

MATHEMATICS (EXTENSION 2)

2013 HSC Course Assessment Task 2

March 18, 2013

General instructions

- Working time 1 hour. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt **all** questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

(SECTION I)

• Mark your answers on the answer sheet provided (numbered as page 5)

(SECTION II)

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:

BOOKLETS USED:

Class (please \checkmark)

 \bigcirc 12M4A – Mr Fletcher \bigcirc 12M4B

 \bigcirc 12M4B – Mr Lam

 \bigcirc 12M4C – Ms Ziaziaris

Marker's use only.

QUESTION	1-4	5	6	Total	%
MARKS	$\overline{4}$	18	18	40	

Section I: Objective response

Mark your answers on the multiple choice sheet provided.

- 1. P(z) is a polynomial in z of degree 4 with real coefficients. Which one of the following statements must be false?
 - (A) P(z) has four real roots.
 - (B) P(z) has two real roots and two non-real roots.
 - (C) P(z) has one real root and three non-real roots.
 - (D) P(z) has no real roots.
- 2. Which of the following is the graph of $16y^2 9x^2 = 144$?

- **3.** The equation $x^3 + 2x + 1 = 0$ has roots α , β and γ . Which of the following **1** equations has roots 2α , 2β and 2γ ?
 - (A) $x^3 + 8x + 8 = 0$ (B) $x^3 + 16x + 8 = 0$ (C) $2x^3 + 4x + 2 = 0$ (D) $8x^3 + 4x + 1 = 0$

4. The points $P(a\cos\theta, b\sin\theta)$ and $Q(a\cos\phi, b\sin\phi)$ lie on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. The chord PQ subtends a right angle at (0,0). Which of the following is the correct expression?

(A)
$$\tan \theta \tan \phi = -\frac{b^2}{a^2}$$
 (C) $\tan \theta \tan \phi = \frac{b^2}{a^2}$
(B) $\tan \theta \tan \phi = -\frac{a^2}{b^2}$ (D) $\tan \theta \tan \phi = \frac{a^2}{b^2}$

End of Section I Examination continues overleaf...

1

1

Marks

Section II: Short answer

Quest	tion 3	5 (18 Marks)	Commence a NEW page.	Marks	
(a)	The	equation of a hyperbola is giv	ren by $4x^2 - 9y^2 = 36.$		
	i.	Find the coordinates of S and	nd S' , the foci of the hyperbola.	2	
	ii.	Find the equations of the di	rectrices M and M' .	1	
	iii.	Find the equations of the as	ymptotes.	1	
	iv.	V. Let P be any point on the hyperbola. Show that $ PS - PS' = 6$.			
(b) The line $x = 8$ is the directrix, and $(2, 0)$ is the corresponding focus of the ellips with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 a > b > 0$					
	Find	the value of a and b .			

(c) The point $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the ellipse meets the x axis at the points A and A'.

i. Prove that the tangent at P has the equation

$$\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$$

- ii. The tangent at P meets the tangents from A and A' at points Q and Q' **2** respectively. Find the coordinates of Q and Q'.
- iii. The points A, A', Q' and Q form a trapezium. Prove that the product of lengths of the parallel lines is independent of the position of P.
- (d) The diagram shows the hyperbola xy = 4.

i. What are the coordinates of the foci S and S'?

1

Question 5 continues overleaf...

3

Question 5 continued from previous page...

The point $P(2t, \frac{2}{t})$ lies on the curve, where $t \neq 0$. The normal at P intersects the straight line y = x at N. O is the origin.

Given the equation of the normal at P is

$$y = t^2 x + \frac{2}{t} - 8$$

Commence a NEW page.

ii. Find the coordinates of N.

Question 6 (18 Marks)

iii. Show that $\triangle OPN$ is isosceles.

