NORTH SYDNEY GIRLS HIGH SCHOOL
YEAR 12 - TERM 1 ASSESSMENT

MATHEMATICS EXTENSION 2

2008

TIME ALLOWED: 60 minutes
Plus 2 minutes reading time

NAME \qquad CLASS \qquad

Q 1 /16	Q2 /14	Q 3 /11	Total /41

INSTRUCTIONS:

- Start each question on a NEW PAGE
- Hand in each question separately, including a sheet for non-attempts
- Show all necessary working
- Write on one side of the page only
- Marks may be deducted for incomplete or poorly arranged work

Question 1 (16 marks)

a) Let $z=2+i$ and $w=1-2 i$. Find, in the form $x+i y$,
(i) $z+w$
1
2
(iii) $\operatorname{Im}(z+\bar{w})$
b) (i) For the complex number $z=\sqrt{3}+i$ find $|z|$ and $\arg z$. Hence express z in the form $r(\cos \theta+i \sin \theta)$.
(ii) Find \bar{z} and z^{2} giving your answers in the form $a+i b$.
(iii) Use De Moivre's Theorem to find a positive integer m such that 3 $(\sqrt{3}+i)^{2}-(\sqrt{3}-i)^{2}=0$.
c) The diagram shows the locus of a point P representing the complex number z.

(i) Find the equation of the locus of P in terms of z.
(ii) Find the modulus and argument of z when $|z|$ takes its least value.
(iii) Hence find z in the form $a+i b$ for which $|z|$ is least.

Question 2

a) (i) On the same diagram, draw a neat sketch of the locus specified by each of the
following:

2
(ii) Hence shade the region of points z which satisfies simultaneously

$$
|z+1-3 i| \leq 2 \text { and }|z-5 i| \geq|z+i|
$$

b) On the same number plane, sketch the graph of $y=\frac{1}{x-3}$ and hence the graph of
$y=\frac{1}{\sqrt{x-3}}$, clearly indicating any asymptotes and intercepts.
c) The diagram shows the graph of $y=f(x)$. The line $y=x$ is an asymptote.

Draw neat sketches of the following on the answer sheet provided, showing clearly any asymptotes and important features.
(i) $\quad f(x \mid)$
(ii) $\frac{1}{f(x)}$
(iii) $x f(x)$

Question 3 (11 marks)

a) If the domain of the function f given by $f(x)=\frac{1}{1-x^{2}}$ is restricted to $\{x:|x|>1\}$, which one of the following describes the range of f ? Briefly justify your answer.
(A) $-\infty<f(x)<-1$
(B) $-\infty<f(x)<0$
(C) $-\infty<f(x)<1$
(D) $-1<f(x)<\infty$
(E) $0<f(x)<\infty$
b) The graph of $y^{2}=x^{2}+9$

I has the x axis as an axis of symmetry
II has the y axis as an axis of symmetry
III has point symmetry about the origin
Which of the above statements is true? Justify your answer with a sketch.
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II and III
c) Sketch the roots of $x^{6}-1=0$ on the Argand diagram.
d) The points P and Q represent the complex numbers $4-2 i$ and $6+4 i$ respectively.
(i) Find the complex number represented by vector $\overrightarrow{P Q}$
(ii) The points P, Q and S form an equilateral triangle.

Find a possible value of the complex number represented by S.
(iii) The points P, O, Q and R (named in cyclic order, O being the origin) form a parallelogram. Find the complex number represented by R.

End of paper

\qquad Class: \qquad
(i)

(ii)

(iii)

Solutions

Question 1

(a) (i) $z+w=2+i+1-2 i=3-i$
(ii) $\frac{z}{w}=\frac{2+i}{1-2 i} \times \frac{1+2 i}{1+2 i}=\frac{2+i+4 i-2}{5}=i$
(iii) $\operatorname{Im}(z+\bar{w})=\operatorname{Im}(2+i+1+2 i)=3$
(b) (i) $z=\sqrt{3}+i$

$$
\begin{aligned}
& |z|=2, \arg z=\frac{\pi}{6} \\
& \therefore z=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)
\end{aligned}
$$

(ii) $\bar{z}=\sqrt{3}-i$

$$
\begin{aligned}
z^{2} & =\left[2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\right]^{2} \\
& \left.=4\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \quad \text { [By de Moivre's Thm }\right] \\
& =4\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \\
& =2+2 i \sqrt{3}
\end{aligned}
$$

(iii) $(\sqrt{3}+i)^{m}-(\sqrt{3}-i)^{m}=0$

$$
\begin{aligned}
& \therefore\left[2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\right]^{m}-\left[2\left(\cos \left(-\frac{\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)\right)\right]^{m}=0 \\
& \therefore 2^{m}\left[\cos \frac{m \pi}{6}+i \sin \frac{m \pi}{6}-\cos \left(-\frac{m \pi}{6}\right)-i \sin \left(-\frac{m \pi}{6}\right)\right]=0 \\
& \therefore \cos \frac{m \pi}{6}--\cos \left(\frac{m \pi}{6}\right)+2 i \sin \frac{m \pi}{6}=0 \\
& \therefore \sin \frac{m \pi}{6}=0 \\
& \therefore \frac{m \pi}{6}=n \pi+(-1)^{n} \times \sin ^{-1}(0) \\
& \therefore m=6 n \\
& \text { ie } m \text { is a multiple of } 6
\end{aligned}
$$

