \alpha\beta$$
 then $(3p-q)^2 + q = 0$. 2

END OF PAPER

$$\frac{M_{anr} 12}{Q_{cestron 1}} = \frac{Extension 2}{Q_{cestron 1}} = \frac{M_{ini} Examination 2012}{Q_{cestron 2}}$$

$$\frac{Q_{cestron 1}}{Q_{cestron 2}} = \frac{Q_{cestron 2}}{Q_{cestron 2}}$$

.

10

d) Us
$$g = 1+i$$

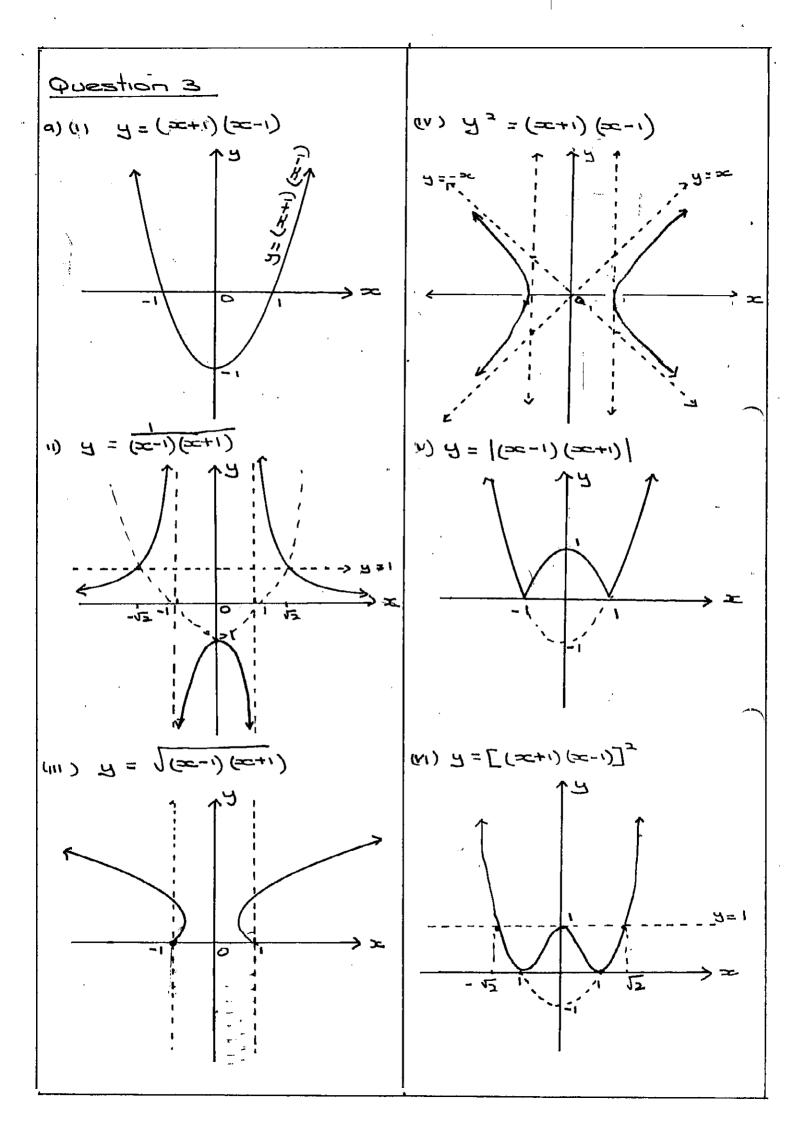
 $|g| = \sqrt{1^{3}+i^{3}}$ ang $g = ton^{3}1 - \pi \sqrt{0.5\pi}$
 $= \sqrt{2}$ $= \frac{\pi}{4}$
 $\therefore 1+i = \sqrt{3}(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$
 $(1+i)^{12} = (\sqrt{3})^{12}(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$
 $= 256\sqrt{3}(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$
 $= 1+53 = (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$
 $= 1+53 = (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$
 $= 1+53 = (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$
 $= 1+53 = (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$
 $= 1+54 \sin (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$
 $= 1+54 \sin (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$
 $= 1(\cos \frac{\pi}{4} + i$

