VIETNAMESE COMMUNITY IN AUSTRALIA
 NSW CHAPTER

JULY 2006

MATHEMATICS EXTENSION 2

PRE-TRIAL TEST

HIGHER SCHOOL CERTIFICATE (HSC)

Student Number: \square
Student Name: \qquad

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Write your Student Number and your Name on all working booklets

Total marks - 96

- Attempt Questions 1-8
- Question 8 is optional
- All questions are of equal value

Blank Page

Marks

Question 1
(A) Integrate the following,
(i) $\int \frac{\sin 2 x}{\sqrt{1-\cos 2 x}} d x$
(ii) $\int \frac{d x}{x \sqrt{x^{6}-4}} \quad\left(\right.$ Let $\left.\mathrm{x}^{3}=2 \sec \mathrm{u}\right)$
(iii) $\int_{-1}^{1} \frac{2 x}{\left(x^{2}+2 x+5\right)^{2}} d x$
(iv) $\int \frac{d x}{e^{x} \sqrt{1-e^{-2 x}}}$
(B) By substituting $x=a-y$, show that

$$
\int_{o}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x
$$

Hence use this result to evaluate.

$$
\begin{align*}
& \text { (i) } \int_{0}^{1} x(1-x)^{12} d x \\
& \text { (ii) } \int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\sin 2 x} d x
\end{align*}
$$

(A) Given $Z_{1}=i \sqrt{2}$ and $Z_{2}=\frac{2}{1-i}$
(i) Express Z_{1} and Z_{2} in the modulus/argument form.
(ii) If $\mathrm{Z}_{1}=\mathrm{w} \cdot \mathrm{Z}_{2}$ express w in the modulus/argument form.
(iii) Show $\mathrm{Z}_{1}, \mathrm{Z}_{2}$ and $\mathrm{Z}_{1}+\mathrm{Z}_{2}$ on an Argand diagram.

Hence show that

$$
\operatorname{Arg}\left(Z_{1}+Z_{2}\right)=\frac{3 \pi}{8}
$$

Use the diagram to find the exact value of $\tan \frac{3 \pi}{8}$
(B) If Z_{1}, Z_{2} are complex numbers, prove that

$$
\left|\frac{Z_{1}}{Z_{2}}\right|=\frac{\left|Z_{1}\right|}{\left|Z_{2}\right|}
$$

Given a complex number $Z=\frac{c+2 i}{c-2 i} \quad$ where c is real.
Find $|Z|$ and hence describe the exact locus of Z if c varies from -1 to 1 .
(C) If $w=2 \sqrt{3} i-2$, find $|w|$ and $\arg w$, then indicate on an Argand diagram the complex number $\mathrm{w}, \bar{w}, \mathrm{iw}, \frac{1}{w},-\mathrm{w}$.

Show that $w^{2}=4 \bar{w}$
Prove that w is a root of the equation $\mathrm{Z}^{3}-64=0$. Find other roots.
(A) P is the point $(3 \cos \theta, 2 \sin \theta)$ and Q is the point $(3 \sec \theta, 2 \tan \theta)$.

Sketch the curves which are the loci, as θ varies, of P and Q , marking on them the range of positions occupied by P and Q respectively as θ varies from $\frac{\pi}{2}$ to π.
(i) Prove that for any value of θ, the line PQ passes through one of the common points of the 2 curves.
(ii) Show that the tangent at P to the first curve meets the tangent at Q to the second curve in a point which lies on the common tangent to the two curves at their other common point.
(iii) Prove that the two curves have the same length of the latus rectum.
(B) Show that the condition for a straight line $y=m x+c$ to touch the ellipse E of

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \text { is } \quad c^{2}=b^{2}+a^{2} m^{2}
$$

Hence show that the locus of the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ from which the 2 tangents to the ellipse E
$\frac{x^{2}}{16}+\frac{y^{2}}{9}=1 \quad$ are perpendicular together, is a curve with the centre at the origin and a radius of 5 .
(A) A function is defined with the polar equation as follows:

$$
\left\{\begin{array}{l}
x=8 \cos ^{3} \theta \\
y=8 \sin ^{3} \theta
\end{array} \quad-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right.
$$

(i) Find $\frac{d y}{d x}$ in term of θ and show that the graph of this function touches the x and y axis. Sketch the curve.
(ii) Show that the Cartesian equation of that function is

$$
x^{\frac{2}{3}}+y^{\frac{2}{3}}=4
$$

Show that the equation of the tangent to the curve at the point $\mathrm{P}\left(\mathrm{x}_{0}, \mathrm{y}_{\mathrm{o}}\right)$ is:

$$
y_{0}^{1 / 3} x+x_{0}^{1 / 3} y=4 x_{0}^{1 / 3} \cdot y_{0}^{1 / 3}
$$

Prove that the segment intercepted on this tangent by the coordinate axis is independent of the position of P on the curve.
(B) Consider the function $f(x)=2-\frac{4 x}{x^{2}+1}$
(i) Show that the function is always positive for any value of x .
(ii) Find the asymptote (if any) and the stationary point of that curve.
(iii) Sketch the curve $y=f(x)$.
(iv) On a separate diagram, sketch the relating curves:
a) $y=f(|x|)$
b) $y=\frac{1}{f(x)}$
c) $y=\ln f(x)$
路

$$
\text { c) } y=\ln f(x)
$$

Question 5

(A) The area bounded by the curve $y=\sin x$, the two lines $y=-x$ and $x=\pi$ is rotated about the line $y=-x$. Find the volume of the solid shape of that formation.
(B) A cylindrical timber is chopped at two ends by 2 planes which are inclined 60° and 45° respectively. If the two ends are tilt toward each other and the shortest length of 2 ends is 120 cm . Find the volume of that timber. Give the radius of timer is 10 cm .

(A)

Two circles intersect at A and D. P is the point on the major arc of one circle. The other circle has the radius r. PA produced and PD produced meet the other circle at B and C respectively. Let $\angle \mathrm{APD}=\alpha$ and $\angle \mathrm{ACD}=\beta$.
(i) Show that $\mathrm{BC}=2 \mathrm{r} \sin (\alpha+\beta)$.
(ii) As P moves along the major arc AD on its circle, show that the length of the chord BC is independent of the position of P .
(iii) If the 2 circles have equal radii, show that

$$
\mathrm{BC}=2 \cos \alpha \cdot \mathrm{AD}
$$

(B) P is any point $(\mathrm{ct}, \mathrm{c} / \mathrm{t})$ on the Hyperbola $x y=c^{2}$, whose centre is O .
(i) M and N are perpendicular roots of P to the 2 asymptotes. Prove that PM.PN is constant.
(ii) Find the equation of tangent at P , and show that OP and this tangent are equally inclined to the asymptotes.
(iii) If the tangent at P meet the asymptotes at A and B , and Q is the fourth vertex of the rectangle OAQB , find the locus of Q .
(iv) Show that $\mathrm{PA}=\mathrm{PB}$ and hence conclude that the area of $\triangle \mathrm{OAB}$ is independent of position of P .
(A) If the polynomial $P(x)=x^{4}-4 x^{3}+11 x^{2}-14 x+10$ has two zeros $(a+i b)$ and ($a-2 i b$) where a and b are real, then find the values of a and b.

