MATHEMATICS (EXTENSION 2)

2013 HSC Course Assessment Task 2
March 18, 2013

General instructions

- Working time - 1 hour. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

SECTION I

- Mark your answers on the answer sheet provided (numbered as page 5)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:
\# BOOKLETS USED:

Class (please12M4A - Mr Fletcher
○ $12 \mathrm{M} 4 \mathrm{~B}-\mathrm{Mr}$ Lam
12M4C - Ms Ziaziaris

Marker's use only.

QUESTION	$1-4$	5	6	Total	$\%$
MARKS	$\overline{4}$	$\overline{18}$	$\overline{18}$	$\overline{40}$	

Section I: Objective response

Mark your answers on the multiple choice sheet provided.

1. $P(z)$ is a polynomial in z of degree 4 with real coefficients. Which one of the following statements must be false?
(A) $P(z)$ has four real roots.
(B) $P(z)$ has two real roots and two non-real roots.
(C) $P(z)$ has one real root and three non-real roots.
(D) $P(z)$ has no real roots.
2. Which of the following is the graph of $16 y^{2}-9 x^{2}=144$?
(A)

(C)

(B)

(D)

3. The equation $x^{3}+2 x+1=0$ has roots α, β and γ. Which of the following equations has roots $2 \alpha, 2 \beta$ and 2γ ?
(A) $x^{3}+8 x+8=0$
(C) $2 x^{3}+4 x+2=0$
(B) $x^{3}+16 x+8=0$
(D) $8 x^{3}+4 x+1=0$
4. The points $P(a \cos \theta, b \sin \theta)$ and $Q(a \cos \phi, b \sin \phi)$ lie on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. The chord $P Q$ subtends a right angle at $(0,0)$. Which of the following is the correct expression?
(A) $\tan \theta \tan \phi=-\frac{b^{2}}{a^{2}}$
(C) $\tan \theta \tan \phi=\frac{b^{2}}{a^{2}}$
(B) $\tan \theta \tan \phi=-\frac{a^{2}}{b^{2}}$
(D) $\tan \theta \tan \phi=\frac{a^{2}}{b^{2}}$

End of Section I

Examination continues overleaf. . .

Section II: Short answer

Question 5 (18 Marks)
Commence a NEW page.
Marks
(a) The equation of a hyperbola is given by $4 x^{2}-9 y^{2}=36$.
i. Find the coordinates of S and S^{\prime}, the foci of the hyperbola.
ii. Find the equations of the directrices M and M^{\prime}.
iii. Find the equations of the asymptotes.
iv. Let P be any point on the hyperbola. Show that $\left|P S-P S^{\prime}\right|=6$.
(b) The line $x=8$ is the directrix, and $(2,0)$ is the corresponding focus of the ellipse with equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad a>b>0
$$

Find the value of a and b.
(c) The point $P(a \cos \theta, b \sin \theta)$ lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the ellipse meets the x axis at the points A and A^{\prime}.
i. Prove that the tangent at P has the equation

$$
\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1
$$

ii. The tangent at P meets the tangents from A and A^{\prime} at points Q and Q^{\prime} respectively. Find the coordinates of Q and Q^{\prime}.
iii. The points $A, A^{\prime}, Q^{\prime}$ and Q form a trapezium. Prove that the product of lengths of the parallel lines is independent of the position of P.
(d) The diagram shows the hyperbola $x y=4$.

i. What are the coordinates of the foci S and S^{\prime} ?

Question 5 continues overleaf...

Question 5 continued from previous page...
The point $P\left(2 t, \frac{2}{t}\right)$ lies on the curve, where $t \neq 0$. The normal at P intersects the straight line $y=x$ at $N . O$ is the origin.

Given the equation of the normal at P is

$$
y=t^{2} x+\frac{2}{t}-8
$$

ii. Find the coordinates of N.
iii. Show that $\triangle O P N$ is isosceles.
(a) The polynomial equation $x^{3}-6 x^{2}+3 x-2=0$ has roots α, β and γ.

Evaluate $\alpha^{3}+\beta^{3}+\gamma^{3}$.
(b) $x^{3}+p x^{2}+q x+r=0$ has roots α, β and γ, where $\alpha=\beta+\gamma$.

