MATHEMATICS (EXTENSION 2)

2015 HSC Course Assessment Task 2
 Thursday March 5, 2015

General instructions

- Working time - 55 minutes.
(plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.

SECTION I

- Mark your answers on the answer grid provided (on page 6)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:

Class (please \boldsymbol{V})12M4A - Mr Lam
O 12M4B - Mr Lin
○ 12M4C - Mr Ireland

Marker's use only.

QUESTION	$1-5$	6	7	8	Total	$\%$
MARKS	$\overline{5}$	$\overline{11}$	$\overline{13}$	$\overline{12}$	$\overline{41}$	

Section I

5 marks

Attempt Question 1 to 5

Mark your answers on the answer grid provided.

Questions

1. A conic section is graphed as shown. The distance between the x intercepts is $2 \sqrt{11}$ units, and the distance between the y intercepts is 10 units. Which of the following is the equation of the graph?

(A) $\frac{x^{2}}{25}+\frac{y^{2}}{44}=1$
(B) $\frac{x^{2}}{44}+\frac{y^{2}}{25}=1$
(C) $\frac{x^{2}}{25}+\frac{y^{2}}{11}=1$
(D) $\frac{x^{2}}{11}+\frac{y^{2}}{25}=1$
2. Which of the following represents the equation of the chord of contact from $(5,-2)$ to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1 ?$
(A) $\frac{x}{8}-\frac{5 y}{16}=1$
(B) $\frac{5 x}{16}+\frac{2 y}{9}=1$
(C) $\frac{5 x}{16}-\frac{2 y}{9}=0$
(D) $\frac{5 x}{16}-\frac{2 y}{9}=1$
3. $S(4,0)$ is a focus of the rectangular hyperbola $x^{2}-y^{2}=k$. Which of the following is the value of k ?
(A) $2 \sqrt{2}$
(B) $4 \sqrt{2}$
(C) 8
(D) 32
4. Which of the following is the equation of the conic represented by foci $(\pm 3,0)$ and vertices $(\pm 2,0)$?
(A) $\frac{x^{2}}{5}+\frac{y^{2}}{4}=1$
(B) $\frac{x^{2}}{4}+\frac{y^{2}}{5}=1$
(C) $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$
(D) $\frac{x^{2}}{5}-\frac{y^{2}}{4}=1$
5. If $3 x^{2}+2 x y+y^{2}=2$, what is the gradient of the tangent at $x=1$?
(A) -2
(B) 0
(C) 4
(D) not defined

Section II

36 marks

Attempt Questions 6 to 8

Write your answers in the writing booklets supplied. Additional writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.

Question 6 (11 Marks) Commence a NEW page. Marks
(a) Consider the hyperbola \mathcal{H} with equation $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$.
i. Find the points of intersection of \mathcal{H} with the x axis, as well as the eccentricity and foci of \mathcal{H}.
ii. Write down the equations of the directrices and asymptote of \mathcal{H}.
iii. Sketch \mathcal{H}, showing all of the above information.
(b) i. Expand and simplify: $\quad(1+\sqrt{2})^{2}$.
ii. A sequence a_{n} is defined by $a_{0}=a_{1}=2$, and

$$
a_{n}=2 a_{n-1}+a_{n-2}
$$

when $n \geq 2$.

Use mathematical induction to prove that

$$
a_{n}=(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n} \quad \text { for all } n \geq 0
$$

Question 7 (13 Marks)
(a) Describe in geometric terms, the locus of a point z which moves on the Argand diagram according to the equation

$$
|z-3|+|z+3|=8
$$

State the coordinates of the focus and equation of the directrices.
(b) The hyperbola \mathcal{B} has equation $x y=4$.
i. Sketch \mathcal{B}, indicating on your diagram the positions and coordinates of all points at which \mathcal{B} intersects the axes of symmetry.
ii. Show that the equation of the tangent to \mathcal{B} at $P\left(2 t, \frac{2}{t}\right)$ where $t \neq 0$, is

$$
x+t^{2} y=4 t
$$

iii. If $s \neq 0$ and $s^{2} \neq t^{2}$, show that the tangents to \mathcal{B} at P and $Q\left(2 s, \frac{2}{s}\right)$ intersect at $M\left(\frac{4 s t}{s+t}, \frac{4}{s+t}\right)$.
iv. Suppose that in the previous part, the parameter $s=-\frac{1}{t}$. Show that the locus of M is a straight line through, but excluding the origin.

Question 8 (12 Marks)
Commence a NEW page.
The parabola $x^{2}=4 c y$ intersects the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $\left(2 c p, c p^{2}\right)$ in the first quadrant where $a>b>0$ and $c>0$. The tangent to the ellipse at P meets the parabola again at $Q\left(2 c q, c q^{2}\right)$.