Hence find the zeros of $\mathrm{P}(\mathrm{x})$ over the complex field C , and express $\mathrm{P}(\mathrm{x})$ as the product of 2 quadratic factors with rational coefficients.
(B) Show that if the polynomial $\mathrm{P}(\mathrm{x})=0$ has a root a of multiplicity m , then
$\mathrm{P}^{\prime}(\mathrm{x}) 0$ has a root α of multiplicity (m-1).
Given that $P(x)=x^{4}+x^{3}-3 x^{2}-5 x-2=0$ has a 3-fold root, find all the roots of $\mathrm{P}(\mathrm{x})$.
(C) Find the cubic roots of unity and express them in the form $\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$.

Show these roots on an Argand diagram.
If w is one of the complex roots, prove that the other root is w^{2} and show that $1+\mathrm{w}+\mathrm{w}^{2}=0$.
(i) Prove that if n is a positive integer, then $1+\mathrm{w}^{\mathrm{n}}+\mathrm{w}^{2 \mathrm{n}}=\mathbf{3}$ or $\mathbf{0}$ depending on whether n is or is not a multiply of 3 .
(ii) If $\mathrm{x}=\mathrm{a}+\mathrm{b}, \mathrm{y}=\mathrm{aw}+\mathrm{bw}{ }^{2}$ and $\mathrm{z}=a w^{2}+\mathrm{bw}$, show that 2 $z^{2}+y^{2}+x^{2}=6 a b$
(A) A particle is projected vertically upward with initial speed u. The air resistance is proportional to the speed of the particle.
(a) If $\ddot{x}=-(g+k w)$ with k is the constant, then find the maximum height reached by the particle and the time to do so.
(b) Set up the differential equation for the downward motion.
(c) Show that the particle returns to its point of projection with speed v given by

$$
k(u+v)=g \log _{e}\left[\frac{g+k u}{-g-k V}\right]
$$

(B) Show that for $n \geq 1$
$1 . \ln \frac{2}{1}+2 \ln \frac{3}{2}+3 \ln \frac{4}{3}+\ldots+n \ln \left(\frac{n+1}{n}\right)=\ln \left(\frac{(n+1)^{n}}{n!}\right.$
(C) By using the induction method, prove that $(35)^{n}+3 \times 7^{n}+3 \times 5^{n}+6$ is divisible by 12 for $n \geq 1$

STANDARD INTEGRALS

$$
\mathrm{NOTE}: \quad \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Blank Page

PETRUS KY COLLEGE NEW SOUTH WALES

VIETNAMESE COMMUNITY
IN AUSTRALIA
NSW CHAPTER

JULY 2006

MATHEMATICS EXTENSION 2
 PRE-TRIAL TEST
 SOLUTION

HIGHER SCHOOL CERTIFICATE (HSC)

Student Number:

Student Name: \qquad

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Write your Student Number and your Name on all working booklets

Total marks - 96

- Attempt Questions 1-8
- Question 8 is optional
- All questions are of equal value
(A) Integrate the following,

$$
\begin{aligned}
& \text { (i) } \begin{aligned}
\int \frac{\sin 2 x}{\sqrt{1-\cos 2 x}} d x \\
\text { Let } u=1-\cos 2 x, \frac{d u}{d x}=2 \sin 2 x
\end{aligned} \\
& \begin{aligned}
\int \frac{\sin 2 x \cdot d x}{\sqrt{1-\cos 2 x}} & =\frac{1}{2} \int \frac{d u}{\sqrt{u}}=\sqrt{u}+c \\
& =\frac{1}{2} \sqrt{1-\cos 2 x}+c
\end{aligned}
\end{aligned}
$$

(ii) $\int \frac{d x}{x \sqrt{x^{6}-4}} \quad\left(\right.$ Let $\left.x^{3}=2 \sec u\right)$

$$
\begin{aligned}
\text { Let } \begin{aligned}
& x^{3}=2 \sec u \longrightarrow u=\cos ^{-1}\left(\frac{2}{x^{3}}\right) \\
& x=(2 \sec u)^{1 / 3} \\
& \frac{d x}{d u}=\frac{2 \sec u \cdot \tan u \cdot(2 \sec u)^{-\frac{2}{3}}}{3} \\
&=\frac{\tan u \cdot(2 \sec u)^{1 / 3}}{3} \\
& \therefore \int \frac{d x}{x \sqrt{x^{6}-4}}=\frac{1}{3} \int \frac{\tan u \cdot(2 \sec u)^{1 / 3} d u}{(2 \sec u)^{1 / 3} \sqrt{4 \sec ^{2} u-4}} \\
&=\frac{1}{3} \int \frac{\tan u \cdot d u}{2 \sqrt{\sec ^{2} u-1}} \\
&=\frac{1}{6} \int d u=\frac{1}{6} u+c \\
& \therefore \int \frac{d x}{x \sqrt{x^{6}-4}}=\frac{1}{6} \cos ^{-1}\left(\frac{2}{x^{3}}\right)+C
\end{aligned}
\end{aligned}
$$

(iii) $\int_{-1}^{1} \frac{2 x}{\left(x^{2}+2 x+5\right)^{2}} d x$

$$
\int_{-1}^{1} \frac{2 x \cdot d x}{\left(x^{2}+2 x+5\right)^{2}}=\int_{-1}^{1} \frac{2 x d x}{\left((x+1)^{2}+4\right)^{2}}
$$