Show that $p^{3}-4 p q+8 r=0$.
(c) Given $-2-i$ is a zero of $P(x)=x^{4}+6 x^{3}+14 x^{2}+14 x+5$, find all zeros of $P(x)$.
(d) i. The polynomial equation $P(x)=0$ has a double root at $x=\alpha$.

Show that $x=\alpha$ is also a root of the equation $P^{\prime}(x)=0$.
ii. $y=m x$ is a tangent to the curve $y=3-\frac{1}{x^{2}}$. Show that the equation $m x^{3}-3 x^{2}+1=0$ has a double root.
iii. Hence find the equation of any such tangents.
(e) Given that $\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$,
i. Find the roots of $16 x^{5}-20 x^{3}+5 x=0$.
ii. Hence show that

$$
\cos ^{2} \frac{\pi}{10}+\cos ^{2} \frac{3 \pi}{10}=\frac{5}{4}
$$

End of paper.

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g

STUDENT NUMBER:

Class (please \boldsymbol{V})12M4A - Mr Fletcher12M4B - Mr Lam
○ 12M4C - Ms Ziaziaris
$1-{ }^{\text {A }}$ (B) (C) (D)

Suggested Solutions

Section I

1. (C) 2. (C) 3. (A) 4. (B)

Section II

Question 5 (Fletcher)
(a) i. (2 marks)
\checkmark [1] for correct eccentricity.
$\checkmark \quad[1]$ for correct foci.

$$
\begin{gathered}
4 x^{2}-9 y^{2}=36 \\
\frac{x^{2}}{9}-\frac{y^{2}}{4}=1 \\
\therefore a=3 \quad b=2
\end{gathered}
$$

Finding the eccentricity,

$$
\begin{aligned}
& b^{2}=a^{2}\left(e^{2}-1\right) \\
& 4=9\left(e^{2}-1\right) \\
& e^{2}=1+\frac{4}{9}=\frac{13}{9} \\
& \therefore e=\frac{\sqrt{13}}{3}
\end{aligned}
$$

Coordinates of foci: $S(\pm a e, 0)$

$$
S(\sqrt{13}, 0) \quad S^{\prime}(-\sqrt{13}, 0)
$$

ii. (1 mark)

$$
x= \pm \frac{a}{e}= \pm \frac{3}{\frac{\sqrt{13}}{3}}= \pm \frac{9}{\sqrt{13}}
$$

iii. (1 mark)

$$
y= \pm \frac{b}{a} x= \pm \frac{2}{3} x
$$

iv. (2 marks)
$\checkmark \quad[1]$ for using $P S=e P M$ and $P S^{\prime}=e P M^{\prime}$.
$\checkmark \quad[1]$ for final answer.
(b) (2 marks)
$\checkmark \quad[1]$ for finding a and e.

$$
\begin{gather*}
\text { Since } \frac{P S}{P M}=e \quad \text { and } \quad \frac{P S^{\prime}}{P M^{\prime}}=e \\
\therefore \begin{cases}P S=e P M & (1) \\
P S^{\prime}=e P M^{\prime} & (2)\end{cases} \tag{1}
\end{gather*}
$$

Equation (1) subtract equation (2):

$$
\begin{aligned}
\left|P S-P S^{\prime}\right| & =e\left|P M-P M^{\prime}\right| \\
& =e\left|M M^{\prime}\right|
\end{aligned}
$$

$$
=\frac{\sqrt{13}}{3} \times 2 \times \frac{9}{\sqrt{13}}
$$

$$
=6
$$

\checkmark [1] for final answer.

$$
\begin{gather*}
x=\frac{a}{e}=8 \\
(2,0)=(a e, 0) \\
\begin{cases}\frac{a}{e}=8 \\
a e=2 & (2)\end{cases} \tag{1}
\end{gather*}
$$

(1) $\times(2)$:

$$
\begin{gathered}
a^{2}=16 \\
\therefore a=4 \\
\therefore e=\frac{1}{2} \\
b^{2}=a^{2}\left(1-e^{2}\right) \\
=16\left(1-\frac{1}{4}\right) \\
=16 \times \frac{3}{4}=12 \\
\therefore b=2 \sqrt{3}
\end{gathered}
$$