The polynomial equation $x^3 - 6x^2 + 3x - 2 = 0$ has roots α , β and γ . (a) $\mathbf{2}$ Evaluate $\alpha^3 + \beta^3 + \gamma^3$. $x^{3} + px^{2} + qx + r = 0$ has roots α , β and γ , where $\alpha = \beta + \gamma$. (b) 3 Show that $p^3 - 4pq + 8r = 0$. Given -2-i is a zero of $P(x) = x^4 + 6x^3 + 14x^2 + 14x + 5$, find all zeros of P(x). (c) 3 (d) i. The polynomial equation P(x) = 0 has a double root at $x = \alpha$. $\mathbf{2}$ Show that $x = \alpha$ is also a root of the equation P'(x) = 0. ii. y = mx is a tangent to the curve $y = 3 - \frac{1}{r^2}$. Show that the equation 1 $mx^3 - 3x^2 + 1 = 0$ has a double root. iii. Hence find the equation of any such tangents. 3 Given that $\cos 5\theta = 16\cos^5 \theta - 20\cos^3 \theta + 5\cos \theta$, (e)

i. Find the roots of $16x^5 - 20x^3 + 5x = 0$. 2

$$\cos^2\frac{\pi}{10} + \cos^2\frac{3\pi}{10} = \frac{5}{4}$$

End of paper.

ii.

Hence show that

1 2

Marks

2

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g "●"

STUDENT NUMBER:

Class (please \checkmark)

 $\bigcirc 12\mathrm{M4A}$ – Mr Fletcher $\bigcirc 12\mathrm{M4B}$ – Mr Lam $\bigcirc 12\mathrm{M4C}$ – Ms Ziaziaris

1 -	(A)	B	C	\bigcirc
2 -	\bigcirc	B	C	\bigcirc
3 –	\bigcirc	B	C	\bigcirc
4 -	(A)	B	\bigcirc	\bigcirc

Suggested Solutions

Section I

1. (C) **2.** (C) **3.** (A) **4.** (B)

Section II

Question 5 (Fletcher)

- (a) i. (2 marks) \checkmark [1] for correct eccentricity.
 - $\checkmark~~[1]~$ for correct foci.

$$4x^{2} - 9y^{2} = 36$$
$$\frac{x^{2}}{9} - \frac{y^{2}}{4} = 1$$
$$\therefore a = 3 \qquad b = 2$$

Finding the eccentricity,

$$b^{2} = a^{2} (e^{2} - 1)$$

$$4 = 9 (e^{2} - 1)$$

$$e^{2} = 1 + \frac{4}{9} = \frac{13}{9}$$

∴ $e = \frac{\sqrt{13}}{3}$

Coordinates of foci: $S(\pm ae, 0)$

$$S\left(\sqrt{13},0\right) \qquad S'\left(-\sqrt{13},0\right)$$

ii. (1 mark)

$$x = \pm \frac{a}{e} = \pm \frac{3}{\frac{\sqrt{13}}{3}} = \pm \frac{9}{\sqrt{13}}$$

iii. (1 mark)

$$y = \pm \frac{b}{a}x = \pm \frac{2}{3}x$$

- iv. (2 marks) \checkmark [1] for using PS = ePM and PS' = ePM'.
 - \checkmark [1] for final answer.

Since
$$\frac{PS}{PM} = e$$
 and $\frac{PS'}{PM'} = e$
 $\therefore \begin{cases} PS = ePM & (1) \\ PS' = ePM' & (2) \end{cases}$

Equation (1) subtract equation (2):

$$|PS - PS'| = e |PM - PM'|$$
$$= e |MM'|$$
$$= \frac{\sqrt{13}}{3} \times 2 \times \frac{9}{\sqrt{13}}$$
$$= 6$$

(b) (2 marks)

 $\checkmark \quad [1] \text{ for finding } a \text{ and } e.$

 \checkmark [1] for final answer.