- Let $x+1=2 \tan \theta \longrightarrow x=2 \tan \theta-1$

$$
\frac{d x}{d t}=2 \sec ^{2} \theta \cdot d \theta
$$

- change the range
- When $x=-1, \tan \theta=0, \theta=0$
- when $x=1, \tan \theta=1, \theta=\frac{\pi}{4}$
$\therefore \int_{-1}^{1} \frac{2 x d x}{\left(x^{2}+2 x+5\right)^{2}}=\int_{0}^{\pi / 4} \frac{2(2 \tan \theta-1) \cdot 2 \sec ^{2} \theta \cdot d \theta}{\left(4 \tan ^{2} \theta+4\right)^{2}}$

$$
\begin{aligned}
& =\frac{4}{16} \int_{0}^{\pi / 4} \frac{(2 \tan \theta-1) \sec ^{2} \theta d \theta}{\sec ^{4} \theta d \theta} \\
& =\frac{1}{4} \int_{0}^{\pi / 4} 2 \tan \theta \times \cos ^{2} \theta-\cos ^{2} \theta d t
\end{aligned}
$$

$$
=\frac{1}{4} \int_{0}^{\pi / 4} 2 \sin \theta \cdot \cos \theta-\frac{1}{2}(1+\cos 2 \theta) d \theta
$$

$$
=\frac{1}{4} \int_{0}^{\pi / 4} \sin 2 \theta-\frac{1}{2}-\frac{1}{2} \cos 2 \theta d \theta
$$

$$
=-\frac{1}{4}\left[\frac{1}{2} \cos 2 \theta+\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{\pi / 4}
$$

$$
=-\frac{1}{4}\left[\left(\theta+\frac{\pi}{8}+\frac{1}{4}-\frac{i}{2}\right)\right]
$$

$$
\text { Answer }=\frac{1}{16}-\frac{\pi}{32}
$$

(iv) $\int \frac{d x}{e^{x} \sqrt{1-e^{-2 x}}}$

$$
\int \frac{d x}{e^{x} \sqrt{1-e^{-2 x}}}
$$

$$
\text { Let } u=e^{-x}
$$

$$
\frac{d u}{d x}=-e^{-x} \quad,-d u=\frac{d x}{e^{x}}
$$

$$
\therefore \int \frac{d x}{e^{x} \sqrt{1-e^{-2 x}}}=-\int \frac{d u}{\sqrt{1-u^{2}}}=\cos ^{-1} u+c
$$

$$
=\cos ^{-1}\left(\frac{1}{e^{x}}\right)+c
$$

(B) By substituting $\mathrm{x}=\mathrm{a}-\mathrm{y}$, show that

$$
\int_{o}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x
$$

Hence use this result to evaluate.

$$
\begin{aligned}
& \text { Definite integral } \\
& \text { show that } \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x \\
& \text { Let } x=a-y \\
& \frac{d x}{d y}=-1
\end{aligned} \begin{aligned}
& \quad \text { when } x=0, y=a \\
& \therefore \int_{0}^{a} f(x) d x=-\int_{0}^{0} f(a-y) d y \\
&=\int_{0}^{a} f(a-y) d y \\
&=\int_{0}^{a} f(a-x) d x
\end{aligned}
$$

(i) $\int_{0}^{1} x(1-x)^{12} d x$

$$
\begin{aligned}
\int_{0}^{1} x(1-x)^{12} d x & =\int_{0}^{1}(1-x)(1-(1-x))^{12} d x \\
& =\int_{0}^{1}(1-x) x^{12} d x \\
& =\int_{0}^{1} x^{12}-x^{13} d x \\
& =\left[\frac{x^{13}}{13}-\frac{x^{14}}{14}\right]_{0}^{1} \\
& =\frac{1}{13}-\frac{1}{14}=\frac{1}{182}
\end{aligned}
$$

(ii) $\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\sin 2 x} d x$

$$
\begin{aligned}
& \begin{aligned}
\int_{0}^{\pi / 2} \frac{\cos x-\sin x}{1+\sin 2 x} d x & =\int_{0}^{\pi / 2} \frac{\cos \left(\frac{\pi}{2}-x\right)-\sin \left(\frac{\pi}{2}-x\right)}{1+\sin 2\left(\frac{\pi}{2}-x\right)} d x \\
& =\int_{0}^{\pi / 2} \frac{\sin x-\cos x}{1+\sin (\pi-2 x)} d x \\
& =\int_{0}^{\pi / 2} \frac{\sin x-\cos x}{1+\sin 2 x} d x \\
\therefore \quad 2 \int_{0}^{\pi / 2} \frac{\cos x-\sin x}{1+\sin 2 x} d x & =0 \\
\text { Answer } & =0
\end{aligned}
\end{aligned}
$$

(A) Given $Z_{1}=i \sqrt{2}$ and $Z_{2}=\frac{2}{1-i}$
(i) Express Z_{1} and Z_{2} in the modulus/argument form.

$$
\begin{aligned}
z_{1} & =\sqrt{2} \operatorname{cis} \frac{\pi}{2} \\
z_{2} & =\frac{2}{1-i} \times \frac{1+i}{1+i}=\frac{2(1+i)}{2}=1+i \\
z_{2} & =\sqrt{2} \operatorname{cis} \frac{\pi}{4}
\end{aligned}
$$

(ii) If $\mathrm{Z}_{1}=\mathrm{w} \cdot \mathrm{Z}_{2}$ express w in the modulus/argument form.

$$
\begin{aligned}
& \text { Find } w \text { if } z_{1}=w \cdot z_{2} \\
& \qquad \begin{aligned}
w=\frac{z_{1}}{z_{2}}
\end{aligned} \\
& \qquad \begin{aligned}
|w| & =\frac{\left|z_{1}\right|}{\left|z_{2}\right|}=\frac{\sqrt{2}}{\sqrt{2}}=1 \\
\operatorname{Arg}(w) & =\operatorname{Arg} z_{1}-\operatorname{Arg} z_{2} \\
& =\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}
\end{aligned} \\
& \therefore \quad w=\operatorname{cis} \frac{\pi}{4}
\end{aligned}
$$

(iii) Show $\mathrm{Z}_{1}, \mathrm{Z}_{2}$ and $\mathrm{Z}_{1}+\mathrm{Z}_{2}$ on an Argand diagram. Hence show that $\operatorname{Arg}\left(Z_{1}+Z_{2}\right)=\frac{3 \pi}{8}$

Use the diagram to find the exact value of $\tan \frac{3 \pi}{8}$

$$
\begin{aligned}
& \text { OPSQ is o rhombus, therefore OS bisects } \angle P O Q \\
& \text { Hence } \begin{aligned}
\angle S O Q & =\frac{\pi}{4} \div 2=\frac{\pi}{8} \\
\text { Arg }\left(z_{1}+z_{2}\right) & =\angle x O Q+\angle Q O S \\
& =\frac{\pi}{4}+\frac{\pi}{8} \\
& =\frac{3 \pi}{8}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\text { In } & \triangle O S R, \tan \angle S O R=\frac{S R}{C R} \\
\text { Hence, } & \tan \frac{3 \pi}{8}=\sqrt{2}+1
\end{aligned}
$$

(B) If $\mathrm{Z}_{1}, \mathrm{Z}_{2}$ are complex numbers, prove that

$$
\left|\frac{Z_{1}}{Z_{2}}\right|=\frac{\left|Z_{1}\right|}{\left|Z_{2}\right|}
$$