(a) Show that the tangent to the ellipse at P is given by

$$
\frac{2 c p x}{a^{2}}+\frac{c p^{2} y}{b^{2}}=1
$$

(b) If this tangent meets the parabola at $\left(2 c t, c t^{2}\right)$, show that $\frac{p^{2} t^{2}}{b^{2}}+\frac{4 p t}{a^{2}}-\frac{1}{c^{2}}=0$ and deduce that, considered as a quadratic in t, this equation has roots p and q.
(c) If $P Q$ subtends a right angle at the origin, show that $p q=-4$ and deduce that
(c)

$$
\frac{1}{b^{2}}=\frac{1}{a^{2}}+\frac{1}{(4 c)^{2}}
$$

(d) Using the information from parts (b) and (c) or otherwise, show that if $P Q$ subtends a right angle at the origin, then $p=2 e$, where e is the eccentricity of the ellipse.

End of paper.

$$
\text { NOTE: } \ln x=\log _{e} x, x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1 ; \quad x \neq 0 \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x+C, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x+C, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x+C, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}+C, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g

STUDENT NUMBER:

Class (please \boldsymbol{V})12M4A - Mr Lam12M4B - Mr Lin
O $12 \mathrm{M} 4 \mathrm{C}-\mathrm{Mr}$ Ireland

Suggested Solutions

Section I

(Lam) 1. (D) 2. (D) 3. (C) 4. (C) 5. (D)

Section II

Question 6 (Ireland)
(a) i. (3 marks)

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Semi major axis is 3 , hence

$$
V(\pm 3,0)
$$

Eccentricity:

$$
\begin{gathered}
b^{2}=a^{2}\left(e^{2}-1\right) \\
16=9\left(e^{2}-1\right) \\
e^{2}-1=\frac{16}{9} \\
\therefore e^{2}=\frac{16}{9}+1=\frac{25}{9} \\
e=\frac{5}{3}
\end{gathered}
$$

Foci:

$$
S(\pm a e, 0)=\left(\pm 3 \times \frac{5}{3}, 0\right)=(\pm 5,0)
$$

ii. (2 marks)

$$
\begin{array}{lr}
\text { Directrices: } & x= \pm \frac{a}{e}= \pm \frac{3}{\frac{5}{3}}= \pm \frac{9}{5} \\
\text { Asymptotes: } & y= \pm \frac{b}{a} x= \pm \frac{4 x}{3}
\end{array}
$$

iii. (2 marks)

(b) i. (1 mark)

$$
(1+\sqrt{2})^{2}=1+2 \sqrt{2}+2=3+2 \sqrt{2}
$$

ii. (3 marks)

Let $P(n)$ be the proposition

$$
a_{n}=(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}
$$

whenever $n \geq 0$, with $a_{0}=a_{1}=2$ and

$$
a_{n}=2 a_{n-1}+a_{n-2}
$$

- Base cases: $P(0)$ and $P(1)$
$-\quad P(0)$:

$$
a_{0}=(1+\sqrt{2})^{0}+(1-\sqrt{2})^{0}=2
$$

$-\quad P(1)$:

$$
\begin{aligned}
a_{1} & =(1+\sqrt{2})^{1}+(1-\sqrt{2})^{1} \\
& =1+\sqrt{2}+1-\sqrt{2}=2
\end{aligned}
$$

Hence $P(1)$ and $P(2)$ are true.

- Inductive hypotheses: assume $P(3), P(4), \ldots, P(k)$ and $P(k+1)$ are all true, i.e.
$-\quad P(k)$:

$$
a_{k}=(1+\sqrt{2})^{k}+(1-\sqrt{2})^{k}
$$

$-\quad P(k+1)$:

$$
a_{k+1}=(1+\sqrt{2})^{k+1}+(1-\sqrt{2})^{k+1}
$$

Examine $P(k+2)$:

$$
\begin{aligned}
a_{k+2} & =2 a_{k+1}+a_{k} \\
& =2\left[(1+\sqrt{2})^{k+1}+(1-\sqrt{2})^{k+1}\right]+(1+\sqrt{2})^{k}+(1-\sqrt{2})^{k} \\
& =(1+\sqrt{2})^{k}(2(1+\sqrt{2})+1)+(1-\sqrt{2})^{k}(2(1+\sqrt{2})+1) \\
& =(1+\sqrt{2})^{k}(3+2 \sqrt{2})+(1-\sqrt{2})^{k}(3-2 \sqrt{2}) \\
& =(1+\sqrt{2})^{k}(1+\sqrt{2})^{2}+(1-\sqrt{2})^{k}(1-\sqrt{2})^{2} \\
& =(1+\sqrt{2})^{k+2}+(1-\sqrt{2})^{k+2}
\end{aligned}
$$

Hence $P(n)$ is true by induction.