(c) i. (2 marks)

$$
\begin{gathered}
\left\{\begin{array}{l}
x=a \cos \theta \\
y=b \sin \theta
\end{array}\right. \\
\frac{d x}{d \theta}=-a \sin \theta \\
\frac{d y}{d \theta}=b \cos \theta
\end{gathered} \quad \begin{aligned}
\frac{d y}{d x} & =\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=-\frac{b \cos \theta}{a \sin \theta}
\end{aligned}
$$

Equation of the tangent at $P(a \cos \theta, b \sin \theta)$ is

$$
\begin{aligned}
& y-b \sin \theta=-\frac{b \cos \theta}{a \sin \theta}(x-a \cos \theta) \\
& a y \sin \theta-a b \sin ^{2} \theta=-b x \cos \theta+a b \cos ^{2} \theta \\
& \underbrace{b x \cos \theta+a y \sin \theta}_{\div a b}=\underbrace{a b \cos ^{2} \theta+a b \sin ^{2} \theta}_{\div a b} \\
& \therefore \frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1
\end{aligned}
$$

ii. (2 marks)

$$
\begin{array}{lc}
\checkmark & {[1]}
\end{array} \text { for coordinates of } Q \text { cor coordinates of } Q^{\prime}
$$

As the equation of the tangent is

$$
\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1
$$

The coordinates of Q : when $x=a$,

$$
\begin{gathered}
\frac{\not q \cos \theta}{\not b}+\frac{y \sin \theta}{b}=1 \\
y \frac{\sin \theta}{b}=1-\cos \theta \\
y=\frac{b(1-\cos \theta)}{\sin \theta}
\end{gathered}
$$

(d) i. (1 mark)

Similarly, the coordinates of Q^{\prime} : when $x=-a$

$$
\begin{gathered}
y=\frac{b(1+\cos \theta)}{\sin \theta} \\
\therefore Q\left(a, \frac{b(1-\cos \theta)}{\sin \theta}\right) \\
Q^{\prime}\left(-a, \frac{b(1+\cos \theta)}{\sin \theta}\right)
\end{gathered}
$$

iii. (2 marks)
$\checkmark \quad[1]$ for identifying parallel lines in trapezium and multiplying their lengths.
$\checkmark \quad$ [1] for final answer.
Parallel lines are $A Q$ and $A Q^{\prime}$.
Hence

$$
\begin{aligned}
A Q \times A Q^{\prime} & =\frac{b(1-\cos \theta)}{\sin \theta} \times \frac{b(1+\cos \theta)}{\sin \theta} \\
& =\frac{b^{2}\left(1-\cos ^{2} \theta\right)}{\sin ^{2} \theta} \\
& =b^{2}
\end{aligned}
$$

$$
\begin{gathered}
x y=4=c^{2} \\
\therefore c=2
\end{gathered}
$$

As $e=\sqrt{2}$, and $S(\pm c \sqrt{2}, \pm c \sqrt{2})$,
$\therefore S(2 \sqrt{2}, 2 \sqrt{2}) \quad S^{\prime}(-2 \sqrt{2},-2 \sqrt{2})$
ii. (1 mark)

$$
y=t^{2} x+\frac{2}{t}-8
$$

Coordinates of N occur when $y=x$, i.e.

$$
\begin{gathered}
x=t^{2} x+\frac{2}{t}-8 \\
x\left(1-t^{2}\right)=\frac{2}{t}-8 \\
x=y=\frac{8 t-2}{t\left(t^{2}-1\right)} \\
\therefore N\left(\frac{8 t-2}{t\left(t^{2}-1\right)}, \frac{8 t-2}{t\left(t^{2}-1\right)}\right)
\end{gathered}
$$

iii. (2 marks)
$\checkmark \quad$ [1] for substantial progress towards proof.
$\checkmark \quad$ [1] for correct conclusion.

$$
m_{O P}=\frac{\frac{2}{t}}{2 t}=\frac{1}{t^{2}}
$$

Gradient of normal:

$$
m_{P M}=t^{2}
$$

Angle between $O N$ and $O P(\alpha)$:

$$
\begin{aligned}
\tan \alpha & =\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{1-\frac{1}{t^{2}}}{1+1\left(\frac{1}{t^{2}}\right)}\right| \times \frac{t^{2}}{t^{2}} \\
& =\left|\frac{t^{2}-1}{t^{2}+1}\right|
\end{aligned}
$$

Angle between $O N$ and $P N(\beta)$:

$$
\tan \beta=\left|\frac{1-t^{2}}{1+1\left(t^{2}\right)}\right|=\left|\frac{1-t^{2}}{1+t^{2}}\right|
$$

As $\tan \alpha=\tan \beta$ and $\alpha, \beta<90^{\circ}$,

$$
\therefore \alpha=\beta
$$

and $\triangle O P N$ is isosceles.