Given a complex number $Z=\frac{c+2 i}{c-2 i} \quad$ where c is real.
Find $|Z|$ and hence describe the exact locus of Z if c varies from -1 to 1 .
Prove

$$
\begin{aligned}
& \left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \\
& \text { Let } z_{1}=\left|z_{1}\right| \operatorname{cis} \alpha \\
& z_{2}=\left|z_{i}\right| \operatorname{cis} \beta \\
& \frac{z_{1}}{z_{2}}=\frac{\left|z_{1}\right|(\cos \alpha+i \sin \alpha)}{\left|z_{2}\right|(\cos \beta+i \sin \beta)} \times \frac{(\cos \beta-i \sin \beta)}{(\cos \beta-i \sin \beta)} \\
& =\frac{\left|z_{1}\right|}{\left|z_{2}\right|}(\cos (\alpha-\beta)+i \sin (\alpha-\beta)) \\
& \frac{z_{1}}{z_{2}}=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \cos (\alpha-\beta) \\
& \text { Therefore, modulus of } \frac{z_{1}}{z_{2}}=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}
\end{aligned}
$$

Let $z=\frac{c+2 i}{c-2 i}$

$$
\begin{aligned}
\text { Let } \begin{aligned}
z_{1} & =c+2 i \quad \text { then }\left|z_{1}\right|=\sqrt{c^{2}+4} \\
z_{2} & =c-2 i \quad \text { then }\left|z_{2}\right|=\sqrt{c^{2}+4} \\
\mid & \mid z^{2}
\end{aligned}=\frac{\left|z_{1}\right|}{\left|z_{l}\right|}=\frac{\sqrt{c^{2}+4}}{\sqrt{c^{2}+4}}=1
\end{aligned}
$$

Therefore, in general, the locus of z is the circle, centre at origin and radius $=1$, equation $x^{2}+y^{2}=1$ when the value of c varies from -1 .to 1 , Locus of z becomes only part of that circle, that is. it is an are from point A to B which contains the corner $(-1,0)$ as shown in the following figure:

(C) If $w=2 \sqrt{3} i-2$, find $|w|$ and $\arg w$, then indicate on an Argand diagram the complex number $\mathrm{w}, \bar{w}, \mathrm{iw}, \frac{1}{w},-\mathrm{w}$.

Show that $w^{2}=4 \bar{w}$
Prove that w is a root of the equation $Z^{3}-64=0$. Find other roots.

$$
w=2 \sqrt{3} i-2
$$

$$
|w|=\sqrt{4+12}=4
$$

$$
\operatorname{Arg}(w)=\tan ^{-1}\left(\frac{2 \sqrt{3}}{-2}\right)=\frac{2 \pi}{3}
$$

Show in Argand Diagram

- show that $w^{2}=4 \bar{w}$

$$
\begin{aligned}
& w^{2}=(2 \sqrt{3} i-2)^{2}=-12-8 \sqrt{3} i+4 \\
&=-(8+8 \sqrt{3} i) \\
& 4 \bar{w}=4(-2-2 \sqrt{3} i)=-(8+8 \sqrt{3} i) \\
& \therefore \quad w^{2}=4 \bar{w}
\end{aligned}
$$

- Since $w=4$ is $\frac{2 \pi}{3}$

Then $w^{3}=4^{3}$ is $2 \pi=64$
Therefore $w^{3}-64=0$
Polynomial equation $w^{3}-64=0$ has red coefficients and one complex root $w=-2+2 \sqrt{3} i$, then it also has other complex root which is the conjugate $\bar{w}=-2-2 \sqrt{3} i$ The last root is real, ie $w=4$

Question 3

(A) P is the point $(3 \cos \theta, 2 \sin \theta)$ and Q is the $\operatorname{point}(3 \sec \theta, 2 \tan \theta)$.
Sketch the curves which are the loci, as θ varies, of P and Q , marking on them the range of positions occupied by P and Q respectively as θ varies from $\frac{\pi}{2}$ to π.
(i) Prove that for any value of θ, the line PQ passes through one of the common points of the 2 curves.
a) $P(3 \cos \theta, 2 \sin \theta), Q(3 \sec \theta, 2 \tan \theta), \frac{\pi}{2} \leqslant \theta \leqslant \pi$

$$
\begin{aligned}
& \text { Equation of } P Q \text { : } \\
& \qquad \begin{aligned}
\begin{aligned}
\frac{y-2 \sin \theta}{x-3 \cos \theta} & =\frac{2 \tan \theta-2 \sin \theta}{3 \sec \theta-3 \cos \theta} \\
& =\frac{2 \sin \theta(\sec \theta-1)}{3 \cos \theta\left(\sec ^{2} \theta-1\right)} \\
& =\frac{2 \sin \theta}{3(1+\cos \theta)}
\end{aligned} \\
\text { Simplify: } \begin{array}{l}
2 x \sin \theta-3 y(1+\cos \theta)-6 \sin \theta=0
\end{array} \\
\text { Show that } P Q \text { passes through common point (3,0) } \\
\text { Substitute }(3,0) \text { into equation of } P Q \\
6 \sin \theta-3 \times 0(1+\cos \theta)-6 \sin \theta=0
\end{aligned} \\
& \text { Therefore } P Q \text { passes through }(3,0)
\end{aligned}
$$

(ii) Show that the tangent at P to the first curve meets the tangent at Q to the second curve in a point which lies on the common tangent to the two curves at their other common point.
ii) Equation of tangent to Ellipse at P

$$
\frac{x \cdot \cos \theta}{3}+\frac{y \sin \theta}{2}=1
$$

Equation of tangent to Hyperbola at Q

$$
\frac{x \sec \theta}{3}-\frac{y \tan \theta}{2}=1 \quad \text { (2) }
$$

- Divide equation (l) by $\cos \theta$.

$$
\begin{equation*}
\frac{x}{3}+\frac{y \tan \theta}{2}=\sec \theta \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Note: the sign of the second term } \frac{y \sin \theta}{2} \text { has to be charged } \\
& \text { to - because } \theta \text { is in } 2^{\text {nd }} q^{u a d r a n t,} \sin \theta \text { and } \\
& \tan \theta \text { are opposite sign }
\end{aligned}
$$

- point of intersection T : (3) -(2) gives

$$
\begin{gathered}
\frac{x}{3}-\frac{x \sec \theta}{3}=\sec \theta-1 \\
\frac{x}{3}(1-\sec \theta)=\sec \theta-1 \\
\therefore x=-3
\end{gathered}
$$

Therefore, T lies on the line $x=-3$, which is the common tangent of Ellipse and Hyperbola at the common point $(-3,0)$
(iii) Prove that the two curves have the same length of the latus rectum.
iii) Length of Lactus rectum:

- of Ellipse: $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$

$$
e=\frac{\sqrt{5}}{3}, \quad s(\sqrt{5}, 0)
$$

Equation of Loctus rectum $x=\sqrt{5}$
Intersection points: $\frac{5}{9}+\frac{y^{2}}{4}=1, y^{2}=\frac{16}{9}, y= \pm \frac{4}{3}$
Therefore, Length of Lotus rectum of Ellipse $L=\frac{8}{3}$

- of Hyperbola: $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$

$$
e=\frac{\sqrt{13}}{3}, s(\sqrt{13}, 0), x=\sqrt{13}
$$

$$
\text { Intersection points } \frac{13}{9}-\frac{y^{2}}{4}=1, y^{2}=\frac{16}{9}, y= \pm \frac{4}{3}
$$

Length of lactus rectum $L=2 y=\frac{8}{3}$
Therefore, the 2 curves $E \& H$ have the same length of tactus Rectum.
(B) Show that the condition for a straight line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ to touch the ellipse E of

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \text { is } \quad c^{2}=b^{2}+a^{2} m^{2}
$$

Hence show that the locus of the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ from which the 2 tangents to the ellipse E
$\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ are perpendicular together, is a curve with the centre at the origin and a radius of 5 .
condition to be a tangent to an ellipse.
Point of intersection.

