NORTH SYDNEY GIRLS HIGH SCHOOL

EXTENSION 2 MATHEMATICS

HSC ASSESSMENT TASK

TERM 12006

Instructions:

- Time allowed: 70 minutes +2 minutes reading time.
- This task is worth 18% of your HSC assessment
- Attempt all four questions
- Show all necessary working
- Marks may be deducted for incomplete or poorly arranged work
- Start each question on a NEW PAGE
- Write on one side of the page only

Question1 (10 marks)
(a) Given the complex number $z=1-\sqrt{3} i$ write down
$\begin{array}{ll}\text { (i) } & |z| \\ \text { (ii) } & \arg z\end{array}$
(ii) $\arg z \quad 1$
(iii) $z^{3} 1$
(b) (i) Solve the equation $z=\sqrt{5-12 i} \quad 2$
(ii) Given that $w=\frac{1 \pm \sqrt{5-12 i}}{2+2 i}$ is purely imaginary find w^{400}
(c) (i) On the same Argand diagram, sketch the locus of

$$
|z-3|=1 \quad \text { and } \quad|z|=|z-2 i|
$$

(ii) Hence write down the complex number represented
by the intersection of the two loci.

The graph of $y=f(x)$ is shown below

Draw neat sketches of the following
(i) $y=f(x-k) \quad 2$
(ii) $y=f(-x) \quad 2$
(iii) $y=f(|x|) \quad 2$
(iv) $y=[f(x)]^{2} \quad 2$
(v) $y=e^{f(x)} \quad 2$
(a) A conic is defined by the equation $\frac{x^{2}}{19-k}+\frac{y^{2}}{7-k}=1$
(i) Determine the values of k for which the equation defines an ellipse
(ii) Consider the above conic when $k=3$. Write down the value of the eccentricity, the coordinates of the foci and the equations of the directrices.
(iii) Sketch the above ellipse $(k=3)$ showing all important features.
(iv) Describe how the shape of the ellipse changes as k increases in value from 3 to 7 .
(b) Write down the equations of the asymptotes to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.

Hence deduce that the eccentricity $e=\sqrt{2}$ if these asymptotes are perpendicular to each other.

Question 4. (10 marks)
(a) The rectangle $O A B C$ lies in the Argand plane where $O C$ is twice $O A$.

Vertex O corresponds to the origin.
The vertex A corresponds to the complex number w.
Express in terms of w, the complex number that corresponds to
(i) the point C
(ii) the point D, the point of intersection of the diagonals.
(b) $\quad z$ is a variable complex number represented by the point P.

Describe and sketch the locus of P if $|z-4 i|=\operatorname{Im}(z)$
(c) Let $z=\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)$ and $w=\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)$. Evaluate $z w$ and hence give the exact value of $\cos \left(\frac{7 \pi}{12}\right)$
(a) Draw a neat sketch of $y=|x-4|+|x|$
(b) On the same set of axes draw a neat sketch of $y=\cos x$ and $y=\ln x$ for $0 \leq x \leq 2 \pi$.

Hence draw a neat sketch of $y=\cos x \ln x$ for $0 \leq x \leq 2 \pi$.
(c) Draw a neat sketch of $y=x^{2}\left(1-x^{2}\right)$ showing all intercepts and the coordinates of any stationary points.
Hence sketch the relation $y^{2}=x^{2}\left(1-x^{2}\right)$

Question 6. (10 marks)
(a) Explain why the set of points z in the Argand plane defined by $|z+5|-|z-5|=8$ defines part of a conic.
Sketch this locus showing essential features.
(b) Consider the two series, C and S where $C=1+\cos \theta+\cos 2 \theta+$ \qquad $\cos (n-1) \theta$ and
$S=\sin \theta+\sin 2 \theta+$ \qquad .$+\sin (n-1) \theta$
(i) Write down $C+i S$ in terms of θ
(ii) If $z=\cos \theta+i \sin \theta$, express $C+i S$ as a series in terms of z.