(c) (i) $\arg (z+3)=\theta$ where $\tan \theta=\sqrt{3}$

$$
\therefore \arg (z+3)=\frac{\pi}{3}
$$

(ii)

Let P represent z where $O P=\min |z|$ and so $O P \perp A B$
$\therefore \sin \frac{\pi}{3}=\frac{O P}{3}$
$\therefore O P=3 \sin \frac{\pi}{3}=\frac{3 \sqrt{3}}{2}$
$\therefore \min |z|=\frac{3 \sqrt{3}}{2}$
$\angle P O X=\frac{5 \pi}{6} \Rightarrow \arg z=\frac{5 \pi}{6}$
(iii) $\quad z_{\min |z|}=\frac{3 \sqrt{3}}{2}\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$

$$
\begin{aligned}
& =\frac{3 \sqrt{3}}{2}\left(-\frac{\sqrt{3}}{2}+\frac{i}{2}\right) \\
& =-\frac{9}{4}+\frac{3 i \sqrt{3}}{4}
\end{aligned}
$$

Question 2

(a) (i) $|z+1-3 i|=2 \Rightarrow|z-(-1+3 i)|=2$

This is a circle of radius 2 centred at $z=-1+3 i$
$|z-5 i|=|z+i|$
This is the perpendicular bisector of $z=5 i$ and $z=-i$ ie $z=2$

(ii)

(b) The curve drawn with dashes is $y=\frac{1}{\sqrt{x-3}}$

The x-axis is a horizontal asymptote

(c)

Answer Sheet for Question 2 c)
Name: \qquad
(i)

(ii)

(iii)

Question 3

(a) $f(x)=\frac{1}{1-x^{2}}$

For $|x|>1$, then $-\infty<f(x)<0$
$\therefore B$

(b)

From the graph $y^{2}=x^{2}+9$ is symmetric in the y and x axes, and is also point symmetric about the origin. So I, II and III ie \mathbf{E}
(c) $x^{6}-1=0$

$$
\begin{aligned}
& \therefore x^{6}=1=1 \operatorname{cis}(0+2 k \pi)=\operatorname{cis}(2 k \pi), k \in Z \\
& \therefore x=\operatorname{cis}\left(\frac{2 k \pi}{6}\right)=\operatorname{cis}\left(\frac{k \pi}{3}\right), 0 \leq k \leq 5 \\
& \therefore x=1, \operatorname{cis}\left(\frac{\pi}{3}\right), \operatorname{cis}\left(\frac{2 \pi}{3}\right), \operatorname{cis}(\pi), \operatorname{cis}\left(\frac{4 \pi}{3}\right)=\operatorname{cis}\left(-\frac{\pi}{3}\right), \operatorname{cis}\left(\frac{5 \pi}{3}\right)=\operatorname{cis}\left(-\frac{2 \pi}{3}\right)
\end{aligned}
$$

So the roots all lie on the unit circle and are equally spaced around it, by 60°. The non-real roots occur in conjugate pairs
(d)

(i) $\overrightarrow{P Q}$ is represented by $6+4 i-(4-2 i)=2+6 i$
(ii) Two points can be found S_{1} or S_{2}, by rotating $\overrightarrow{P Q}$ by 60° clockwise or anti-clockwise.
This gets the vectors $\overrightarrow{S_{1} Q}$ and $\overrightarrow{S_{2} Q}$.

$$
\begin{aligned}
\overrightarrow{S_{1} Q}: \quad(2+6 i) \operatorname{cis} 60^{\circ} & =(2+6 i)\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) \\
& =(1+3 i)(1+i \sqrt{3})=1-3 \sqrt{3}+i(3+\sqrt{3}) \\
\overrightarrow{S_{2} Q}: \quad(2+6 i) \operatorname{cis}\left(-60^{\circ}\right) & =(2+6 i)\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) \\
& =(1+3 i)(1-i \sqrt{3})=1+3 \sqrt{3}+i(3-\sqrt{3})
\end{aligned}
$$

$$
\overrightarrow{O S_{1}}=\overrightarrow{O Q}-\overrightarrow{S_{1} Q}
$$

So S_{1} is represented by $6+4 i-[1-3 \sqrt{3}+i(3+\sqrt{3})]=5+3 \sqrt{3}+i(1-\sqrt{3})$

$$
\overrightarrow{O S_{2}}=\overrightarrow{O Q}-\overrightarrow{S_{2} Q}
$$

So S_{2} is represented by $=6+4 i-[1+3 \sqrt{3}+i(3-\sqrt{3})]=5-3 \sqrt{3}+i(1+\sqrt{3})$

$\overrightarrow{O R}=\overrightarrow{Q Q}+\overrightarrow{Q R}=\overrightarrow{Q Q}+\overrightarrow{O P}$
So R corresponds to $6+4 i+4-2 i=10+2 i$

