NORTH SYDNEY GIRLS HIGH SCHOOL

EXTENSION 2 MATHEMATICS

HSC ASSESSMENT TASK

TERM 12007

Name: \qquad Class: \qquad

Instructions:

- Time allowed: 60 minutes +2 minutes reading time.
- This task is worth 20% of your HSC assessment
- Attempt all three questions
- Show all necessary working
- Marks may be deducted for incomplete or poorly arranged work
- Start each question on a NEW PAGE
- Write on one side of the page only
(a) Given the complex number $z=3-3 i$ write down in exact form
(b) Express in the form $x+i y$ where x and y are real
(i) $\quad(7+3 i)(\overline{4-i}) \quad 1$
(ii) $\left(\frac{2-5 i}{4-3 i}\right)$
(c) Evaluate $\sqrt{9+40 i}$
(d) Find real numbers for a and $b \quad$ if $z=3+i$ satisfies $z+\frac{a}{z}=b$
(e) Sketch the region on the Argand plane where

2

$$
|z-3|<3 \quad \text { and } \quad 0<\arg z<\frac{\pi}{4}
$$

(f) Describe in both algebraic and geometric terms the set of points z in the Argand plane such that $z^{2}+(\bar{z})^{2}=0$
(a) The graph of $y=f(x)$ is shown below

Draw neat sketches of the following on the answer sheet provided, showing clearly any stationary points and asymptotes
(i) $y=\frac{1}{f(x)}$
(ii) $y=f\left(\frac{x}{2}\right)$
(iii) $y=[f(x)]^{2}$
(iv) $y=f(x)+|f(x)|$
(v) $y=2^{f(x)}$
(b) Consider the function $f(x)=x(x-3)^{2}$
(i) Sketch the graph of the curve showing the coordinates of any turning points and the intercepts with the coordinate axes.
(ii) Hence draw a neat separate sketch of $y^{2}=f(x)$
(iii) Describe the nature of the curve $y^{2}=f(x)$ at $x=0$.
(a) $\quad z$ is a variable complex number such that $\frac{z-1}{z+i}$ is real.

Prove that z lies on a straight line and find its equation.
(b) In the Argand diagram the points P, Q and R represent the complex numbers z_{1}, z_{2} and $z_{2}+i\left(z_{2}-z_{1}\right)$ respectively.
(i) Explain why $\triangle P Q R$ is a right-angled triangle.
(ii) Find in terms of z_{1} and z_{2} the complex number represented by S if $P Q R S$ is a rectangle.
(c)
(i) Use De Moivre's theorem to find the solution ω to the equation $z^{5}=i$ which has the smallest positive argument.

2
(ii) Using an Argand diagram or otherwise write down the other four roots of $z^{5}=i$ in mod/arg form.

2
(iii) Deduce that $\omega^{-3}+\omega^{-7}+\omega+\omega^{5}+\omega^{9}=0$
(d) Use De Moivre's theorem to show that

$$
(2+2 i \tan \theta)^{n}+(2-2 i \tan \theta)^{n}=\frac{2^{n+1} \cos n \theta}{\cos ^{n} \theta}
$$

Name:
Class:
(i)

(ii)

(iii)

(iv)

(v)

, 156H5. TEnm I $2007\left(x_{2}\right)$
$\frac{\text { Questien }^{3}}{\left(\operatorname{IIm}_{m}\left(\frac{z-1}{z+i}\right)=0\right.}\left[\begin{array}{l}\left.z+z_{i}\right]\end{array}\right]$
let $z=x+i y$

$$
\left[\frac{(x-1)+i^{\prime} y}{x+c^{\prime}(y+1)}\right] \times\left[\frac{x-i(y+1)}{x-i^{\prime}(y+1)}\right]
$$

$$
=\frac{x(x-1)+i y x-i(x-1)(y+1)+y(y+1)}{x^{2}+(y+1)^{2}}
$$

$$
I_{m}{ }^{N}=0
$$

$$
\frac{x y-(x-1)(y+1)}{x^{2}+(y+1)^{2}}=0
$$

$$
x y-(x y+x-y-1)=0
$$

$$
-x+y+1=0
$$

$x-y+1=0$ u $\ln \dot{\prime}$.
(b)