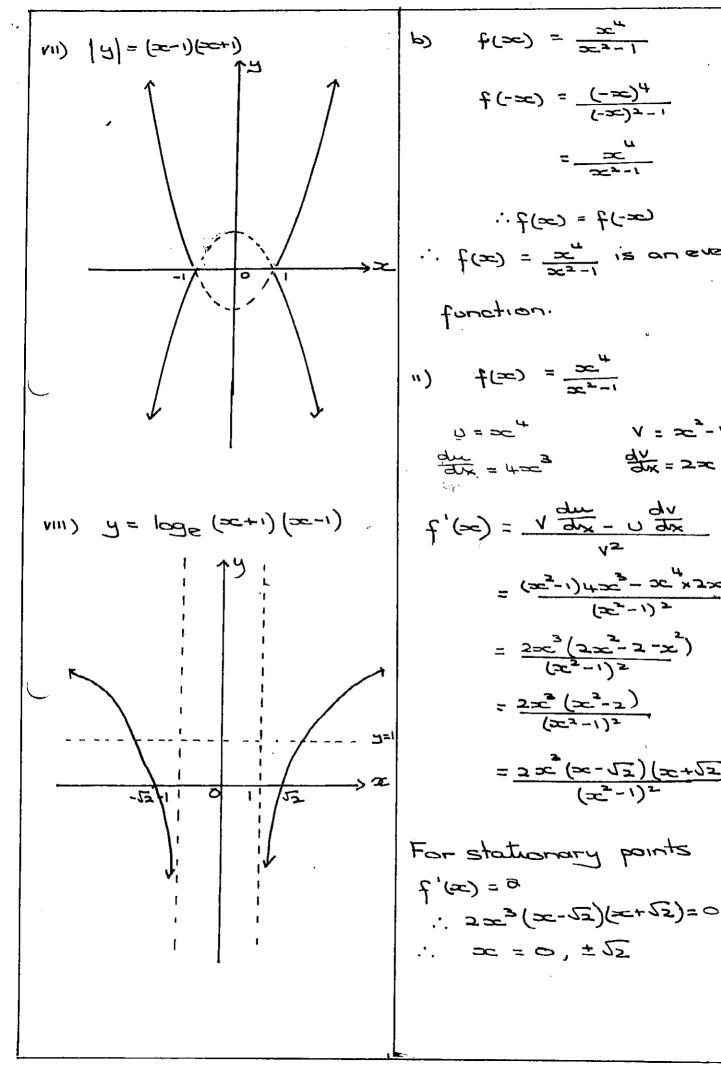
e)
$$\omega^{3} = 1$$

 $\omega^{3} - 1 = 0$
 $(\omega^{-1})(\omega^{3} + \omega^{+1}) = 0$
 $\omega^{-1} \neq 0$ $\therefore \omega^{3} + \omega^{+1} = 0$
(1) $(1 + 2\omega + 3\omega^{3})(1 + 3\omega + 2\omega)$
 $= 1 + 3\omega + 2\omega^{3} + 2\omega + 6\omega^{3} + 3\omega^{3} + 9\omega^{3} + 6\omega^{4}$
 $= 1 + 5\omega + 11\omega^{2} + 13\omega^{3} + 6\omega^{4}$
 $= 1 + 5\omega + 11\omega^{2} + 13\omega^{3} + 6\omega^{4}$
 $= 14 + 5\omega + 11\omega^{2} + 13\omega^{3} + 6\omega^{4}$
 $= 14 + 11(\omega^{2} + \omega)$ $(3) \omega^{3} + \omega^{2} = 1$
 $= 14 + 11(\omega^{2} + \omega)$ $(3) \omega^{3} + \omega^{2} = -1$
 $= 3$
(1) $1 + 2\omega + 3\omega^{3} + 1 + 3\omega + 2\omega^{3} = 2 + 5\omega^{3}$
 $= 2 + 5(\omega + \omega^{3})$
 $= 2 + 5$
 $= -3$
(1) From parts (1) and (2) $(1 + 2\omega + 3\omega^{3})$ and $(1 + 3\omega + 2\omega^{3})$
 $\alpha re reats of x^{2} + 3x + 3 = 0$
 $x = -\frac{b \pm \sqrt{b^{3} - 4\omega c}}{2}$
 $= -\frac{3 \pm \sqrt{b^{3} - 4\omega c}}{2}$
 $= -\frac{3 \pm \sqrt{b^{3} - 4\omega c}}{2}$
 $\therefore 1 + 2\omega + 3\omega^{3} = -\frac{3 - \sqrt{3}}{2}$ $NB |m(\omega) = -lm(\omega^{3})$
 $1 + 3\omega + 2\omega^{2} = -\frac{3 + \sqrt{3}}{2}$ $lm(3\omega + 2\omega^{3}) = lm(\omega^{3})(0)$

