in partnership with

VIETNAMESE COMMUNITY
IN AUSTRALIA
NSW CHAPTER

JULY 2007

MATHEMATICS EXTENSION 2

PRE-TRIAL TEST

HIGHER SCHOOL CERTIFICATE (HSC)

Student Number: \square
Student Name: \qquad

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Write your Student Number and your Name on all working booklets

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value

Question 1

(i) $\int \frac{3 x^{2}-6 x+1}{(x-3)\left(x^{2}+1\right)} d x$
(ii) $\int_{0}^{1} x \cdot \tan ^{-1} x . d x$
(iii) $\int_{0}^{\pi / 2} \sqrt{1+\sin 2 x} . d x$
(iv) If $I_{n}=\int_{0}^{\pi / 2} \frac{\cos (2 n+1) \theta}{\cos \theta} d \theta$, show that
$I_{n}+I_{n-1}=0$ for $n \geq 1$. Hence find the value of I_{n} for $n \geq 0$
(v) $\int_{\sqrt{2}}^{2} \frac{1}{x \sqrt{x^{2}-1}} d x$

Question 2

(A) Express $Z=\sqrt{3}+i$ and $W=1+i$ in the MOD-ARG forms and hence evaluate $\frac{Z^{20}}{Z^{30}}$ in the form $a+b i$
(B) If $Z=i-1$, show clearly on an Argand diagrams all the points representing the complex numbers.

$$
Z, Z^{2}, Z^{3}, Z^{-1}, \sqrt{2} \cdot Z,-Z, \bar{Z}, i Z, Z^{2}-Z, \sqrt{Z}
$$

(C) Simplify $Z=\frac{1+\cos 2 \theta+i \sin 2 \theta}{1+\cos 2 \theta-i \sin 2 \theta}$

Hence show that $Z^{n}=\cos 2 n \theta+i \sin 2 n \theta$
(D) Express $\cos 6 \theta$ as a polynomial in terms of $\cos \theta$ hence show that $\cos \frac{\pi}{12}, \cos \frac{3 \pi}{12}, \cos \frac{5 \pi}{12}, \cos \frac{7 \pi}{12}, \cos \frac{9 \pi}{12}$ and $\cos \frac{11 \pi}{12}$ are the roots of the equation $32 x^{6}-48 x^{4}+18 x^{2}-1=0$
(E) If w is the complex cube root of unity, $z^{3}=1$ then simplify

$$
\frac{1}{3+5 w+3 w^{2}}+\frac{1}{7+7 w+9 w^{2}}
$$

(A)

(i) If $P(x)=x^{3}-6 x^{2}+9 x+c$ for some real number c , find the value of x for which $P^{\prime}(x)=0$.

Hence find the values of c for which the equation $P(x)$ has a repeated root.
(ii) Sketch the graphs of $y=P(x)$ with this values of c , hence find the set of values of c for which the equation $P(x)=0$ has only one real root.
(B) Show that the equation $\frac{x^{2}}{36-k}+\frac{y^{2}}{20-k}=1$, where k is a real number, represents:
(i) an ellipse if $k<20$
(ii) a hyperbola if $20<k<36$
(iii) Show that the foci of the ellipse in (i) or hyperbola in (ii) are independent of the value of k.

(A)

(i) The normal at point $P\left(c t, \frac{c}{t}\right)$ on the hyperbola $x y=c^{2}$ cuts the line $y=x$ at Q . Find the co-ordinates of Q .
(ii) Show that $\mathrm{OP}=\mathrm{PQ}$ and hence show that there is no point on the parabola for which the length of PQ is less than $c \sqrt{2}$
(B) Two points P and Q lie on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Their parameters are given as θ and $\theta+\frac{\pi}{2}$.
(i) Show that Q has co-ordinates $(-a \sin \theta, b \cos \theta)$. Hence prove:

$$
O P^{2}+O Q^{2}=a^{2}+b^{2}
$$

(ii) Find the locus of midpoint M of PQ .
(iii) If α is the acute angle between the 2 tangents at P and at Q , show that

$$
\tan \alpha=\frac{2 \sqrt{1-e^{2}}}{e^{2} \cdot \sin 2 \theta}
$$

Question 5

(A) By using the division of two graphs, or otherwise, sketch the curve

$$
y=\frac{3 x}{x^{2}-4}
$$

(B) Find the domain and range of curve $y=\cos ^{-1}\left(e^{x}\right)$ and hence sketch the graph of $y=\cos ^{-1}\left(e^{x}\right)$
(C) Let $f(x)=(\sin x-\cos x)^{2}$, find the period and range of $f(x)$, hence sketch the curve of $f(x)$ with $-\pi \leq x \leq \pi$.

