

NORTH SYDNEY GIRLS HIGH SCHOOL

YEAR 12 – TERM 1 ASSESSMENT

MATHEMATICS EXTENSION 2

2008

TIME ALLOWED: 60 minutes Plus 2 minutes reading time

NAME CLASS

Q 1 / 16	Q 2 / 14	Q 3 / 11	Total / 41

INSTRUCTIONS:

- Start each question on a NEW PAGE
- Hand in each question separately, including a sheet for non-attempts
- Show all necessary working
- Write on one side of the page only
- Marks may be deducted for incomplete or poorly arranged work

Question 1 (16 marks)

a) Let z = 2 + i and w = 1 - 2i. Find, in the form x + iy,

(i) z + w 1

(ii)
$$\frac{z}{w}$$
 2

(iii)
$$\operatorname{Im}(z + \overline{w})$$
 1

b)	(i)	For the complex number $z = \sqrt{3} + i$ find $ z $ and $\arg z$.					
		Hence express z in the form $r(\cos\theta + i\sin\theta)$.	2				

(ii) Find
$$\overline{z}$$
 and z^2 giving your answers in the form $a + ib$. 2

(iii) Use De Moivre's Theorem to find a positive integer *m* such that
$$(\sqrt{3} + i)^n - (\sqrt{3} - i)^n = 0.$$

c) The diagram shows the locus of a point *P* representing the complex number *z*.

(i)	Find the equation of the locus of P in terms of z .	1
(ii)	Find the modulus and argument of z when $ z $ takes its least value.	2
(iii)	Hence find z in the form $a + ib$ for which $ z $ is least.	2

Question 2 (14 marks)

a)	(i)	On the same diagram, draw a neat sketch of the locus specified by each of the following: $(\alpha) z+1-3i = 2$				
		$(\beta) z-5i = z+i $	2			
	(ii)	Hence shade the region of points z which satisfies simultaneously	1			

$$|z+1-3i| \le 2$$
 and $|z-5i| \ge |z+i|$

- b) On the same number plane, sketch the graph of $y = \frac{1}{x-3}$ and hence the graph of $y = \frac{1}{\sqrt{x-3}}$, clearly indicating any asymptotes and intercepts. **3**
- c) The diagram shows the graph of y = f(x). The line y = x is an asymptote.

Draw neat sketches of the following *on the answer sheet provided*, showing clearly any asymptotes and important features.

(i) f(x|)

2

(ii)
$$\frac{1}{f(x)}$$
 2

(iii)
$$x f(x)$$

Question 3 (11 marks)

- a) If the domain of the function f given by $f(x) = \frac{1}{1-x^2}$ is restricted to $\{x : |x| > 1\}$, which one of the following describes the range of f? Briefly justify your answer.
 - (A) $-\infty < f(x) < -1$
 - (B) $-\infty < f(x) < 0$ (C) $-\infty < f(x) < 1$
 - $(C) \quad -\infty < f(x) < 1$
 - (D) $-1 < f(x) < \infty$
 - (E) $0 < f(x) < \infty$

b) The graph of $y^2 = x^2 + 9$

- I has the *x* axis as an axis of symmetry
- II has the *y* axis as an axis of symmetry
- III has point symmetry about the origin

Which of the above statements is true? Justify your answer with a sketch.

(A)	I only	(B)	II only	(C)	III only	(D) I and II only	(E)	I, II and III
-----	--------	-----	---------	-----	----------	-------------------	-----	---------------

c) Sketch the roots of $x^6 - 1 = 0$ on the Argand diagram. 2

d) The points P and Q represent the complex numbers 4 - 2i and 6 + 4i respectively.

(i)	Find the complex number represented by vector \overrightarrow{PQ}	1
(ii)	The points P , Q and S form an equilateral triangle. Find a possible value of the complex number represented by S .	3

(iii) The points P, O, Q and R (named in cyclic order, O being the origin) form a parallelogram. Find the complex number represented by R.

Solutions

Question 1

(a) (i)
$$z + w = 2 + i + 1 - 2i = 3 - i$$

(ii) $\frac{z}{w} = \frac{2 + i}{1 - 2i} \times \frac{1 + 2i}{1 + 2i} = \frac{2 + i + 4i - 2}{5} = i$

(iii)
$$\text{Im}(z + \overline{w}) = \text{Im}(2 + i + 1 + 2i) = 3$$

(b) (i)
$$z = \sqrt{3} + i$$

 $|z| = 2, \arg z$

$$|z| = 2$$
, arg $z = \frac{\pi}{6}$
 $\therefore z = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$

(ii)
$$\overline{z} = \sqrt{3} - i$$

 $z^2 = \left[2 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) \right]^2$
 $= 4 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$
 $= 4 \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right)$
 $= 2 + 2i\sqrt{3}$

