NORTH SYDNEY GIRLS HIGH SCHOOL

EXTENSION 2 MATHEMATICS

HSC ASSESSMENT TASK

TERM 1 2006

Instructions:

- Time allowed: 70 minutes + 2 minutes reading time.
- This task is worth 18% of your HSC assessment
- Attempt all four questions
- Show all necessary working
- Marks may be deducted for incomplete or poorly arranged work
- Start each question on a NEW PAGE
- Write on one side of the page only

Question1 (10 marks)

(a) Given the complex number $z = 1 - \sqrt{3}i$ write down

 (i)
 |z| 1

 (ii)
 $\arg z$ 1

 (iii)
 z^3 1

(b) (i) Solve the equation
$$z = \sqrt{5-12i}$$
 2

(ii) Given that
$$w = \frac{1 \pm \sqrt{5 - 12i}}{2 + 2i}$$
 is purely imaginary find w^{400} 2

- (c) (i) On the same Argand diagram, sketch the locus of 2|z-3|=1 and |z|=|z-2i|
 - (ii) Hence write down the complex number represented 1by the intersection of the two loci.

Marks

<u>Ouestion 2</u> (10 marks)

Draw neat sketches of the following

(i)	y = f(x - k)	2
(ii)	y = f(-x)	2
(iii)	y = f(x)	2
(iv)	$y = \left[f(x) \right]^2$	2

Marks

Question 3. (10 marks)

(a) A conic is defined by the equation $\frac{x^2}{19-k} + \frac{y^2}{7-k} = 1$

(i)	Determine the values of k for which the equation defines an ellipse	1
(ii)	Consider the above conic when $k = 3$. Write down the value of the eccentricity, the coordinates of the foci and the equations of the directrices.	3
(iii)	Sketch the above ellipse $(k = 3)$ showing all important features.	2
(iv)	Describe how the shape of the ellipse changes as k increases in value from 3 to 7.	1

(b) Write down the equations of the asymptotes to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$ 3

Hence deduce that the eccentricity $e = \sqrt{2}$ if these asymptotes are perpendicular to each other.

Question 4. (10 marks)

(a)	The rectangle <i>OABC</i> lies in the Argand plane where <i>OC</i> is twice <i>OA</i>.Vertex <i>O</i> corresponds to the origin.The vertex <i>A</i> corresponds to the complex number <i>w</i>.Express in terms of <i>w</i>, the complex number that corresponds to		
	(i) the point <i>C</i>	1	
	(ii) the point D , the point of intersection of the diagonals.	2	
(b)	z is a variable complex number represented by the point P. Describe and sketch the locus of P if $ z-4i = \text{Im}(z)$	4	
(c)	Let $z = \cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4})$ and $w = \cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3})$. Evaluate zw and hence give the exact value of $\cos(\frac{7\pi}{12})$	3	

Marks

Ouestion 5.	(10 marks)
--------------------	------------

(a)	Draw a nea	t sketch of $y = x - 4 + x $	2
(b)	On the sam $y = \cos x$ a	e set of axes draw a neat sketch of and $y = \ln x$ for $0 \le x \le 2\pi$.	4
	Hence draw	$y = \cos x \ln x$ for $0 \le x \le 2\pi$.	
(c)	Draw a nea and the coo Hence sketo	t sketch of $y = x^2(1-x^2)$ showing all intercepts ordinates of any stationary points. ch the relation $y^2 = x^2(1-x^2)$	4
<u>Quest</u>	<u>ion 6.</u> (10 m	narks)	
(a)	Explain why the set of points z in the Argand plane defined by $ z+5 - z-5 =8$ defines part of a conic. Sketch this locus showing essential features.		4
(b)	Consider the two series, C and S where $C = 1 + \cos\theta + \cos 2\theta + \dots \cos(n-1)\theta$ and $S = \sin\theta + \sin 2\theta + \dots + \sin(n-1)\theta$		
	(i) Wri	te down $C + iS$ in terms of θ	1
	(ii) If 2 Hen	$z = \cos\theta + i\sin\theta$, express $C + iS$ as a series in terms of z. there show that $C + iS = \frac{1 - z^n}{1 - z}$, $z \neq 1$	3
	(iii) Sho 1+	w that $\cos\theta + \cos 2\theta + \dots \cos(n-1)\theta = \frac{\cos[(n-1)\theta] - (\cos\theta + \cos n\theta) + 1}{2 - 2\cos\theta}$	2

Marks

^^^^

End of paper

Solutions

$$\begin{array}{c} \underbrace{\operatorname{Qustern}}_{\mathbf{x}_{1},|\mathbf{y}_{1},|\mathbf{x}_{2},\mathbf{y}_{2},\mathbf{x}_{1}|\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{y}_{1}|\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{y}_{1}|\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{y}_{1}|\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{y}_{1}|\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{y}_{1}|\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{y}_{1}|\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{y}_{1}|\mathbf{x}_{2},\mathbf{y}_{1}|\mathbf{x}_{2},\mathbf{y}_{1}|\mathbf{x}_{2}|\mathbf{x}_{3},\mathbf{y}_{1}|\mathbf{x}_{2}|\mathbf{x}_{3}|\mathbf{x}_{$$