From the separated graph, sketch the following curve.
(i) $y=\frac{1}{f(x)}$
(ii) $y=\sqrt{f(x)}$
(iii) $y=\ell n[f(x)]$
(iv) $y=f(|x|)$
(A) The base of a certain solid is the region bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$, and its cross-sections by planes perpendicular to the x-axis are semi circles. Find the volume of the solid.

(B) The area bounded by 2 arcs and 2 chords of a circle as shown in the figure below, is let to rotate about the x-axis. Find the volume of the solid shape.

(A) Mice are placed in the centre of a maze which has 5 exits. Each mouse is equally likely to leave the maze through any one of the 5 exits. Four mice A, B, C, D are put into the maze and behave independently.
(i) Find the probability that A, B, C, D all come out the same exit.
(ii) What is the probability that A, B and C come out the same exit and D comes out a different exit.
(iii) What is the probability that any 3 of 4 mice come out the same exit and the other comes out a different exit.
(iv) What is the probability that no more than 2 mice come out the same exit.
(B) If $\mu_{1}=1$ and $\mu_{n}=\sqrt{3+2 \mu_{n-1}}$ for $n \geq 2$
(i) show that $\mu_{n}<3$ for $n \geq 1$
(ii) deduce that $\mu_{n+1}>\mu_{n}$ for $n \geq 1$
(C) By using induction method, prove that $3^{4 n+2}+2.4^{3 n+1}$ is divisible by 17 for 4 $n \geq 1$

STANDARD INTEGRALS

$$
\text { NOTE : } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

in partnership with

VIETNAMESE COMMUNITY
IN AUSTRALIA
NSW CHAPTER

JULY 2007

MATHEMATICS EXTENSION 2 - SOLUTION

 PRE-TRIAL TESTHIGHER SCHOOL CERTIFICATE (HSC)

Student Number: \square
Student Name: \qquad

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Write your Student Number and your Name on all working booklets

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value
(i) $\int \frac{3 x^{2}-6 x+1}{(x-3)\left(x^{2}+1\right)} d x$

$$
\int \frac{3 x^{2}-6 x+1}{(x-3)\left(x^{2}+1\right)} d x=\int \frac{3 x^{2}-6 x+1}{x^{3}-3 x^{2}+x-3} d x
$$

$$
I=\log _{e}\left(x^{3}-3 x^{2}+x-3\right)+c
$$

(ii) $\int_{0}^{1} x \cdot \tan ^{-1} x . d x$

$$
\begin{aligned}
\int_{0}^{1} x \cdot \tan ^{-1} x d x & =\left[\frac{x^{2}}{2} \cdot \tan ^{-1} x\right]_{0}^{1}-\frac{1}{2} \int_{0}^{1} \frac{x^{2}}{1+x^{2}} d x \\
& =\frac{1}{2} \times \frac{\pi}{4}-\frac{1}{2} \int_{0}^{1} 1-\frac{1}{1+x^{2}} d x \\
& =\frac{\pi}{8}-\frac{1}{2}\left[x-\tan ^{-1} x\right]_{0}^{1} \\
& =\frac{\pi}{8}-\frac{1}{2}\left(1-\frac{\pi}{4}\right) \\
I & =\frac{\pi}{4}-\frac{1}{2}
\end{aligned}
$$

(iii) $\int_{0}^{\pi / 2} \sqrt{1+\sin 2 x} \cdot d x$

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sqrt{1+\sin 2 x} \cdot d x & =\int_{0}^{\pi / 2} \sqrt{\sin ^{2} x+\cos ^{2} x+2 \sin x \cdot \cos x} d x \\
& =\int_{0}^{\pi / 2} \sqrt{(\sin x+\cos x)^{2}} d x \\
& =[-\cos x+\sin x]_{0}^{\pi / 2} \\
I & =2
\end{aligned}
$$