[By de Moivre's Thm]

(iii)
$$\left(\sqrt{3}+i\right)^m - \left(\sqrt{3}-i\right)^m = 0$$

 $\therefore \left[2\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)\right]^m - \left[2\left(\cos\left(-\frac{\pi}{6}\right)+i\sin\left(-\frac{\pi}{6}\right)\right)\right]^m = 0$
 $\therefore 2^m \left[\cos\frac{m\pi}{6}+i\sin\frac{m\pi}{6}-\cos\left(-\frac{m\pi}{6}\right)-i\sin\left(-\frac{m\pi}{6}\right)\right] = 0$
 $\therefore \cos\frac{m\pi}{6}-\cos\left(\frac{m\pi}{6}\right)+2i\sin\frac{m\pi}{6}=0$
 $\therefore \sin\frac{m\pi}{6}=0$
 $\therefore \frac{m\pi}{6}=n\pi+(-1)^n\times\sin^{-1}(0)$
 $\therefore m=6n$
is a multiple of 6

(c) (i)
$$\arg(z+3) = \theta$$
 where $\tan \theta = \sqrt{3}$
 $\therefore \arg(z+3) = \frac{\pi}{3}$

Let *P* represent *z* where $OP = \min|z|$ and so $OP \perp AB$

$$\therefore \sin \frac{\pi}{3} = \frac{OP}{3}$$
$$\therefore OP = 3 \sin \frac{\pi}{3} = \frac{3\sqrt{3}}{2}$$
$$\therefore \min|z| = \frac{3\sqrt{3}}{2}$$

$$\angle POX = \frac{5\pi}{6} \Rightarrow \arg z = \frac{5\pi}{6}$$

(iii)
$$z_{\min|z|} = \frac{3\sqrt{3}}{2} \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right)$$

 $= \frac{3\sqrt{3}}{2} \left(-\frac{\sqrt{3}}{2} + \frac{i}{2} \right)$
 $= -\frac{9}{4} + \frac{3i\sqrt{3}}{4}$

Question 2

(a) (i) $|z+1-3i| = 2 \Rightarrow |z-(-1+3i)| = 2$ This is a circle of radius 2 centred at z = -1+3i |z-5i| = |z+i|This is the perpendicular bisector of z = 5i and z = -i ie z = 2

The x – axis is a horizontal asymptote

Question 3

From the graph $y^2 = x^2 + 9$ is symmetric in the *y* and *x* axes, and is also point symmetric about the origin. So I, II and III ie **E**

(c)
$$x^6 - 1 = 0$$

 $\therefore x^6 = 1 = 1 \operatorname{cis}(0 + 2k\pi) = \operatorname{cis}(2k\pi), k \in \mathbb{Z}$
 $\therefore x = \operatorname{cis}\left(\frac{2k\pi}{6}\right) = \operatorname{cis}\left(\frac{k\pi}{3}\right), 0 \le k \le 5$
 $\therefore x = 1, \operatorname{cis}\left(\frac{\pi}{3}\right), \operatorname{cis}\left(\frac{2\pi}{3}\right), \operatorname{cis}(\pi), \operatorname{cis}\left(\frac{4\pi}{3}\right) = \operatorname{cis}\left(-\frac{\pi}{3}\right), \operatorname{cis}\left(\frac{5\pi}{3}\right) = \operatorname{cis}\left(-\frac{2\pi}{3}\right)$

So the roots all lie on the unit circle and are equally spaced around it, by 60° . The non-real roots occur in conjugate pairs

- (i) \overrightarrow{PQ} is represented by 6 + 4i (4 2i) = 2 + 6i
- (ii) Two points can be found S_1 or S_2 , by rotating \overrightarrow{PQ} by 60° clockwise or anti-clockwise.

This gets the vectors $\overrightarrow{S_1Q}$ and $\overrightarrow{S_2Q}$.

(d)

$$\overrightarrow{S_1Q}: \qquad (2+6i)\operatorname{cis}60^\circ = (2+6i)\left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right) \\ = (1+3i)\left(1+i\sqrt{3}\right) = 1 - 3\sqrt{3} + i\left(3+\sqrt{3}\right)$$

$$\overrightarrow{S_2 Q}: \qquad (2+6i)\operatorname{cis}(-60^\circ) = (2+6i)\left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right) \\ = (1+3i)\left(1 - i\sqrt{3}\right) = 1 + 3\sqrt{3} + i\left(3 - \sqrt{3}\right)$$

$$\overrightarrow{OR} = \overrightarrow{QQ} + \overrightarrow{QR} = \overrightarrow{QQ} + \overrightarrow{OP}$$

So *R* corresponds to $6 + 4i + 4 - 2i = 10 + 2i$