1

. **





 $f(-\infty) = \frac{(-\infty)^4}{(-\infty)^{2}-1}$ = = $\therefore f(\infty) = f(-\infty)$ $f(x) = \frac{x^4}{x^2 - 1}$ is an even $V = \infty^{2} - V$ $\frac{du}{dx} = 4 = 2^3 \qquad \frac{dY}{dx} = 2 = 2$ $f'(x) = \frac{\sqrt{du}}{\sqrt{dx} - \sqrt{dx}}$ $= \frac{(x^2-1)(+x^2-x^2+2x)}{(x^2-1)^2}$ $= \frac{2\infty^{3}(2x^{2}-2-x^{2})}{(x^{2}-1)^{2}}$ $=\frac{2x^2(x^2-2)}{(x^2-1)^2}$ $= \frac{2x^{2}(x-\sqrt{2})(x+\sqrt{2})}{(x^{2}-1)^{2}}$

$$f(x) = \frac{x^{u}}{x^{2-1}}$$

$$f(x) = \frac{(5)^{u}}{(5)^{2-1}}$$

$$= u$$

$$f(-5) = \frac{(-5)^{u}}{(-5)^{2-1}}$$

$$= u$$

$$f(-5) = \frac{(-5)^{u}}{(-5)^{2-1}}$$

$$= u$$

$$f(-5) = \frac{(-5)^{u}}{(-5)^{2-1}}$$

$$(u)$$

$$f(x) = \frac{x^{u}}{x^{2-1}}$$

$$f(x) = \frac{x^{u}}{x^{2-1}}$$

$$= 5c^{2+1} + \frac{1}{x^{2-1}}$$

$$as 5c \rightarrow a f(x) \rightarrow x^{2+1}$$

$$y = x^{1} + \frac{1}{x^{2-1}}$$

$$g(x) = \frac{x^{u}}{x^{2-1}}$$

$$f(x) = \frac{x^{u}}{x^{2-1}}$$

$$3z^{2} + y^{2} - 2zy - 8z + 2z = 0$$

$$bz + 2y \frac{dy}{dx} - (2z\frac{dy}{dx} + 2y) + 8z = 0$$

$$(2y - 2z) \frac{dy}{dx} = s + 2y - bz$$

$$\frac{dy}{dx} = \frac{s + 2y - bz}{2y - 2z}$$

$$\frac{dy}{dx} = \frac{s + 2y - bz}{2y - 2z}$$

$$\frac{dy}{dx} = \frac{u + y - 3z}{y - 2z}$$

$$\frac{dy}{dx} = \frac{u + y - 3z}{y - 2z}$$

$$\frac{u + y - 3z}{y - 2z} = 2$$

$$\frac{u + y - 3z}{y - 2z} = 2$$

$$\frac{u + y - 3z}{y - 2z} = 2$$

$$y = 4 - z = 2$$

$$y = 4 - z = 2$$

$$3z^{2} + (4 - z)^{2} - 2z(4 - z) - 8z + 2z = 0$$

$$3z^{2} + (4 - z)^{2} - 2z(4 - z) - 8z + 2z = 0$$

$$3z^{2} + (4 - z)^{2} - 2z(4 - z) - 8z + 2z = 0$$

$$z^{2} - 24z + 18 = 0$$

$$z^{2} - 4zz + 18 = 0$$

$$z^{2} - 4zz + 18 = 0$$

$$(z - 3)(z - 1) = 0$$

$$z = 3, 1$$

$$z = -1$$

$$z = -$$

•

$$\frac{Question H}{1}$$

$$P(\infty) = \infty^{4-1}$$

$$= (x^{2}-1)(x^{2}+1)$$

$$= (x^{2}-1)(x^{2}+1)$$

$$= (x^{2}-1)(x^{2}+1)$$

$$= (x^{2}-1)(x^{2}+1)(x^{2}+1)$$

$$= (x^{2}-1)(x^{2}+1)(x^{2}+1)(x^{2}+1)$$

$$= (x^{2}-1)(x^{2}+1)(x^{2}+1)(x^{2}+1)(x^{2}+1)$$

$$= x^{2} - 4x^{2} + 5x + 2 = 0$$

$$d(\beta + dY + \beta Y) = \frac{1}{6}$$

$$= x^{2}$$

$$d(\beta + dY + \beta Y) = \frac{1}{6}$$

$$= -x$$

$$d(\beta + dY + \beta Y) = \frac{1}{6}$$

$$= -x$$

$$d(\beta + dY + \beta Y) = \frac{1}{6}$$

$$= -x$$

$$d(\beta + dY + \beta Y) = \frac{1}{6}$$

$$= -x$$

$$d(\beta + dY + \beta Y) = \frac{1}{6}$$