Hence show that $C+i S=\frac{1-z^{n}}{1-z} \quad, z \neq 1$
(iii) Show that

$$
1+\cos \theta+\cos 2 \theta+\ldots \ldots \ldots \ldots . \cos (n-1) \theta=\frac{\cos [(n-1) \theta]-(\cos \theta+\cos n \theta)+1}{2-2 \cos \theta}
$$

Solutions

$$
\begin{align*}
& \text { (auesticn (19maks) } \\
& \text { (a) (i), }|z|=\sqrt{1+3}=2 \\
& \text { (ii) } \operatorname{ang} z=-\frac{\pi}{3} \\
& \text { (iii) } 2^{3}=\left[2\left(\cos \left(\frac{\pi}{3}\right)+\sin ^{(}\left(\frac{\pi}{3}\right)\right)\right]^{2} \\
& =8[\cos (-\pi)+\cos (-\pi)] \\
& =-8 \tag{2}\\
& \text { (b) } a^{\prime} \text {) let } z=x+i y \\
& \therefore x^{2}-y^{2}=5, \quad 2 a y=-12 \\
& \therefore x=3, y=-2 \\
& \therefore \sqrt{5 \cdot 12 i}=3-2 i \tag{4}\\
& \frac{1}{1}+1 \\
& \text { (d) }|z-4 i|=I_{m}(z) \\
& \text { let } z=x+i y \\
& |x+(y-4) i|=y \\
& \sqrt{x^{2}+(y-4)^{2}}=y \\
& x^{2}+y^{2}-8 y+16=y^{2} \\
& x^{2}=8 y-16 \\
& \mathrm{ol}^{2}=8(y-2) \\
& \text { Pachia, concore up Vertad }(0,2) \text { as'r } \\
& \text { (e) } z=\operatorname{Cos} \frac{\pi}{\frac{\pi}{x}}+\operatorname{Sin} \frac{\pi}{4}=\frac{1}{2}\left(1+t^{i}\right) \\
& w=\cos \frac{\pi}{3}+e \sin \frac{\pi}{3}=\frac{1}{2}(1+\sqrt{3} i) \\
& 2 w=\cos \left(\frac{\pi}{4}+\frac{\pi}{3}\right)+\sin \left(\frac{\pi}{5}+\frac{\pi}{3}\right) \\
& =\frac{1}{2 \sqrt{2}}(1+i)(1+\sqrt{3} i) \\
& =\frac{1}{2 \sqrt{2}}(1+i+\sqrt{3} i-\sqrt{3}) \\
& \therefore \cos _{12}^{\pi}+\sin \frac{\pi}{2}=\frac{1-\sqrt{3}}{2 \sqrt{2}}+\frac{(1+\sqrt{3})}{2 \sqrt{2}} \\
& \text { Compaing real ports } \\
& C_{a} \frac{\pi}{12}=\frac{1-\sqrt{3}}{2 \sqrt{2}} \tag{3}
\end{align*}
$$

3 Jestion 2 (18mats)

(b) $y=x^{2}\left(1-x^{2}\right)$ Even

Intorepts $x=0, \pm 1$
$y=x^{2}-x^{4}$
$y^{\prime}=2 x-4 x^{3}=2,\left(1-2 x^{2}\right)$
$y^{\prime \prime}=2-12 x^{2}$
Sipls $x=0, y=0 \quad y^{\prime \prime} 70 \therefore \mathrm{~min}^{2}$ $a=\frac{1}{\sqrt{2}}, y=\frac{1}{4} \quad y^{\prime \prime}<\sigma \quad$ max $x=-\frac{1}{\sqrt{2}}, y=\frac{1}{4} \quad y^{\prime \prime}<0 \quad$ max.