$$x = \frac{a}{e} = 8$$

$$(2,0) = (ae,0)$$

$$\begin{cases} \frac{a}{e} = 8 & (1) \\ ae = 2 & (2) \end{cases}$$

 $(1) \times (2):$

$$a^{2} = 16$$

$$\therefore a = 4$$

$$\therefore e = \frac{1}{2}$$

$$b^{2} = a^{2} (1 - e^{2})$$

$$= 16 \left(1 - \frac{1}{4}\right)$$

$$= 16 \times \frac{3}{4} = 12$$

$$\therefore b = 2\sqrt{3}$$

(c) i. (2 marks)

$$\begin{cases} x = a \cos \theta \\ y = b \sin \theta \\ \frac{dx}{d\theta} = -a \sin \theta \\ \frac{dy}{d\theta} = b \cos \theta \\ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = -\frac{b \cos \theta}{a \sin \theta} \end{cases}$$

Equation of the tangent at $P(a\cos\theta, b\sin\theta)$ is

$$y - b\sin\theta = -\frac{b\cos\theta}{a\sin\theta} (x - a\cos\theta)$$

$$ay\sin\theta - ab\sin^2\theta = -bx\cos\theta + ab\cos^2\theta$$

$$\underbrace{bx\cos\theta + ay\sin\theta}_{\div ab} = \underbrace{ab\cos^2\theta + ab\sin^2\theta}_{\div ab}$$

$$\therefore \frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$$

ii. (2 marks)

•

As the equation of the tangent is

$$\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$$

The coordinates of Q: when x = a,

$$\frac{\oint \cos\theta}{\oint} + \frac{y\sin\theta}{b} = 1$$
$$y\frac{\sin\theta}{b} = 1 - \cos\theta$$
$$y = \frac{b(1 - \cos\theta)}{\sin\theta}$$

Similarly, the coordinates of Q': when x = -a

$$y = \frac{b(1 + \cos \theta)}{\sin \theta}$$
$$\therefore Q\left(a, \frac{b(1 - \cos \theta)}{\sin \theta}\right)$$
$$Q'\left(-a, \frac{b(1 + \cos \theta)}{\sin \theta}\right)$$

iii. (2 marks)

- $\checkmark \quad [1] \quad \text{for identifying parallel lines} \\ \text{in trapezium and multiplying their} \\ \text{lengths.} \end{cases}$
- \checkmark [1] for final answer.

Parallel lines are AQ and AQ'. Hence

$$AQ \times AQ' = \frac{b(1 - \cos\theta)}{\sin\theta} \times \frac{b(1 + \cos\theta)}{\sin\theta}$$
$$= \frac{b^2(1 - \cos^2\theta)}{\sin^2\theta}$$
$$= b^2$$

(d) i. (1 mark)

$$xy = 4 = c^2$$

$$\cdot c = 2$$

As
$$e = \sqrt{2}$$
, and $S\left(\pm c\sqrt{2}, \pm c\sqrt{2}\right)$,
 $\therefore S\left(2\sqrt{2}, 2\sqrt{2}\right) \qquad S'\left(-2\sqrt{2}, -2\sqrt{2}\right)$

ii. (1 mark)

$$y = t^2 x + \frac{2}{t} - 8$$

Coordinates of N occur when y = x, i.e.

$$x = t^{2}x + \frac{2}{t} - 8$$

$$x (1 - t^{2}) = \frac{2}{t} - 8$$

$$x = y = \frac{8t - 2}{t (t^{2} - 1)}$$

$$. N\left(\frac{8t - 2}{t (t^{2} - 1)}, \frac{8t - 2}{t (t^{2} - 1)}\right)$$

iii. (2 marks)

·

- \checkmark [1] for substantial progress towards proof.
- \checkmark [1] for correct conclusion.