Question 6 (Fletcher)
(a) (2 marks)
$\checkmark \quad[1]$ for $\alpha^{3}+\beta^{3}+\gamma^{3}$ in terms of α, β and γ.
$\checkmark \quad$ [1] for final answer.
If α, β and γ are the roots,

$$
\begin{aligned}
& \alpha^{3}-6 \alpha^{2}+3 \alpha-2=0 \\
& \beta^{3}-6 \beta^{2}+3 \beta-2=0 \\
& \gamma^{3}-6 \gamma^{2}+3 \gamma-2=0
\end{aligned}
$$

Adding and moving terms to other side,

$$
\begin{aligned}
& \alpha^{3}+\beta^{3}+\gamma^{3} \\
= & 6\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)-3(\alpha+\beta+\gamma)+6
\end{aligned}
$$

Now to find $\alpha^{2}+\beta^{2}+\gamma^{2}$:

$$
\begin{aligned}
(\alpha+\beta+\gamma)^{2}= & (\alpha+\beta)^{2}+2(\alpha+\beta) \gamma+\gamma^{2} \\
= & \alpha^{2}+2 \alpha \beta+\beta^{2}+2 \alpha \gamma+2 \beta \gamma+\gamma^{2} \\
\therefore \alpha^{2}+\beta^{2}+\gamma^{2}= & (\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
\therefore \alpha^{3}+\beta^{3}+\gamma^{3}= & 6\left[(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma)\right] \\
& -3(\alpha+\beta+\gamma)+6 \\
= & 6\left[(-6)^{2}-2(3)\right]-3(-6)+6 \\
= & 168
\end{aligned}
$$

(b) (3 marks)
$\checkmark \quad[2]$ (max) for significant progress towards final answer.
$\checkmark \quad$ [1] for final answer.

$$
x^{3}+p x^{2}+q x+r=0
$$

with roots α, β, γ and $\alpha=\beta+\gamma$.

- Using the sum of roots,

$$
\begin{aligned}
\alpha+\beta+\gamma & =2 \alpha=\frac{-p}{1} \\
\therefore \alpha & =-\frac{p}{2}
\end{aligned}
$$

- Using the pairs of roots,

$$
\begin{aligned}
\alpha \beta+\alpha \gamma+\beta \gamma & =\alpha(\beta+\gamma)+\beta \gamma \\
& =\alpha^{2}+\beta \gamma \\
& =\frac{p^{2}}{4}+\beta \gamma=\frac{q}{1} \\
\therefore \frac{p^{2}}{4} & +\beta \gamma=q
\end{aligned}
$$

- Using the product of roots,

$$
\begin{aligned}
& \alpha \beta \gamma=\left(-\frac{p}{2}\right)\left(q-\frac{p^{2}}{4}\right) \\
&=-\frac{p}{2}\left(q-\frac{p^{2}}{4}\right)=-r \\
& \therefore-\frac{p}{2}\left(q-\frac{p^{2}}{4}\right)=-r \\
& \underbrace{-\frac{p q}{2}+\frac{p^{3}}{8}}_{\times 8}=-r \\
& \times 8
\end{aligned} \therefore p^{3}-4 p q+8 r=0
$$

(c) (3 marks)
$\checkmark \quad$ [1] for identifying conjugate root.
$\checkmark \quad$ [1] for other significant progress towards answer.
$\checkmark \quad$ [1] for final answer.
If $-2-i$ is a zero to $P(x)=x^{4}+6 x^{3}+$ $14 x^{2}+14 x+5$, then $-2+i$ is also a zero.

