NORTH SYDNEY GIRLS HIGH SCHOOL

EXTENSION 2 MATHEMATICS

HSC ASSESSMENT TASK

TERM 1 2007

<u>Name:</u>_____

<u>Class:</u>_____

Instructions:

- Time allowed: 60 minutes + 2 minutes reading time.
- This task is worth 20% of your HSC assessment
- Attempt all three questions
- Show all necessary working
- Marks may be deducted for incomplete or poorly arranged work
- Start each question on a NEW PAGE
- Write on one side of the page only

<u>Question1</u> (15 marks)

(a) Given the complex number z = 3 - 3i write down in exact form

(i)
$$|z|$$
 1
(ii) $\arg z$ 1

(b) Express in the form
$$x + iy$$
 where x and y are real

(i)
$$(7+3i)(\overline{4-i})$$

(ii) $\left(\frac{2-5i}{4-3i}\right)$
2

(c) Evaluate
$$\sqrt{9+40i}$$
 2

(d) Find real numbers for *a* and *b* if
$$z = 3 + i$$
 satisfies $z + \frac{a}{z} = b$ 3

(e) Sketch the region on the Argand plane where

|z-3| < 3 and $0 < \arg z < \frac{\pi}{4}$

(f) Describe in both algebraic and geometric terms the set of points z in the Argand plane such that $z^2 + (\overline{z})^2 = 0$

2

3

The graph of y = f(x) is shown below (a)

Draw neat sketches of the following on the answer sheet provided, showing clearly any stationary points and asymptotes

(i)	$y = \frac{1}{f(x)}$	2
(ii)	$y = f(\frac{x}{2})$	2

(iii)
$$y = [f(x)]^2$$
 2

(iv)
$$y = f(x) + |f(x)|$$
 2

(v)
$$y = 2^{f(x)}$$
 2

Consider the function $f(x) = x(x-3)^2$ (b)

(i)	Sketch the graph of the curve showing the coordinates of any turning points and the intercepts with the coordinate axes.	2
(ii)	Hence draw a neat separate sketch of $y^2 = f(x)$	2
(iii)	Describe the nature of the curve $y^2 = f(x)$ at $x = 0$.	1

<u>Ouestion 3.</u> (15 marks)

(a)	<i>z</i> is a variable complex number such that $\frac{z-1}{z+i}$ is real. Prove that <i>z</i> lies on a straight line and find its equation. 3
(b)	In the Argand diagram the points P, Q and R represent the complex numbers z_1, z_2 and $z_2 + i(z_2 - z_1)$ respectively.
	(i) Explain why ΔPQR is a right-angled triangle. 2
	(ii) Find in terms of z_1 and z_2 the complex number represented by <i>S</i> if <i>PQRS</i> is a rectangle. 2
(c)	(i) Use De Moivre's theorem to find the solution ω to the equation $z^5 = i$ which has the smallest positive argument.
	(ii) Using an Argand diagram or otherwise write down the other four roots of $z^5 = i$ in mod/arg form. 2
	(iii) Deduce that $\omega^{-3} + \omega^{-7} + \omega + \omega^{5} + \omega^{9} = 0$ 1
(d)	Use De Moivre's theorem to show that $(2+2i\tan\theta)^n + (2-2i\tan\theta)^n = \frac{2^{n+1}\cos n\theta}{\cos^n \theta}$

(v)

(iv)

$$\frac{45645}{9} \frac{7 \operatorname{com} \mathbb{E} 2 \operatorname{sol} 7(5)}{9}$$

$$\frac{9 \operatorname{usylup} 3}{(a \operatorname{Jm}(\frac{2-1}{21k}) = 0} \quad (a \operatorname{Jm}(\frac{2-1}{21k})) = 0 \quad (a \operatorname{Jm$$

Let *S* be the point that represents the number z_3 , so that *PQRS* is a rectangle (square) $\therefore \overrightarrow{SP} = \overrightarrow{RQ}$ (opposite sides are equal and parallel) $\therefore z_3 - z_1 = i(z_2 - z_1)$ $\therefore z_3 = z_1 + i(z_2 - z_1)$