(iv) If $I_{n}=\int_{0}^{\pi / 2} \frac{\cos (2 n+1) \theta}{\cos \theta} d \theta$, show that
$I_{n}+I_{n-1}=0$ for $n \geq 1$. Hence find the value of I_{n} for $n \geq 0$
$I_{n}=\int_{0}^{\pi / 2} \frac{\cos (2 n+1) \theta}{\cos \theta} d \theta$

$$
\begin{aligned}
I_{n}+I_{n-1} & =\int_{0}^{\pi / 2} \frac{\cos (2 n+1) \theta+\cos (2 n-1) \theta}{\cos \theta} d \theta \\
& =\int_{0}^{\pi / 2} \frac{2 \cos \left(\frac{2 n+1+2 n-1}{2}\right) \theta \cdot \cos \left(\frac{2 n+1-2 n+1}{2}\right) \theta}{\cos \theta} d \theta \\
& =2 \int_{0}^{\pi / 2} \frac{\cos 2 n \theta \cdot \cos \theta}{\cos \theta} d \theta \\
& =\left[\frac{2}{2 n} \sin 2 n \theta\right]_{0}^{\pi / 2}=0
\end{aligned}
$$

Hence: $I_{0}=\int_{0}^{\pi / 2} \frac{\cos \theta}{\cos \theta} d \theta=\frac{\pi}{2}$
Then: $I_{1}=-I_{0}=-\frac{\pi}{2}$
$I_{2}=-I_{1}=\frac{\pi}{2}$
so on, we deduce

$$
I_{n}=(-1)^{n} \cdot \frac{\pi}{2}
$$

(v) $\int_{\sqrt{2}}^{2} \frac{1}{x \sqrt{x^{2}-1}} d x$

$$
\begin{aligned}
& \int_{\sqrt{2}}^{2} \frac{1}{x \sqrt{x^{2}-1}} d x \\
& \text { Let } x=\sec \theta, \quad d x=\sec \theta \cdot \tan \theta \cdot d \theta \\
& \text { When } x=\sqrt{2}, \quad \theta=\frac{\pi}{4} \\
& \quad x=2, \quad \theta=\frac{\pi}{3} \\
& I=\int_{\pi / 4}^{\pi / 3} \frac{\sec \theta \cdot \tan \theta \cdot d \theta}{\sec \theta \cdot \sqrt{\sec ^{2} \theta-1}}=\int_{\pi / 4}^{\pi / 3} d \theta=\frac{\pi}{3}-\frac{\pi}{4} \\
& I=\frac{\pi}{12}
\end{aligned}
$$

(A) Express $Z=\sqrt{3}+i$ and $W=1+i$ in the MOD-ARG forms and hence evaluate $\frac{Z^{20}}{W^{30}}$ in the form $a+b i$

$$
\begin{aligned}
& z=\sqrt{3}+i=2 \operatorname{cis} \frac{\pi}{6} \\
& w=1+i=\sqrt{2} \operatorname{cis} \frac{\pi}{4}
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{z^{20}}{w^{30}} & =\frac{2^{20} \operatorname{cis} \frac{20 \pi}{6}}{(\sqrt{2})^{30} \operatorname{cis} \frac{30 \pi}{4}}=2^{5} \operatorname{cis}\left(\frac{10}{3}-\frac{15}{2}\right) \pi \\
& =2^{5} \operatorname{cis}\left(-\frac{25}{6}\right) \pi=2^{5} \operatorname{cis}\left(-4 \pi-\frac{\pi}{6}\right) \\
& =2^{5}\left(\cos \left(-\frac{\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)\right) \\
& =32\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right) \\
\frac{z^{20}}{w^{30}} & =16 \sqrt{3}-16 i
\end{aligned}
$$

(B) If $Z=i-1$, show clearly on an Argand diagrams all the points representing the complex numbers.