$$m_{OP} = \frac{\frac{2}{t}}{2t} = \frac{1}{t^2}$$

Gradient of normal:

$$m_{PM} = t^2$$

Angle between ON and $OP(\alpha)$:

$$\tan \alpha = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right| \\= \left| \frac{1 - \frac{1}{t^2}}{1 + 1\left(\frac{1}{t^2}\right)} \right| \times \frac{t^2}{t^2} \\= \left| \frac{t^2 - 1}{t^2 + 1} \right|$$

Angle between ON and PN (β):

$$\tan\beta = \left|\frac{1-t^2}{1+1(t^2)}\right| = \left|\frac{1-t^2}{1+t^2}\right|$$

As $\tan \alpha = \tan \beta$ and α , $\beta < 90^{\circ}$,

 $\therefore \alpha = \beta$

and $\triangle OPN$ is isosceles.

Question 6 (Fletcher)

- (a) (2 marks) \checkmark [1] for $\alpha^3 + \beta^3 + \gamma^3$ in terms of α, β and γ .
 - \checkmark [1] for final answer.

If α , β and γ are the roots,

$$\alpha^{3} - 6\alpha^{2} + 3\alpha - 2 = 0$$

$$\beta^{3} - 6\beta^{2} + 3\beta - 2 = 0$$

$$\gamma^{3} - 6\gamma^{2} + 3\gamma - 2 = 0$$

Adding and moving terms to other side,

$$\alpha^{3} + \beta^{3} + \gamma^{3}$$

= 6 (\alpha^{2} + \beta^{2} + \gamma^{2}) - 3 (\alpha + \beta + \gamma) + 6

Now to find $\alpha^2 + \beta^2 + \gamma^2$:

$$(\alpha + \beta + \gamma)^{2} = (\alpha + \beta)^{2} + 2(\alpha + \beta)\gamma + \gamma^{2}$$
$$= \alpha^{2} + 2\alpha\beta + \beta^{2} + 2\alpha\gamma + 2\beta\gamma + \gamma^{2}$$
$$\therefore \alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$$
$$\therefore \alpha^{3} + \beta^{3} + \gamma^{3} = 6\left[(\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)\right]$$
$$- 3(\alpha + \beta + \gamma) + 6$$
$$= 6\left[(-6)^{2} - 2(3)\right] - 3(-6) + 6$$
$$= 168$$

(b) (3 marks)

- ✓ [2] (max) for significant progress towards final answer.
- \checkmark [1] for final answer.

$$x^3 + px^2 + qx + r = 0$$

with roots α , β , γ and $\alpha = \beta + \gamma$.

• Using the sum of roots,

 α

$$+\beta + \gamma = 2\alpha = \frac{-p}{1}$$
$$\therefore \alpha = -\frac{p}{2}$$

• Using the pairs of roots,

$$\alpha\beta + \alpha\gamma + \beta\gamma = \alpha (\beta + \gamma) + \beta\gamma$$
$$= \alpha^{2} + \beta\gamma$$
$$= \frac{p^{2}}{4} + \beta\gamma = \frac{q}{1}$$
$$\therefore \frac{p^{2}}{4} + \beta\gamma = q$$

• Using the product of roots,

$$\alpha\beta\gamma = \left(-\frac{p}{2}\right)\left(q - \frac{p^2}{4}\right)$$
$$= -\frac{p}{2}\left(q - \frac{p^2}{4}\right) = -r$$
$$\therefore -\frac{p}{2}\left(q - \frac{p^2}{4}\right) = -r$$
$$\underbrace{-\frac{pq}{2} + \frac{p^3}{8}}_{\times 8} = \frac{-r}{\times 8}$$
$$\therefore p^3 - 4pq + 8r = 0$$

LAST UPDATED MARCH 26, 2013

- (c) (3 marks)
 - \checkmark [1] for identifying conjugate root.
 - \checkmark [1] for other significant progress towards answer.
 - \checkmark [1] for final answer.

If -2 - i is a zero to $P(x) = x^4 + 6x^3 + 14x^2 + 14x + 5$, then -2 + i is also a zero.