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{(m x+k)^{2}}{b^{2}}=1 \\
& b^{2} x^{2}+a^{2} m^{2} x^{2}+2 a^{2} m c x+a^{2} c^{2}-a^{2} b^{2}=0 \\
& \left(b^{2}+a^{2} m^{2}\right) x^{2}+\left(2 a^{2} m c\right) x+\left(a^{2} c^{2}-a^{2} b^{2}\right)=0
\end{aligned}
$$

$$
=4 a^{4} m^{2} c^{2}-4 \partial^{2} b^{2} c^{2}+4 d^{2} b^{4}-4 a^{4} m^{2} c
$$

$$
+4 a^{4} b^{2} m^{2}
$$

To be a tangent, the line has only one common point with the ellipse or $\Delta=0$

$$
\begin{aligned}
\Delta= & 4 a b^{2}\left(b^{2}+a^{2} m^{2}-c^{2}\right)=0 \\
& \therefore c^{2}=b^{2}+a^{2} m^{2}
\end{aligned}
$$

- Locus of $P(x, y)$

Let equation of tangent through $P(x, y)$

$$
y=m x+c
$$

Using condition above: $c^{2}=b^{2}+a^{2} m^{2}$

$$
\therefore y=m x+\sqrt{\left(9+16 m^{2}\right)} .
$$

Solving equation in terms of m

$$
\begin{aligned}
& (y-m x)^{2}=9+16 m^{2} \\
& y^{2}-2 x y m+m^{2} x^{2}=9+16 m^{2}
\end{aligned}
$$

Quadratic equation:

$$
\left.m^{2}\left(x^{2}-16\right)-2 x y m+\left(y^{2}-9\right)=c\right)
$$

since from external paint $P(x, y)$, there are 2 tangents with gradient m_{1} and m_{2} to the Ellipse

The tangents are perpendicular, then $m_{1} \times m_{2}=-1$ - m_{1} and m_{2} are 2 roots of the above quadratic equation, their product $\left(m_{1} \times m_{2}\right)$ is equal $\frac{c}{a}$, which is

$$
\begin{gathered}
m_{1} \times m_{2}=\frac{y^{2}-9}{x^{2}-16}=1 \\
\text { Therefore } x^{2}+y^{2}=25 \\
\text { So the locus of } P \text { is a circle with radius }=5
\end{gathered}
$$

Question 4

(A) A function is defined with the polar equation as follows:

$$
\left\{\begin{array}{l}
x=8 \cos ^{3} \theta \\
y=8 \sin ^{3} \theta
\end{array} \quad-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right.
$$

(i) Find $\frac{d y}{d x}$ in term of θ and show that the graph of this function touches the x and y axis. Sketch the curve.

$$
\begin{aligned}
& \text { Find } \begin{array}{l}
\frac{d y}{d x} \text {, using chain rule } \\
\qquad \frac{d y}{d x}=\frac{d y}{d \theta} \times \frac{d \theta}{d x}=\frac{24 \cos \theta \times \sin ^{2} \theta}{-24 \sin \theta \times \cos ^{2} \theta} \\
\therefore \frac{d y}{d x}=-\frac{\sin \theta}{\cos \theta}=-\tan \theta
\end{array},
\end{aligned}
$$

- when $\theta=0, \frac{d y}{d \theta}=0, x=8, y=0$
\therefore The tangent at the x intercept $(8,0)$ is horizontal, $O R$ the curve touches

$$
x \text { axis }
$$

- when $\theta= \pm \frac{\pi}{2}, \frac{d y}{d \theta}=\infty, x=0, y= \pm 8$
\therefore The tangents at the Y intercepts

$$
(0, \pm 8) \text { is vertical, or the curve }
$$

$$
\text { touches } y \text { axis at } 2 \text { points. }
$$

(ii) Show that the Cartesian equation of that function is

$$
x^{\frac{2}{3}}+y^{\frac{2}{3}}=4
$$

Show that the equation of the tangent to the curve at the point $\mathrm{P}\left(\mathrm{x}_{0}, \mathrm{y}_{\mathrm{o}}\right)$ is:

$$
y_{0}^{1 / 3} x+x_{0}^{1 / 3} y=4 x_{0}^{1 / 3} \cdot y_{0}^{1 / 3}
$$

Prove that the segment intercepted on this tangent by the coordinate axis is independent of the position of P on the curve.
change to cartesian form $\begin{aligned} \cos \theta & =\frac{x^{1 / 3}}{2} \\ \sin \theta & =\frac{y^{1 / 3}}{2}\end{aligned}$
Then :

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

$$
\begin{gathered}
\frac{x^{2 / 3}+\frac{y^{2 / 3}}{4}=1}{\text { OR } \quad \mid x^{2 / 3}+y^{2 / 3}=4}
\end{gathered}
$$

Equation of tangent of $P\left(x_{0}, y_{0}\right)$

$$
\text { Since } \frac{d y}{d x}=-\frac{\sin \theta}{\cos \theta}=-\frac{y^{1 / 3}}{x^{1 / 3}}
$$

$$
\text { gradient of tangent } m_{T}=-\frac{y_{0}^{1 / 3}}{x_{0}^{1 / 3}}
$$

$$
\begin{aligned}
& \text { Equation of tangent } \\
& \qquad y-y_{0}=-\frac{y_{0}^{1 / 3}}{x_{0}^{1 / 3}}\left(x-x_{0}\right)
\end{aligned}
$$

$$
x_{0}^{1 / 3} \cdot y-y_{0} \cdot x_{0}^{1 / 3}=-y_{0}^{1 / 3} \cdot x+x_{0} \cdot y_{0}^{1 / 3}
$$

$$
\therefore \quad y_{0}^{1 / 3} \cdot x+x_{0}^{1 / 3} \cdot y=x_{0} y_{0}^{1 / 3}+y_{0} x_{0}^{1 / 3}
$$

$$
=x_{0}^{1 / 3} \cdot y_{0}^{1 / 3}\left(x_{0}^{2 / 3}+y_{0}^{2 / 3}\right)
$$

$$
=4 \cdot x_{0}^{1 / 3} \cdot y_{0}^{1 / 3}
$$

x and Y intercepts of the tangent.
x intercept, $y=0, x=4 x_{0}^{1 / 3}$
Y intercept, $x=0, y=4 y_{0}^{1 / 3}$
Length of $x y$ segment $=\sqrt{\left(4 x_{0}^{1 / 3}\right)^{2}+\left(4 y_{0}^{1 / 3}\right)^{2}}$
$=\sqrt{16\left(x_{0}^{2 / 3}+y_{0}^{2 / 3}\right)}$
$=\sqrt{16 \times 4}=8$
\therefore This length is independent of $\left(x_{0}, y_{0}\right)$
(B) Consider the function $f(x)=2-\frac{4 x}{x^{2}+1}$
(i) Show that the function is always positive for any value of x . show that $f(x)$ is positive definite