$$
\begin{aligned}
& Z, Z^{2}, Z^{3}, Z^{-1}, \sqrt{2} \cdot Z,-Z, \bar{Z}, i Z, Z^{2}-Z, \sqrt{Z} \\
& \text { ARGAND diagram of } z=i-1
\end{aligned}
$$

(C) Simplify $Z=\frac{1+\cos 2 \theta+i \sin 2 \theta}{1+\cos 2 \theta-i \sin 2 \theta}$

Hence show that $Z^{n}=\cos 2 n \theta+i \sin 2 n \theta$

$$
\text { Simplify: } \quad \begin{aligned}
z & =\frac{1+\cos 2 \theta+i \sin 2 \theta}{1+\cos 2 \theta-i \sin 2 \theta} \\
& =\frac{2 \cos ^{2} \theta+2 i \cos \theta \cdot \sin \theta}{2 \cos ^{2} \theta-2 i \cos \theta \cdot \sin \theta} \\
& =\frac{2 \cos \theta(\cos \theta+i \sin \theta)}{2 \cos \theta(\cos \theta-i \sin \theta)} \\
& =\frac{(\cos \theta+i \sin \theta)}{(\cos \theta-i \sin \theta)} \times \frac{(\cos \theta+i \sin \theta)}{(\cos \theta+i \sin \theta)} \\
z & =(\cos \theta+i \sin \theta)^{2}
\end{aligned}
$$

\therefore By De Mopes, theorem $z=\cos 2 \theta+i \sin 2 \theta$
$\begin{array}{cc}\text { Therefore } & z^{n}=(\cos 2 \theta+i \sin 2 \theta) \\ & z^{n}=\cos 2 n \theta+i \sin 2 n \theta\end{array}$
(D) Express $\cos 6 \theta$ as a polynomial in terms of $\cos \theta$ hence show that $\cos \frac{\pi}{12}, \cos \frac{3 \pi}{12}, \cos \frac{5 \pi}{12}, \cos \frac{7 \pi}{12}, \cos \frac{9 \pi}{12}$ and $\cos \frac{11 \pi}{12}$ are the roots of the equation $32 x^{6}-48 x^{4}+18 x^{2}-1=0$

$$
\begin{aligned}
& (\cos \theta+i \sin \theta)^{6}=\cos 6 \theta+i \sin 6 \theta \\
& \text { Using binomial expansion } \\
& (\cos \theta+i \sin \theta)^{6}=\cos ^{6} \theta+6 i \cos ^{5} \theta \cdot \sin \theta+15 i^{2} \cos ^{4} \theta \cdot \sin ^{2} \theta+20 i^{3} \cos ^{3} \theta \cdot \sin ^{3} \theta \\
& +15 i^{4} \cos ^{2} \theta \cdot \sin ^{4} \theta+6 i^{5} \cos \theta \cdot \sin ^{5} \theta+i^{6} \sin ^{6} \theta . \\
& \text { Equating the real terms: } \\
& \cos 6 \theta=\cos ^{6} \theta-15 \cos ^{4} \theta \cdot \sin ^{2} \theta+15 \cos ^{2} \theta \cdot \sin ^{4} \theta-\sin ^{6} \theta \text {. } \\
& =\cos ^{6} \theta-15 \cos ^{4} \theta\left(1-\cos ^{2} \theta\right)+15 \cos ^{2} \theta \cdot\left(1-2 \cos ^{2} \theta+\cos ^{4} \theta\right) \\
& -\left(1-3 \cos ^{2} \theta+3 \cos ^{4} \theta-\cos ^{6} \theta\right) \\
& \cos 6 \theta=32 \cos ^{6} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1 \\
& \text { given equation } 32 x^{6}-48 x^{4}+18 x^{2}-1=0 \\
& \text { Let } x=\cos \theta \text {; then the Left hand side of equation } \\
& \text { becomes } \quad \cos 6 \theta=0
\end{aligned}
$$

solving equation $\cos 6 \theta=0$

$$
6 \theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}, \frac{9 \pi}{2}, \frac{11 \pi}{2}
$$