$$
\begin{aligned}
& y^{2}=x^{2}\left(1-x^{2}\right) \\
& y= \pm \sqrt{x^{2}\left(1-x^{2}\right)}
\end{aligned}
$$

Questich 3 (20matis)
a, e, $19-k>0$ and $7-k>0$

$$
\begin{equation*}
k<19 \text { and } k<7 \text { ie } k \leq 7 \tag{1}
\end{equation*}
$$

i, $k=3 \rightarrow \frac{x^{2}}{16}+\frac{y^{2}}{4}=1$
$a=4, b=2 \quad \therefore 1-e^{2}=\frac{b^{2}}{a^{2}}=\frac{1}{4}$
$e=\frac{\sqrt{3}}{2}$
\therefore foci: $S(\pm 2 \sqrt{3}, 0)$

$$
\begin{equation*}
\text { aintivics } x= \pm a=24 \sqrt{3}= \pm \frac{8}{\sqrt{3}} \tag{3}
\end{equation*}
$$

\dot{r}, as $k \rightarrow 7 \quad a \rightarrow \sqrt{n}, b \rightarrow 0$
gets flatter \rightarrow linënterved SS'. (1) b) Hyperbol a since the differene in the distances to two foed points is
a constant.
$\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ arympttos $y= \pm \frac{3}{4} x$
cnly pasitive bionch as difference >0
$\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ arymptos $y= \pm \frac{3}{4} x$
cnly positive bionch as difference >0

in
(2)

$$
\begin{gathered}
\text { Focus }(\pm 5,0) \quad 2 a=8 \therefore a=4 \\
\therefore a e=5 \quad \therefore e \frac{5}{4} \therefore b=3
\end{gathered}
$$

(iu, D midpant of $A C$ le $D\left(\frac{2 w+w}{2}\right)$

$$
\begin{equation*}
\text { or } w(i+k)(2) \tag{2}
\end{equation*}
$$

(d) $(i, \quad$ ctis $=1+\cos \theta+\operatorname{Sin} \theta)+\cos 2 \theta+\operatorname{Sin} 2 \theta+\cdots$ $\cos [(n-1) \theta]+\cos [(n-1) \theta]$
ü) $\therefore\left(x+5=1+(\cos 6+\sin \theta)+(\cos \theta+\sin \theta)^{2}+\right.$

$$
\begin{align*}
= & 1+z+z^{2}+\cdots \cdots z^{n-1} \tag{1}\\
& -g \cdot p-\quad a=1, r=z, n=n
\end{align*}
$$

ctis $=\frac{1\left(1-z^{n}\right)}{1-z}=\frac{1-2^{n}}{1-2}, \quad z \neq 1$
ini, Cr
$=\frac{(1-\operatorname{Cos} \theta)(1-\operatorname{Cos} n \theta)+\operatorname{Sin} n \theta \sin \theta-\operatorname{Cin} \theta(1-\sin \theta)=\operatorname{sen} \theta+C_{4}}{1-2 \cos \theta+(\theta 1)}$ $1.2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta$
Cempering real perts
$\begin{aligned} C & =\frac{(1-\operatorname{Cos} \theta)(1-\operatorname{Cos} n \theta)+\operatorname{Sin} n \theta \operatorname{Sin} \theta}{2-2 \operatorname{Cos} \theta} \\ & =\frac{1-\operatorname{Cos} \theta-\operatorname{Cos} n \theta+\operatorname{Cos} n \theta \operatorname{Cos} \theta+\operatorname{Sin} n \theta \sin \theta}{2-2 \operatorname{Cos} \theta}\end{aligned}$
$1+\cos 8+\cos 26+\cdots 0.0+\cos (n-1) 6$
$=\frac{\cos (n \theta-\theta)-(\cos \theta+\cos n \theta)}{2-2 \cos \theta}$
$=\frac{\cos ((n-1) \theta]-(\cos \theta+\cos n \theta)}{2-2 \cos \theta}$