$$= -x$$

$$d(\beta + dY + \beta Y) = \frac{1}{6}$$

$$= -x$$

$$d(\beta + dY + \beta Y) = \frac{1}{6}$$

$$= -x$$

$$d(\beta + dY + \beta Y) = \frac{1}{6}$$

$$= -x$$

$$d(\beta + dY + \beta Y) = \frac{1}{6}$$

$$= -x$$

$$d(\beta + dY + \beta Y) = \frac{1}{6}$$

$$= -x$$

$$d(\beta + dY + \beta Y) = \frac{1}{6}$$

$$= -x$$

$$d(\beta + dY + \beta Y) = \frac{1}{6}$$

$$= -x$$

$$(1) d^{2} = 4 d^{2} - 5(4 - 2) - (0)$$

$$d^{2} + \beta^{2} + 3(4 + \beta^{2} + 6) - 5(4(\beta^{2} + 3))^{-2}d(\beta^{2} + 3)^{-2}d(\beta^{2} + 3)^{-2}d(\beta^{2}$$

٩.

d)
$$\frac{2\pi + 31}{(\pi - 1)^3(\pi + 3)} = \frac{A}{(\pi - 1)^3} + \frac{B}{(\pi - 1)^3} + \frac{C}{(\pi - 1)^3} + \frac{D}{(\pi + 2)}$$

 $2\pi + 31 = A(\pi - 1)^3(\pi + 3) + B(\pi - 1)(\pi + 3) + C(\pi + 3) + D(\pi - 1)^3$
 $33 = 3c$
 $c = 11$
 $23 = 3c$
 $c = 11$
 $24 = \pi = 2$
 $2(-2) + 31 = D(-2-1)^3$
 $-27 = -27D$
 $D = -1$
 $b = -1$
 $b = -1$
 $b = 2A - 2B + 22 + 1$
 $B = 2A - 2B + 22 + 1$
 $B = 2A - 2B + 22 + 1$
 $B = 2A - 2B - -D$
 $2q = 4A - 2B + 11 + 8$
 $10 = 4a - 2B - -D$
 $2q = 4A - 2B + 11 + 8$
 $10 = 4a - 2B$
 $5 = 2A - 8$ - 2
Solve (1) and (2) simultaneously
 $A - B = 4$
 $A = 1$
 $B = -3$
 $(1 - 2)$
 $A = 1$, $B = -3$, $C = 11$, $D = -1$

í

e)
$$= \frac{3}{2} + 3px + q = 0$$

 $d + p + y = \frac{-b}{a}$
 $= 0$
 $dp + dy + py = \frac{a}{a}$
 $= \frac{-q}{a}$
 $a = -q$
but of the roots $= \frac{dB}{Y} + \frac{BY}{a} + \frac{dY}{p}$
 $= \frac{d^{2}B^{2} + B^{2}x^{2} + a^{2}y^{2}}{dBy}$
 $= \frac{(dB + Ay + uY)^{2} - 2uBY(u + B + Y)}{dBy}$
 $= \frac{(aB + Ay + uY)^{2} - 2uBY(u + B + Y)}{dBy}$
 $= \frac{(aB + Ay + uY)^{2} - 2uBY(u + B + Y)}{dBy}$
 $= \frac{(aB + Ay + uY)^{2} - 2uBY(u + B + Y)}{dBy}$
 $= \frac{qp^{2}}{-q}$
Sum of the roots 2at at time $= \frac{dB}{x} \times \frac{BY}{a} + \frac{BY}{a} \times \frac{yu}{B} + \frac{yd}{B} \times \frac{uB}{x} \times \frac{y}{y}$
 $= p^{2} + y^{2} + d^{2}$
 $= (u + p + y)^{2} - 2(up + dy + py)$
 $= 0 - 2(ap)$
 $= -bp$
Product of the roots $= \frac{dB}{x} \times \frac{dY}{b} \times \frac{BY}{a}$
 $= -q$

(v) If
$$Y = d\beta$$
 then are of the roots, $\frac{d\beta}{\delta} = \frac{Y}{\delta} = 1$
 $\therefore x^3 + \frac{qp^2}{q} = bpx + q = 0$
 $1 + \frac{qp^2}{q} - bpq + q^2 = 0$
 $q + qp^2 - bpq + q^2 = 0$
 $q + (3p-q)(3p-q) = 0$
 $\therefore (3p-q)^2 + q = 0$

ς,