Therefore, $\cos \frac{\pi}{12}, \cos \frac{3 \pi}{12}, \cos \frac{5 \pi}{12}, \cos \frac{7 \pi}{12}, \cos \frac{9 \pi}{12}$ and $\cos \frac{11 \pi}{12}$ are the roots of the given equation.
(E) If w is the complex cube root of unity, $z^{3}=1$ then simplify

$$
\begin{aligned}
& \frac{1}{3+5 w+3 w^{2}}+\frac{1}{7+7 w+9 w^{2}} \\
& \text { If } w \text { is one root of the equation } z^{3}=1 \text {, then } 1 \text { and } \\
& w^{2} \text { are other roots and } 1+w+w^{2}=0
\end{aligned}
$$

Simplify

$$
\begin{aligned}
A & =\frac{1}{3+5 w+3 w^{2}}+\frac{1}{7+7 w+9 w^{2}} \\
& =\frac{1}{3\left(1+w^{2}\right)+5 w}+\frac{1}{7(1+w)+9 w^{2}} \\
& =\frac{1}{-3 w+5 w}+\frac{1}{-7 w^{2}+9 w^{2}}
\end{aligned}
$$

$$
=\frac{1}{2 w}+\frac{1}{2 w^{2}}
$$

$$
=\frac{w+1}{2 w^{2}}
$$

$$
=\frac{-w^{2}}{2 w^{2}}
$$

$$
A=-\frac{1}{2}
$$

(A)
(i) If $P(x)=x^{3}-6 x^{2}+9 x+c$ for some real number c , find the value of x 3 for which $P^{\prime}(x)=0$.

Hence find the values of c for which the equation $P(x)$ has a repeated root.

$$
\begin{aligned}
& P(x)=x^{3}-6 x^{2}+9 x+c \\
& P^{\prime}(x)=3 x^{2}-12 x+9 \\
& \text { Let } P^{\prime}(x)=0,3\left(x^{2}-4 x+3\right)=0 \\
& x=1 \text { or } 3 \\
& P(x) \text { has repeated root if: } \\
& \text { (a) } P(1)=P^{\prime}(1)=0 \\
& \therefore 1-6+9+c=0, \quad c=-4 \\
& \text { (b) } P(3)=P^{\prime}(3)=0 \\
& \therefore 27-54+27+c=0, c=0
\end{aligned}
$$

(ii) Sketch the graphs of $y=P(x)$ with this values of c , hence find the set of values of c for which the equation $P(x)=0$ has only one real root.

$$
\text { sketch } 2 \text { curves: } \begin{aligned}
P_{1}(x) & =x^{3}-6 x^{2}+9 x-4 \\
P_{2}(x) & =x^{3}-6 x^{2}+9 x
\end{aligned}
$$

In order for the curve $P(x)$ has only one x intercept, it has to be lower than $P_{1}(x)$ or higher than $P_{2}(x)$. Therefore the equation $P(x)=0$ has only one root if

$$
c<-4 \text { or } c>0
$$

(B) Show that the equation $\frac{x^{2}}{36-k}+\frac{y^{2}}{20-k}=1$, where k is a real number, represents:
(i) an ellipse if $k<20$

If $k<20$, the coefficient under y^{2} is a positive value then the equation can be expressed as

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text {, it is an ellipse }
$$

(ii) a hyperbola if $20<k<36$

If $k>20$, the coefficient under y^{2} is a negative value and $k<36$, the coefficient under x^{2} is a positive value, then the equation con be expressed as

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \text {, it is a hyperbola }
$$

(iii) Show that the foci of the ellipse in (i) or hyperbola in (ii) are independent of the value of k.