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2 x^{2}+2-4 x}{x^{2}+1}=\frac{2\left(x^{2}-2 x+1\right)}{x^{2}+1} \\
& f(x)=\frac{2(x-1)^{2}}{x^{2}+1} \text { always greater or equal } \\
& \text { zero. }
\end{aligned}
$$

(ii) Find the asymptote (if any) and the stationary point of that curve.

$$
\begin{aligned}
& \text { Asymptote : Let } x \rightarrow \infty \\
& \text { Limit } f(x)=2-\frac{4}{\infty}=2
\end{aligned}
$$

$$
\text { Horizontal asymptote } y=2
$$

$$
\text { stationary point: } f^{\prime}(x)=\frac{4 x^{2}-4}{\left(x^{2}+1\right)^{2}}
$$

$$
\begin{aligned}
& \text { when } x= \pm 1, f^{\prime}(x)=0 \\
& \qquad y=0 \text { or } 4 \\
& \text { Maximum point }(-1,4) \\
& \text { Minimum point }(1,0)
\end{aligned}
$$

(iii) Sketch the curve $y=f(x)$.

(iv) On a separate diagram, sketch the relating curves:

b) $y=\frac{1}{f(x)}$

c) $y=\ln f(x)$
$y=\ln f(x)$

(A) The area bounded by the curve $\mathrm{y}=\sin \mathrm{x}$, the two lines $\mathrm{y}=-\mathrm{x}$ and $\mathrm{x}=\pi$ is rotated about the line $y=-x$. Find the volume of the solid shape of that formation.

The solid shape can be divided by 2 separated volumes:
i) The $1^{\text {st }}$ part produced by rotating area bounded by the curve $y=\sin x$, the perpendicular line about the line $y=-x$ as shown in the following figure

By using the slicing method: The slice is a piece of cylinder, with volume is

$$
d V=\pi R^{2} d h
$$

with R is the perpendicular distance $P Q$ to the

Line $y=-x$ or $x+y=0$

$$
R=P Q=\frac{|x+y|}{\sqrt{2}}
$$

calculate $d h$ by the figure:

$$
d h=\sqrt{2} \cdot d x
$$

$$
\therefore \quad d v=(x+y)^{2} \cdot \sqrt{2} \cdot d x
$$

$$
=(x+\sin x)^{2} \cdot \sqrt{2} d x
$$

$$
=\sqrt{2} x^{2}+2 \sqrt{2} x \sin x+\sqrt{2} \sin ^{2} x d x
$$

Therefore:

$$
V=\operatorname{limit}_{d x \rightarrow 0} \sum_{0} d V=\int_{0}^{\pi} \sqrt{2} x^{2}+2 \sqrt{2} x \sin x+\sqrt{2} \sin ^{2} x d x
$$

There are 3 separated integrals.

- $\int_{0}^{\pi} \sqrt{2} x^{2} d x=\frac{\sqrt{2}}{3} \pi \sqrt{\pi}$
- $\int_{0}^{\pi} 2 \sqrt{2} x \cdot \sin x d x=[-x \cos x+\sin x]_{0}^{\pi}$

$$
=2 \sqrt{2} \pi
$$

- $\int_{0}^{\pi} \sqrt{2} \sin ^{2} x d x=\frac{\sqrt{2}}{2}\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\pi}=\frac{\sqrt{2} \pi}{2}$

Therfore $\quad V=\frac{\sqrt{2}}{3} \pi \sqrt{\pi}+2 \sqrt{2} \pi+\frac{\sqrt{2}}{2} \pi=11.34 u^{3}$
ii) The $2^{\text {nd }}$ part of that volume is the right-angular cone with the radius and the height equal to $\frac{\pi}{\sqrt{2}}$

The volume of a cone: $V=\frac{1}{3} \pi R^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \pi\left(\frac{\pi}{\sqrt{2}}\right)^{2}\left(\frac{\pi}{\sqrt{2}}\right) \\
& =\frac{\pi^{4}}{6 \sqrt{2}}=11.49 u^{3}
\end{aligned}
$$

Total volume of the solid shape $=22.8$ unit aube
(B) A cylindrical timber is chopped at two ends by 2 planes which are inclined 60° and 45^{0} respectively. If the two ends are tilt toward each other and the shortest length of 2 ends is 120 cm . Find the volume of that timber. Give the radius of timer is 10 cm .

Volume of a chopped cylindrical timber:
The total volume can be divided by 3 parts, The 2 ends are the pieces of timber which are chopped into half, and the body is the full cylinder.

- One end:

$$
V=\frac{1}{2} \pi 10^{2} \times 20=1000 \pi
$$

- other end: is similar, except the length of that piece

$$
\begin{gathered}
\text { is } \frac{20}{\sqrt{3}} \mathrm{~cm} \\
V=\frac{1}{2} \pi 10^{2} \times \frac{20}{\sqrt{3}}=\frac{1000 \pi}{\sqrt{3}}
\end{gathered}
$$

- The body is the full cylinder

$$
V=\pi \times 10^{2} \times 120=12000 \pi
$$

Therefore total volume

$$
V=1000 \pi+\frac{1000 \pi}{\sqrt{3}}+12000 \pi=42654 \mathrm{~cm}^{3}
$$

$$
V=42.65 \text { Litre }
$$

Question 6

12

Two circles intersect at A and D. P is the point on the major arc of one circle. The other circle has the radius r. PA produced and PD produced meet the other circle at B and C respectively. Let $\angle \mathrm{APD}=\alpha$ and $\angle \mathrm{ACD}=\beta$.
(i) Show that $\mathrm{BC}=2 \mathrm{r} \sin (\alpha+\beta)$.