$i\left(z_{2}-z_{1}\right)$ is vector $z_{2} z_{1}$ retated 90° diaticladiuse $z_{y}+i\left(z_{2}-z_{1}\right)$ is $\left(z_{2}-z_{1}\right) 90^{\circ}$ contidaturse added to vector $\mathrm{O} \mathrm{z}_{2}$ \therefore $\because D A R$ riaít onslod

Ci, $z^{5}=i$
let $z=\cos \theta+\sin \theta$

$$
\begin{aligned}
& i^{\prime} \\
& \therefore(\cos \theta+\operatorname{Sin} \theta)^{5}=i
\end{aligned}
$$

$$
\cos 5 \theta+e \operatorname{Sn} 5 \theta=0+i
$$

$$
\left.\begin{array}{l}
\operatorname{Cos} 5 \theta=0 \\
\operatorname{Sin} 5 \theta=1
\end{array}\right\}
$$

$$
\begin{aligned}
& \therefore 5 \theta=\frac{\pi}{2} \\
& 6=\frac{\pi}{10} \\
& \therefore \omega=\cos \frac{\pi}{10}+\operatorname{Sin} \frac{\pi}{10}
\end{aligned}
$$

Smallert argumest.
 ie argumats $\frac{\pi}{10}+\frac{2 \pi}{5}=\frac{5 \pi}{10}=\frac{\pi}{2}$

$$
\begin{aligned}
& \frac{\sqrt{\pi}}{10}+\frac{4 \pi}{10}=\frac{9 \pi}{10} \\
& \frac{9 \pi}{10}+\frac{4 \pi}{10}=\frac{13 \pi}{10} \\
& 13 \pi \\
& 10
\end{aligned}+\frac{4 \pi}{10}=\frac{17 \pi}{10}, ~ l
$$

$$
\left\{\begin{array}{l}
z_{1}=C_{i 5} \frac{\pi}{10}=\omega \\
z_{2}=C_{i 5} \frac{5 \pi}{10}=\omega^{5} \\
z_{3}=C_{i 5} \frac{9 \pi}{10}=\omega^{9} \\
z_{4}=C_{i} \frac{13 \pi}{10}=C \text { is }(-7 \pi)=\omega^{-7} \\
z_{5}=C_{\text {is }} \frac{\pi \pi}{10}=C i s\left(-\frac{3 \pi}{10}\right)=\omega^{-3}
\end{array}\right.
$$

(ia) Sum, roots $=\frac{-b}{a}=0$

$$
\begin{aligned}
& \therefore w+w^{5}+w^{9}+w^{-7}+w^{-3}=0 \\
& w^{-7}+w^{-3}+w+w^{5}+w^{9}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) } \\
& (2+2 i \tan \theta)^{n}+(2-2 i \tan \theta)^{n} \\
& =\left(2+\frac{i \sin \theta \theta^{n}}{\cos \theta}\right)^{n}+\left(2-2 i \frac{\sin \theta}{\cos \theta}\right)^{n} \\
& =2^{n}\left[\frac{\cos \theta+\sqrt{\sin \theta}}{\cos \theta}\right]^{n}+2^{n}\left[\frac{\cos \theta-\sin \theta}{\cos \theta}\right]^{n} \\
& =2^{n}\left[\frac{\cos \theta+\sin \theta+\cos \theta+\sin \theta}{\cos ^{n} \theta}\right.
\end{aligned}
$$

$$
=\frac{2^{n} \cdot 2^{1} \cos n \theta}{\cos ^{n} \theta}
$$

$$
=\frac{2^{n+1} \operatorname{Cos} \theta \theta}{\cos ^{n} \theta}
$$

Q3
(b)

$$
\begin{aligned}
& \overrightarrow{P Q}=z_{2}-z_{1} \\
& \overrightarrow{R Q}=z_{2}+i\left(z_{2}-z_{1}\right)-z_{2}=i\left(z_{2}-z_{1}\right)
\end{aligned}
$$

$\therefore \overrightarrow{R Q}$ is an anti-clockwise rotation of $\overrightarrow{P Q}$ by 90°
So there is a right angle at Q making $\triangle P Q R$ right angled and isosceles
(ii)

Let S be the point that represents the number z_{3}, so that $P Q R S$ is a rectangle (square)
$\therefore \overrightarrow{S P}=\overrightarrow{R Q} \quad$ (opposite sides are equal and parallel)
$\therefore z_{3}-z_{1}=i\left(z_{2}-z_{1}\right)$
$\therefore z_{3}=z_{1}+i\left(z_{2}-z_{1}\right)$