$$
\begin{aligned}
& \text { Foci of ellipse are } s(a e, 0) \text { and } s^{\prime}(-a e, 0) \\
& \begin{aligned}
\text { Equation of eccentricity } \quad b^{2} & =a^{2}\left(1-e^{2}\right) \\
& =a^{2}-a^{2} e^{2}
\end{aligned} \\
& \qquad \begin{aligned}
a^{2} e^{2} & =a^{2}-b^{2} \\
& =36-k-(20-k)=16
\end{aligned} \\
& \qquad \begin{aligned}
& a e= \pm 4 \\
& \text { Then Foci } s(4,0) \text { and } s^{\prime}(-4,0) \text { independent of } \\
& \therefore
\end{aligned} \\
& \text { Foci of hyperbola } s(a e, 0) \quad s^{\prime}(-a e, 0)
\end{aligned} \begin{aligned}
& \text { Equation of eccentricity } b^{2}=a^{2}\left(e^{2}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad a^{2} e^{2}=b^{2}+a^{2} \\
&=-(20-k)+36-k \\
& a^{2} e^{2}=16 \\
& a e= \pm 4 \\
& \text { Foci of hyperbola } s(4,0) \quad s^{\prime}(-4,0) \text { independent of } k
\end{aligned}
$$

Question 4

(A)
(i) The normal at point $P\left(c t, \frac{c}{t}\right)$ on the hyperbola $x y=c^{2}$ cuts the line $y=x$ at Q . Find the coordinates of Q .

Rectangular hyperbola

$$
\begin{aligned}
& \text { Normal at } P \quad y-\frac{c}{t}=t^{2}(x-c t) \\
& \text { Intersection point } Q \text { wish line } y=x \\
& x-\frac{c}{t}=t^{2} x-c t^{3} \\
& x\left(t^{2}-1\right)=\frac{c}{t}\left(t^{2}-1\right) \\
& x=\frac{c}{t}\left(t^{2}+1\right) \\
& \therefore \quad Q\left(\frac{c}{t}\left(t^{2}+1\right), \frac{c}{t}\left(t^{2}+1\right)\right)
\end{aligned}
$$

(ii) Show that $\mathrm{OP}=\mathrm{PQ}$ and hence show that there is no point on the parabola for which the length of PQ is less than $c \sqrt{2}$

$$
\begin{aligned}
& \text { Show that } O P=P Q \\
& O P^{2}=c^{2} t^{2}+\frac{c^{2}}{t^{2}}=\frac{c^{2}}{t^{2}}\left(t^{4}+1\right) \\
& P Q^{2}=\left(c t-\frac{c}{t}\left(t^{2}+1\right)\right)^{2}+\left(\frac{c}{t}-\frac{c}{t}\left(t^{2}+1\right)\right)^{2} \\
& \\
& =\left(c t-c t-\frac{c}{t}\right)^{2}+\left(\frac{c}{t}-c t-\frac{c}{t}\right)^{2} \\
&
\end{aligned} \begin{aligned}
& =\frac{c^{2}}{t^{2}}+c^{2} t^{2}=\frac{c^{2}}{t^{2}}\left(t^{4}+1\right) \\
\therefore \quad O P & =P Q
\end{aligned}
$$

> The shortest distance from O to the bogperbold is the distance from O to P which lies on the hyperbola and the line $y=x$. coordinates of that point P are (c, c), hence the shortest distance is $O P=c \sqrt{2}$, therefore there is No paint A which gives $P Q<c \sqrt{2}$
(B) Two points P and Q lie on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Their parameters are given as θ and $\theta+\frac{\pi}{2}$.
(i) Show that Q has co-ordinates $(-a \sin \theta, b \cos \theta)$. Hence prove:

$$
\begin{aligned}
& O P^{2}+O Q^{2}=a^{2}+b^{2} \\
& P(a \cos \theta, b \sin \theta) \\
& Q\left(a \cos \left(\theta+\frac{\pi}{2}\right), b \sin \left(\theta+\frac{\pi}{2}\right)\right) \\
& \text { since }: \cos \left(\theta+\frac{\pi}{2}\right) \\
& =-\cos \left(\pi-\left(\theta+\frac{\pi}{2}\right)\right) \\
& \\
& =-\cos \left(\frac{\pi}{2}-\theta\right) \\
& \\
& = \\
& \begin{aligned}
& \sin \left(\theta+\frac{\pi}{2}\right)=\sin \left(\pi-\left(\theta+\frac{\pi}{2}\right)\right) \\
&=\sin \left(\frac{\pi}{2}-\theta\right) \\
&=\cos \theta \\
& \text { Then coordinates of } Q(-a \sin \theta, b \cos \theta)
\end{aligned}
\end{aligned}
$$