$$
\text { From centre } \begin{aligned}
& O, \text { draw } O M \perp \text { bisects } B C \\
& \angle B O C=2 \angle B A C \quad \text { (angle of the centre) } \\
& \angle B A C=\alpha+\beta(\text { ext. } \angle \text { of } \triangle A C P) \\
& \therefore \quad \angle B C C=2(\alpha+\beta) \\
& \therefore \quad \angle B O M=\alpha+\beta \quad(\text { in isoceles } \triangle B O C) \\
& \text { In Right angle } \triangle O B M, \sin (\alpha+\beta)=\frac{B M}{O B} \\
& \therefore \quad B M=r \cdot \sin (\alpha+\beta) \\
& \text { Then } B C=2 B M=2 r \sin (\alpha+\beta)
\end{aligned}
$$

(ii) As P moves along the major arc AD on its circle, show that the length of the chord BC is independent of the position of P .

$$
\begin{aligned}
& \text { Prove } B C \text { is independent of the position of } \\
& P \text {. } \\
& \text { Since } A D \text { is common chord of bath circles, } \\
& A D \text { is constant, therefore angle } \alpha \text { and } \beta \\
& \text { subtend } A D \text { on both circles will be constant, no } \\
& \text { matter of } P \text { moves dong the arc. Therefore length of. } \\
& B C \text { will not change. }
\end{aligned}
$$

(iii) If the 2 circles have equal radii, show that
$\mathrm{BC}=2 \cos \alpha . \mathrm{AD}$
If the 2 circles are the same, then

$$
\begin{gathered}
\quad \alpha=\beta \text { (angles subtend equal arcs) } \\
\text { Hence } B C=2 r \sin 2 \beta=2 r \cdot 2 \sin \alpha \cdot \cos \alpha \\
\text { Draw ON } \perp \text { bisects } A D, \\
\angle A O D=2 \angle A C D=2 \beta \\
\angle A O N=\beta \\
\text { Hence in } \triangle A O N, \sin \beta=\frac{A N}{O A} \\
A N=r \cdot \sin \beta \\
A D=2 r \sin \beta \\
\text { Since } \alpha=\beta, \text { then } A D=2 r \sin \alpha . \\
\text { Substitute into } B C \\
B C=2 A D \cos \alpha
\end{gathered}
$$

(B) P is any point $(\mathrm{ct}, \mathrm{c} / \mathrm{t})$ on the Hyperbola $x y=c^{2}$, whose centre is O .
(i) M and N are perpendicular roots of P to the 2 asymptotes. Prove that PM.PN is constant.
(ii) Find the equation of tangent at P , and show that OP and this tangent are equally inclined to the asymptotes.
(iii) If the tangent at P meet the asymptotes at A and B , and Q is the fourth vertex of the rectangle OAQB , find the locus of Q .
(iv) Show that $\mathrm{PA}=\mathrm{PB}$ and hence conclude that the area of $\triangle \mathrm{OAB}$ is independent of position of P .
(A) If the polynomial $P(x)=x^{4}-4 x^{3}+11 x^{2}-14 x+10$ has two zeros $(a+i b)$ and ($a-2 i b$) where a and b are real, then find the values of a and b.

Hence find the zeros of $\mathrm{P}(\mathrm{x})$ over the complex field C , and express $\mathrm{P}(\mathrm{x})$ as the product of 2 quadratic factors with rational coefficients.
工$P(x)=x^{4}-4 x^{3}+11 x^{2}-14 x+10$ with 2 zeros $(a+i b)$ and $(a-2 i b)$, then find a, b.
Apply the conjugate zeros, $P(x)$ has other 2
zeros which are conjugate to the above. They are
$a-i b$ and $a+2 i b$. Let $P(x)=0$

$$
x^{4}-4 x^{3}+11 x^{2}-14 x+10=0
$$

The sum of 4 roots $=-\frac{b}{a}$

$$
\begin{gathered}
a+i b+a-i b+a+2 i b+a-2 i b=4 \\
4 a=4 \\
a=1
\end{gathered}
$$

The products of 4 roots $=\frac{e}{a}$

$$
\begin{gathered}
(1+i b)(1-i b)(1+2 i b)(1-2 i b)=10 \\
\left(1+b^{2}\right)\left(1+4 b^{2}\right)=10 \\
4 b^{4}+5 b^{2}-9=0 \\
\left(4 b^{2}+9\right)\left(b^{2}-1\right)=0 \\
b^{2}=1 \\
b=1 .
\end{gathered}
$$

- Therefore, 4 zeros of $P(x)$ are $1+i, 1-i$,

$$
1+2 i, \quad 1-2 i
$$

- Factorise $P(x)$ in real set.

$$
\begin{aligned}
P(x) & =(x-1+i)(x-1-i)(x-1+2 i)(x-1-2 i) \\
& =\left((x-1)^{2}+1\right)\left((x-1)^{2}+4\right) \\
P(x) & =\left(x^{2}-2 x+2\right)\left(x^{2}-2 x+5\right)
\end{aligned}
$$

(B) Show that if the polynomial $\mathrm{P}(\mathrm{x})=0$ has a root a of multiplicity m , then
$\mathrm{P}^{\prime}(\mathrm{x}) 0$ has a root α of multiplicity $(\mathrm{m}-1)$.
Given that $P(x)=x^{4}+x^{3}-3 x^{2}-5 x-2=0$ has a 3-fold root, find all the roots of $\mathrm{P}(\mathrm{x})$.
b) If $P(x)=0$ has $x=\alpha$ as a multiple root, then $P(x)=(x-\alpha)^{m} \cdot Q(x)$ with m is the multiplicity

$$
P^{\prime}(x)=m(x-\alpha)^{m-1} \cdot Q(x)+(x-\alpha)^{m} \cdot Q^{\prime}(x)
$$

$$
P^{\prime}(x)=(x-\alpha)^{m-1}\left[m \cdot Q(x)+(x-\alpha) \cdot Q^{\prime}(x)\right]
$$

Let $x=\alpha, \quad P^{\prime}(\alpha)=0$, se α is also the rent
of $P^{\prime}(x)$.
Let $P(x)=x^{4}+x^{3}-3 x^{2}-5 x-2=0$
$P^{\prime}(x)=4 x^{3}+3 x^{2}-6 x-5$ $p^{\prime \prime}(x)=12 x^{2}+6 x-6=0$
$6(2 x-1)(x+1)=0$
$\therefore \quad x=-1$ or $\frac{1}{2}$
Substitute $x=-1$ into $P(x)$ and $P^{\prime}(x)$ we get

$$
P(-1)=P^{\prime}(-1)=P^{\prime \prime}(-1)=0
$$

$\therefore x=-1$ is a multiple root multiplicity $=3$ Let the $4^{\text {th }}$ root be α, using the sum of 4 roots $\begin{aligned}-\frac{b}{a}-1 \times 3+\alpha & =-1 \\ \alpha & =2\end{aligned}$

All the roots are, $-1,-1,-1$ and 2
(C) Find the cubic roots of unity and express them in the form $\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$.