Question 7 (Lin)

(a) (3 marks)
$\checkmark \quad[1]$ for each of description of locus, foci and directrices.

$$
\begin{gathered}
|z-3|+|z+3|=8 \\
\Downarrow \\
P S+P S^{\prime}=2 a \\
\therefore S(\pm 3,0) \quad a=4
\end{gathered}
$$

Equation of directrices: found from eccentricity.

$$
\begin{aligned}
a e & =3 \\
4 e & =3 \\
\therefore e & =\frac{3}{4} \\
\therefore x= \pm \frac{a}{e} & =\frac{4}{\frac{3}{4}}=\frac{16}{3}
\end{aligned}
$$

(b) i. (2 marks)

Intersection with axes of symmetry:

$$
\begin{array}{r}
\left\{\begin{array}{l}
y=\frac{4}{x} \\
y=x
\end{array}\right. \\
\therefore-x=\frac{4}{x} \\
x^{2}=4 \\
x= \pm 2 \quad y= \pm 2
\end{array}
$$

ii. (2 marks)

Equation of tangent at $\left(2 t, \frac{2}{t}\right)$:

$$
\begin{gathered}
y=4 x^{-1} \\
\frac{d y}{d x}=-\left.4 x^{-2}\right|_{x=2 t}=\frac{-4}{4 t^{2}}=-\frac{1}{t^{2}}
\end{gathered}
$$

Apply the point-gradient formula,

$$
\begin{gathered}
\frac{y-\frac{2}{t}}{x-2 t}=-\frac{1}{t^{2}} \\
t^{2} y-2 t=-x+2 t \\
x+t^{2} y=4 t
\end{gathered}
$$

iii. (3 marks)

At S, the equation of the tangent is $x+s^{2} y=4 s$. Where the tangents from P And Q intersect,

$$
\left\{\begin{array}{l}
x+t^{2} y=4 t \tag{1}\\
x+s^{2} y=4 s
\end{array}\right.
$$

(1) $-(2):$

$$
\begin{gathered}
y\left(t^{2}-s^{2}\right)=4 t-4 s \\
y(t-s)(t+s)=4(t-s) \\
\therefore y=\frac{4}{s+t}
\end{gathered}
$$

Substitute into (1) to find x :

$$
\begin{gathered}
x+t^{2}\left(\frac{4}{s+t}\right)=4 t \\
x+\frac{4 t^{2}}{s+t}=\frac{4 t(s+t)}{s+t} \\
x=\frac{4 s t+4 t^{2}-4 t^{2}}{s+t}=\frac{4 s t}{s+t}
\end{gathered}
$$

Hence the coordinates of M are

$$
M\left(\frac{4 s t}{s+t}, \frac{4}{s+t}\right)
$$

iv. (3 marks)
$\checkmark \quad$ [1] for each of x_{M} and y_{M}
$\checkmark \quad[1]$ for $y=-x$ and justification for $x \neq 0$.
Spse $s=-\frac{1}{t}$. Hence $t \neq 0$ and $s \neq 0$ and $x \neq 0$.

$$
\left\{\begin{array}{l}
x_{M}=\frac{4 s t}{s+t}=\frac{4 \times-\frac{1}{t} \times t}{-\frac{1}{t}+t}=-\frac{4}{t-\frac{1}{t}} \\
y_{M}=\frac{4}{s+t}=\frac{4}{t-\frac{1}{t}}
\end{array}\right.
$$

Hence $y_{M}=-x_{M}$ and the locus of M is on the line $y=-x$, excluding $(0,0)$ as $t \neq 0$.

Question 8 (Lam)

(a) (3 marks)

- Equation of tangent to ellipse:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Differentiating to obtain gradient at $\left(x_{0}, y_{0}\right)$:

$$
\begin{gathered}
\frac{d}{d x}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)=0 \\
\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0 \\
\frac{d y}{d x}=-\left.\frac{b^{2} x}{a^{2} y}\right|_{\substack{x=x_{0} \\
y=y_{0}}}=-\frac{b^{2} x_{0}}{a^{2} y_{0}}
\end{gathered}
$$

Point-gradient formula

$$
\begin{gathered}
\frac{y-y_{0}}{x-x_{0}}=-\frac{b^{2} x_{0}}{a^{2} y_{0}} \\
a^{2} y y_{0}-a^{2} y_{0}^{2}=-b^{2} x x_{0}+b^{2} x_{0}^{2} \\
\underbrace{b^{2} x x_{0}+a^{2} y y_{0}}_{\div a^{2} b^{2}}=\underbrace{b^{2} x_{0}^{2}+a^{2} y_{0}^{2}}_{\div a^{2} b^{2}} \\
\frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}=\frac{x_{0}^{2}}{a^{2}}+\frac{y_{0}^{2}}{b^{2}}
\end{gathered}
$$