(ii) Find the locus of midpoint M of PQ .

$$
\begin{aligned}
& \text { Midpoint } M \\
& \qquad x=\frac{a \cos \theta-a \sin \theta}{2}=\frac{a}{2}(\cos \theta-\sin \theta) \\
& y=\frac{b \sin \theta+b \cos \theta}{2}=\frac{b}{2}(\cos \theta+\sin \theta)
\end{aligned}
$$

$$
\begin{aligned}
& (\cos \theta-\sin \theta)^{2}=\frac{4 x^{2}}{a^{2}} \\
& (\cos \theta+\sin \theta)^{2}=\frac{4 y^{2}}{b^{2}} \\
& 1-2 \sin \theta \cdot \cos \theta=4 \frac{x^{2}}{a^{2}} \\
& +1+2 \sin \theta \cdot \cos \theta=\frac{4 y^{2}}{b^{2}}
\end{aligned}
$$

Equation of

$$
\begin{aligned}
& \text { Locus of } M \\
& \frac{x^{2}}{\frac{a^{2}}{2}}+\frac{y^{2}}{\frac{b^{2}}{2}}=1
\end{aligned}
$$

(iii) If α is the acute angle between the 2 tangents at P and at Q , show that

$$
\tan \alpha=\frac{2 \sqrt{1-e^{2}}}{e^{2} \cdot \sin 2 \theta}
$$

Differentiate equation of ellipse:

$$
\begin{aligned}
& \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \cdot \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=-\frac{b^{2} x}{a^{2} y}
\end{aligned}
$$

gradient of tangent at $p \quad m_{p}=-\frac{b^{2} \cdot a \cos \theta}{a^{2} \cdot b \sin \theta}$

$$
=-\frac{b}{a} \frac{\cos \theta}{\sin \theta}
$$

gradient of tangent at $Q \quad m_{Q}=+\frac{b^{2} \cdot a \sin \theta}{a^{2} \cdot b \cos \theta}$

$$
=\frac{b}{a} \cdot \frac{\sin \theta}{\cos \theta}
$$

Acute angle between 2 tangents

$$
\begin{aligned}
\tan \alpha & =\left|\frac{m_{p}-m_{Q}}{1+m_{p} \cdot m_{Q}}\right| \\
& =\left|\frac{-\frac{b}{a} \cdot \frac{\cos \theta}{\sin \theta}-\frac{b}{a} \frac{\sin \theta}{\cos \theta}}{1-\frac{b}{a} \frac{\cos \theta}{\sin \theta} \cdot \frac{b}{a} \frac{\sin \theta}{\cos \theta}}\right|
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{b}{a}\left(\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta \cdot \cos \theta}\right) \\
& =\frac{1-\frac{b^{2}}{a^{2}}}{\sin 2 \theta} \times \frac{2}{a^{2}-b^{2}} \\
\tan \alpha & =\frac{2 \sqrt{1-e^{2}}}{\operatorname{e}^{2} \sin 2 \theta}
\end{aligned}
$$

Question 5
(A) By using the division of two graphs, or otherwise, sketch the curve

$$
y=\frac{3 x}{x^{2}-4}
$$

$$
\text { graph } \quad y=\frac{3 x}{x^{2}-4}
$$

(B) Find the domain and range of curve $y=\cos ^{-1}\left(e^{x}\right)$ and hence sketch the graph of $y=\cos ^{-1}\left(e^{x}\right)$

$$
y=\cos ^{-1}\left(e^{x}\right)
$$

Domain $e^{x} \leqslant \boldsymbol{d}$ then $-\infty<x \leqslant 0$
Range $\quad 0 \leqslant y<\frac{\pi}{2}$
The curve:

(C) Let $f(x)=(\sin x-\cos x)^{2}$, find the period and range of $f(x)$, hence sketch the curve of $f(x)$ with $-\pi \leq x \leq \pi$.

From the separated graph, sketch the following curve.