• Sum of roots:

$$(-2-i) + (-2+i) + \alpha + \beta = -\frac{b}{a} = -6$$
$$\alpha + \beta = -2$$

• Product of roots:

$$(-2-i)(-2+i) \times \alpha\beta = \frac{e}{a} = 5$$
$$5\alpha\beta = 5$$
$$\alpha\beta = 1$$

$$\begin{cases} \alpha + \beta = -2\\ \alpha\beta = 1\\ \therefore \alpha = -1 \qquad \beta = -1 \end{cases}$$

Roots are -1, -1, -2 - i, -2 + i.

(d) i. (2 marks) $\checkmark [1] \text{ correctly differentiating.}$ $\checkmark [1] \text{ for final proof.}$ Let $P(x) = (x - \alpha)^2 Q(x)$ $u = (x - \alpha)^2 \quad v = Q(x)$ $u' = 2(x - \alpha) \quad v' = Q'(x)$ P'(x) = uv' + vu' $= (x - \alpha)^2 Q'(x) + 2(x - \alpha)Q(x)$ $= (x - \alpha) ((x - \alpha)Q'(x) + Q(x))$ $= (x - \alpha)Q_3(x)$ Hence $x = \alpha$ is also a root of P'(x) =

Hence $x = \alpha$ is also a root of P'(x = 0).

ii. (1 mark) If y = mx is a tangent to $y = 3 - \frac{1}{x^2}$, then $mx = 3 - \frac{1}{x^2}$

has a double root.

$$mx^3 = 3x^2 - 1$$
$$mx^3 - 3x^2 + 1 = 0$$

Hence $mx^3 - 3x^2 + 1 = 0$ has a double root.

iii. (3 marks)If P(x) has a

If P(x) has a double root at $x = \alpha$, then $x = \alpha$ is also a root to P'(x):

$$P'(x) = 3mx^2 - 6x$$
$$P'(\alpha) = 3m\alpha^2 - 6\alpha = 03\alpha (m\alpha - 2) = 0$$
$$\therefore \alpha = 0, \frac{2}{m}$$

As $P'(0) \neq 0$, $x = \frac{2}{m}$ is the double root.

$$P\left(\frac{2}{m}\right) = 0$$

$$\therefore m\left(\frac{2}{m}\right)^3 - 3\left(\frac{2}{m}\right)^2 + 1 = 0$$

$$\frac{8}{m^2} - \frac{12}{m^2} + 1 = 0$$

$$\frac{4}{m^2} = 1$$

$$\therefore m = \pm 2$$

$$\therefore y = \pm 2x$$

(e) i. (2 marks)

Given $\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$, then letting $x = \cos \theta$ will result in the polynomial

$$16x^5 - 20x^3 + 5x = 0$$

Hence to solve the polynomial, solve $\cos 5\theta = 0$:

$$\cos 5\theta = 0$$

$$5\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \frac{9\pi}{2}$$

$$\therefore \theta = \frac{\pi}{10}, \frac{3\pi}{10}, \frac{\pi}{2}, \frac{7\pi}{10}, \frac{9\pi}{10}$$

$$\therefore x = 0, \pm \cos \frac{\pi}{10}, \pm \cos \frac{3\pi}{10}$$

ii. (2 marks) Using pairs of roots (the only terms remaining are the ones which do not involve the zero)

$$16x^{5} - 20x^{3} + 5x = 0$$

$$\left(\cos\frac{\pi}{10}\right)\left(-\cos\frac{\pi}{10}\right)$$

$$+ \left(\cos\frac{3\pi}{10}\right)\left(-\cos\frac{3\pi}{10}\right)$$

$$= -\cos^{2}\frac{\pi}{10} - \cos^{2}\frac{3\pi}{10} = \frac{c}{a} = -\frac{20}{16}$$

$$\therefore \cos^{2}\frac{\pi}{10} + \cos^{2}\frac{3\pi}{10} = \frac{5}{4}$$