As $\left(x_{0}, y_{0}\right)$ is a point on the ellipse, then it satistfies $\frac{x_{0}}{a^{2}}+\frac{y_{0}}{b^{2}}=1$:

$$
\therefore \frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}=1
$$

- As $x_{0}=2 c p, y_{0}=c p^{2}$ (a point on the parabola also), the equation of the tangent is

$$
\frac{2 c p x}{a^{2}}+\frac{c p^{2} y}{b^{2}}=1
$$

(b) (2 marks)

Solving equation of tangent to ellipse \& equation of parabola simultaneously:

$$
\left\{\begin{array}{l}
\frac{2 c p x}{a^{2}}+\frac{c p^{2} y}{b^{2}}=1 \tag{1}\\
x^{2}=4 c y
\end{array}\right.
$$

Rearrange (2) and substitute into (1):

$$
\begin{gathered}
y=\frac{x^{2}}{4 c} \\
\frac{2 c p x}{a^{2}}+\frac{\not p^{2}\left(\frac{x^{2}}{4 \not}\right)}{b^{2}}=1
\end{gathered}
$$

At $x=2 c t$,

$$
\begin{gathered}
\frac{2 c p(2 c t)}{a^{2}}+\frac{c p^{2}(2 c t)^{2}}{4 b^{2}}=1 \\
\frac{4 c^{2} p t}{a^{2}}+\frac{A p^{2} t^{2} c^{2}}{4 b^{2}}=1
\end{gathered}
$$

Divide throughout by c^{2},

$$
\begin{gathered}
\frac{4 p t}{a^{2}}+\frac{p^{2} t^{2}}{b^{2}}=\frac{1}{c^{2}} \\
\therefore \frac{p^{2} t^{2}}{b^{2}}+\frac{4 p t}{a^{2}}-\frac{1}{c^{2}}=0
\end{gathered}
$$

Quadratic in t will have 2 roots if it were to intersect the parabola twice. Those points of intersection are at $P\left(2 c p, c p^{2}\right)$ and $Q\left(2 c q, c q^{2}\right)$. At those points, the parameter $t=p$ or $t=q$. Hence the roots to the quadratic are p and q.
(c) (3 marks)

- Gradient of $O P: m_{O P}=\frac{c p^{2}-0}{2 c p-0}=\frac{p}{2}$. Similarly,

$$
m_{O Q}=\frac{q}{2}
$$

- As $P Q$ subtends a right angle at O, then $O P \perp O Q$:

$$
\begin{gathered}
m_{O P} \times m_{O Q}=-1 \\
\frac{p}{2} \times \frac{q}{2}=-1 \\
\therefore p q=-4
\end{gathered}
$$

- From the previous quadratic in t, if $t=q$ then

$$
\begin{align*}
& \frac{p^{2} q^{2}}{b^{2}}+\frac{4 p q}{a^{2}}-\frac{1}{c^{2}}=0 \\
& \frac{16}{b^{2}}+\frac{-16}{a^{2}}-\frac{1}{c^{2}}=0 \\
& \therefore \frac{1}{b^{2}}=\frac{1}{a^{2}}+\frac{1}{16 c^{2}} \\
& \therefore \frac{1}{b^{2}}=\frac{1}{a^{2}}+\frac{1}{\left(4 c^{2}\right)}
\end{align*}
$$

(d) (4 marks)

- Given $p q=-4$, and p, q being roots to the quadratic in $t(\boldsymbol{\oplus})$, then the product of roots is -4 :

$$
\begin{gathered}
p q=\frac{-\frac{1}{c^{2}}}{\frac{p^{2}}{b^{2}}}=-4 \\
\therefore-\frac{b^{2}}{c^{2} p^{2}}=-4 \\
\frac{b^{2}}{4 c^{2}}=p^{2} \\
\therefore p=\frac{b}{2 c}
\end{gathered}
$$

- Also, $b^{2}=a^{2}\left(1-e^{2}\right)$:

$$
\therefore \frac{b^{2}}{a^{2}}=1-e^{2}
$$

- Take equation (\ddagger) and multiply throughout by b^{2} :

$$
\begin{gathered}
1=\frac{b^{2}}{a^{2}}+\frac{b^{2}}{(4 c)^{2}} \\
\not \subset=\left(\not \subset-e^{2}\right) \frac{b^{2}}{16 c^{2}} \\
\therefore e^{2}=\frac{b^{2}}{16 c^{2}} \\
e=\frac{b}{4 c}=\frac{1}{2} \times \frac{b}{2 c}=\frac{1}{2} p \\
\therefore p=2 e
\end{gathered}
$$