- Sum of roots:

$$
\begin{gathered}
(-2-i)+(-2+i)+\alpha+\beta=-\frac{b}{a}=-6 \\
\alpha+\beta=-2
\end{gathered}
$$

- Product of roots:

$$
\begin{gathered}
(-2-i)(-2+i) \times \alpha \beta=\frac{e}{a}=5 \\
5 \alpha \beta=5 \\
\alpha \beta=1
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\alpha+\beta=-2 \\
\alpha \beta=1
\end{array}\right.
$$

$$
\begin{equation*}
\therefore \alpha=-1 \quad \beta=-1 \tag{e}
\end{equation*}
$$

Roots are $-1,-1,-2-i,-2+i$.
(d)

i. (2 marks)

$\checkmark \quad[1]$ correctly differentiating.
$\checkmark \quad$ [1] for final proof.
Let $P(x)=(x-\alpha)^{2} Q(x)$

$$
\begin{aligned}
u & =(x-\alpha)^{2} \quad v=Q(x) \\
u^{\prime} & =2(x-\alpha) \quad v^{\prime}=Q^{\prime}(x) \\
P^{\prime}(x) & =u v^{\prime}+v u^{\prime} \\
& =(x-\alpha)^{2} Q^{\prime}(x)+2(x-\alpha) Q(x) \\
& =(x-\alpha)\left((x-\alpha) Q^{\prime}(x)+Q(x)\right) \\
& =(x-\alpha) Q_{3}(x)
\end{aligned}
$$

Hence $x=\alpha$ is also a root of $P^{\prime}(x)=$ 0 .
ii. (1 mark)

If $y=m x$ is a tangent to $y=3-\frac{1}{x^{2}}$, then

$$
m x=3-\frac{1}{x^{2}}
$$

has a double root.

$$
\begin{gathered}
m x^{3}=3 x^{2}-1 \\
m x^{3}-3 x^{2}+1=0
\end{gathered}
$$

Hence $m x^{3}-3 x^{2}+1=0$ has a double root.

iii. (3 marks)

If $P(x)$ has a double root at $x=\alpha$,
then $x=\alpha$ is also a root to $P^{\prime}(x)$:

$$
\begin{gathered}
P^{\prime}(x)=3 m x^{2}-6 x \\
P^{\prime}(\alpha)=3 m \alpha^{2}-6 \alpha=03 \alpha(m \alpha-2)=0 \\
\therefore \alpha=0, \frac{2}{m}
\end{gathered}
$$

As $P^{\prime}(0) \neq 0, x=\frac{2}{m}$ is the double root.

$$
\begin{gathered}
P\left(\frac{2}{m}\right)=0 \\
\therefore m\left(\frac{2}{m}\right)^{3}-3\left(\frac{2}{m}\right)^{2}+1=0 \\
\frac{8}{m^{2}}-\frac{12}{m^{2}}+1=0 \\
\frac{4}{m^{2}}=1 \\
\therefore m= \pm 2 \\
\therefore y= \pm 2 x
\end{gathered}
$$

i. (2 marks)

Given $\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+$ $5 \cos \theta$, then letting $x=\cos \theta$ will result in the polynomial

$$
16 x^{5}-20 x^{3}+5 x=0
$$

Hence to solve the polynomial, solve $\cos 5 \theta=0$:

$$
\begin{gathered}
\cos 5 \theta=0 \\
5 \theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}, \frac{9 \pi}{2} \\
\therefore \theta=\frac{\pi}{10}, \frac{3 \pi}{10}, \frac{\pi}{2}, \frac{7 \pi}{10}, \frac{9 \pi}{10} \\
\therefore x=0, \pm \cos \frac{\pi}{10}, \pm \cos \frac{3 \pi}{10}
\end{gathered}
$$

ii. (2 marks) Using pairs of roots (the only terms remaining are the ones which do not involve the zero)

$$
\begin{gathered}
16 x^{5}-20 x^{3}+5 x=0 \\
\left(\cos \frac{\pi}{10}\right)\left(-\cos \frac{\pi}{10}\right) \\
+\left(\cos \frac{3 \pi}{10}\right)\left(-\cos \frac{3 \pi}{10}\right) \\
=-\cos ^{2} \frac{\pi}{10}-\cos ^{2} \frac{3 \pi}{10}=\frac{c}{a}=-\frac{20}{16} \\
\therefore \cos ^{2} \frac{\pi}{10}+\cos ^{2} \frac{3 \pi}{10}=\frac{5}{4}
\end{gathered}
$$