Show these roots on an Argand diagram.
If w is one of the complex roots, prove that the other root is w^{2} and show that $1+\mathrm{w}+\mathrm{w}^{2}=0$.
(i) Prove that if n is a positive integer, then $1+w^{n}+w^{2 n}=3$ or $\mathbf{0}$ depending on whether n is or is not a multiply of 3 .
c) Find the cube roots of unity $x^{3}=1$. $\left|z^{3}\right|=|z|^{3}=1 \quad \therefore|x|=1$
Let $z=\cos \theta+i \sin \theta$
$z^{3}=\cos 3 \theta+i \sin 3 \theta=1$
$\cos 3 \theta=1$
$3 \theta=0,2 \pi, 4 \pi$
$\theta=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}$
The 3 reacts are: $\boldsymbol{z}=\cos 0+i \sin 0=1$

$$
z=\omega=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}
$$

$$
z=\omega^{2}=\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}
$$

Since $\quad z^{3}-1=0$
Sum of 3 roots $=-\frac{b}{a}=0$
Then

$$
1+w+w^{2}=0
$$

- Show that $1+w^{n}+w^{2 n}=3$ or 0
- i) if n is a multiple of 3 , let

$$
n=3 p
$$

then $1+w^{n}+w^{2 n}=1+\left(w^{3}\right)^{p}+\left(w^{3}\right)^{2 p}$

$$
=\frac{1+1+1=3}{\left(\text { since } w^{3}=1\right)}
$$

- ie) if n is NOT a multiple of 3 , let

$$
n=3 p+1 \text { or } 3 p+2
$$

$$
\text { Then } 1+w^{n}+w^{2 n}=1+w^{3 p+1}+w^{6 p+2}
$$

$$
=1+w^{3} \cdot w+w^{6} \cdot w^{2}
$$

$$
=1+w+w^{2}
$$

$$
=0
$$

(ii) If $x=a+b, y=a w+b w^{2}$ and $z=a w^{2}+b w$, show that $z^{2}+y^{2}+x^{2}=6 a b$

$$
\begin{aligned}
& \text { If } x=a+b, y=a w+b w^{2} \text { and } z=a w^{2}+b w \\
& \text { Show that } z^{2}+y^{2}+x^{2}=6 a b \\
& \text { - } z^{2}=\left(a w^{2}+b w\right)=a^{2} w^{4}+2 a b w^{3}+b^{2} w^{2} \\
& =a^{2} w+b^{2} w^{2}+2 a b \text { (1) } \\
& \text { - } y^{2}=\left(a w+b w^{2}\right)=a^{2} w^{2}+2 a b w^{3}+b^{2} w^{4} \\
& =a^{2} w^{2}+b^{2} w+2 a b \text { (2) } \\
& \text { - } x^{2}=(a+b)^{2}=a^{2}+b^{2}+2 a b \text { (3) } \\
& \therefore z^{2}+y^{2}+x^{2}=a^{2}\left(1+w+w^{2}\right)+b^{2}\left(1+w+w^{2}\right)+6 a b \\
& =6 a b
\end{aligned}
$$

Question 8 - Optional

(A) A particle is projected vertically upward with initial speed u. The air resistance is proportional to the speed of the particle.
(a) If $\ddot{x}=-(g+k w)$ with k is the constant, then find the maximum height reached by the particle and the time to do so.

Vertical projectile motion:

a) Project upward:

$$
\begin{aligned}
& \underset{\substack{x \\
x=0}}{\substack{x \\
x \\
x}} \\
& \text { Equation of motion } \\
& a=\frac{v d v}{d x}=-g-k v \\
& \int \frac{v d v}{g+k v}=\int-d x \\
& \frac{1}{k} \int \frac{k v+g}{k v+g} d v-\frac{9}{k} \int \frac{d v}{k v+g}=-x+c \\
& \therefore x+c=\frac{g}{k^{2}} \ln (k v+g)-\frac{v}{k}
\end{aligned}
$$

when $x=0, v=u$,

$$
c=\frac{g}{k^{2}} \ln (k u+g)-\frac{u}{k}
$$

Maximum height, when $v=0, x=H$

$$
H=\frac{u}{k}+\frac{9}{k^{2}} \ln g-\frac{g}{k^{2}} \ln (k u+g)
$$

(b) Set up the differential equation for the downward motion.
b) Downward motion

$$
\begin{aligned}
& \text { when } x=0, v=0 \\
& c=-\frac{g}{k^{2}} \ln g \\
& \text { when } x=H, V=V \\
& \frac{u}{k}+\frac{g}{k^{2}} \ln g-\frac{9}{k^{2}} \ln (k u+g)-\frac{9}{\not k^{2}} \ln g=-\frac{V}{k}-\frac{g}{k^{2}} \ln (g-k V) \\
& \text { simplify both sides by } k^{2} \text { : } \\
& k u+k V=g \ln (k u+g)-g \ln (g-k V) \\
& \therefore k(u+v)=g \ln \left[\frac{k u+g}{g-k v}\right]
\end{aligned}
$$

(c) Show that the particle returns to its point of projection with speed v given by

$$
k(u+v)=g \log _{e}\left[\frac{g+k u}{-g-k V}\right]
$$

(B) Show that for $n \geq 1$

1. $\ln \frac{2}{1}+2 \ln \frac{3}{2}+3 \ln \frac{4}{3}+\ldots+n \ln \left(\frac{n+1}{n}\right)=\ln \left(\frac{(n+1)^{n}}{n!}\right.$

Show that for $n \geqslant 1$
$1 \ln \frac{2}{1}+2 \ln \frac{3}{2}+3 \ln \frac{4}{3}+\cdots+n \ln \frac{(n+1)}{n}=\ln \frac{(n+1)^{n}}{n!}$.
$L H S=\ln \left(\frac{2}{1}\right)^{1}+\ln \left(\frac{3}{2}\right)^{2}+\ln \left(\frac{4}{3}\right)^{3}+\cdots+\ln \left(\frac{n+1}{n}\right)^{n}$
$=\ln \left[\frac{2^{1} \cdot 3^{2} \cdot 4^{3} \cdot 5^{4} \cdot \cdots n^{n-1} \cdot\left(n^{n}+1\right)^{n}}{1 \cdot 2^{2} \cdot 3^{3} \cdot 4^{4} \cdot 5^{5} \cdot \cdots(n-1)^{n-1} \cdot n^{n}}\right]$
simplify the indices of the top and bottom:

$$
L H S=\ln \left[\frac{(n+1)^{n}}{1 \cdot 2 \cdot 3 \ldots n}\right]=\ln \left(\frac{(n+1)^{n}}{n!}\right)=\text { RHS }
$$

(C) By using the induction method, prove that

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE : $\ln x=\log _{e} x, \quad x>0$