1

$$
\begin{aligned}
f(x) & =(\sin x-\cos x)^{2} \\
& =\sin ^{2} x-2 \sin x \cdot \cos x+\cos ^{2} x \\
& =1-\sin 2 x \\
\text { period } & \frac{2 \pi}{2}=\pi \\
\text { Amplitude } & =1
\end{aligned}
$$

(i) $y=f(x)=1-\sin 2 x$

(ii) $y=\frac{1}{f(x)}$

(iii) $y=\sqrt{f(x)}$

(iv) $y=\ln [f(x)]$

(iv) $y=f(|x|)$

Question 6

(A) The base of a certain solid is the region bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$, and its cross-sections by planes perpendicular to the x -axis are semi circles. Find the volume of the solid.

slicing method $d v=A \cdot d h$

$$
\begin{aligned}
& A=\frac{1}{2} \pi R^{2} \\
& \text { of which: } R=\frac{y_{2}-y_{1}}{2}=\frac{2 \sqrt{x}-\frac{x^{2}}{2}}{2} \\
& R=\sqrt{x}-\frac{x^{2}}{8}
\end{aligned}
$$

$$
\begin{aligned}
& d h=d x \\
& d v=\frac{1}{2} \pi\left(\sqrt{x}-\frac{x^{2}}{8}\right)^{2} d x \\
& =\frac{1}{2} \pi\left(x-\frac{x^{2} \sqrt{x}}{4}+\frac{x^{4}}{64}\right) d x \\
& \text { Intersection point of } 2 \text { curves: } \begin{aligned}
x^{2} & =4 y \\
y^{2} & =4 x
\end{aligned} \\
& \therefore\left(\frac{x^{2}}{4}\right)^{2}=4 x \\
& x^{4}-64 x=0 \\
& x=0 \text { or } 4 \text {. } \\
& \text { Then. } v=\text { limit } \sum_{d x \rightarrow 0} d v=\int_{0}^{4} \frac{1}{2} \pi\left(x-\frac{x^{2} \sqrt{x}}{4}+\frac{x^{4}}{64}\right) d x \\
& =\frac{1}{2} \pi\left[\frac{x^{2}}{2}-\frac{1}{14} x^{7 / 2}+\frac{x^{5}}{320}\right]_{0}^{4} \\
& =\frac{4}{2} \pi\left(\frac{16}{2}-\frac{128}{14}+\frac{16}{5}\right) \\
& V=3.231 \text { unit cube }
\end{aligned}
$$

(B) The area bounded by 2 arcs and 2 chords of a circle as shown in the figure below, is let to rotate about the x-axis. Find the volume of the solid shape.

$$
\begin{gathered}
\text { Cylindrical shell: } d V=2 \pi R h d R \\
R=y \\
h=2 x \\
d R=d y \\
d V=4 \pi x y d y \\
\text { Equation of circle }: x^{2}+y^{2}=25 \\
\therefore x=\sqrt{25-y^{2}} \\
V=\text { limit } \sum_{d y \rightarrow 0} d V=4 \pi \int_{0}^{2.5} y \sqrt{25-y^{2}} d y \\
=4 \pi\left[-\frac{1}{3}\left(25-y^{2}\right)^{3 / 2}\right]_{0}^{2.5} \\
=4 \pi\left(-\frac{1}{3}(81.19-125)\right) \\
V=183.5 \text { unit cube }
\end{gathered}
$$

Question 7

(A) Mice are placed in the centre of a maze which has 5 exits. Each mouse is equally likely to leave the maze through any one of the 5 exits. Four mice A, B, C, D are put into the maze and behave independently.
(B)
(i) Find the probability that A, B, C, D all come out the same exit.
$P(4$ mice out same exit $)=\frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}=\frac{1}{125}$
(ii) What is the probability that A, B and C come out the same exit and D comes out a different exit.
$P(A, B, C$ out some exit but different for $D)=\frac{1}{5} \times \frac{1}{5} \times \frac{4}{5}=\frac{4}{125}$
(iii) What is the probability that any 3 of 4 mice come out the same exit and the other comes out a different exit.

$$
\begin{aligned}
& \text { P (} 3 \text { mice cut sarre exit and other out different exit) } \\
&=4 \times \frac{4}{125}=\frac{16}{125}
\end{aligned}
$$

(iv) What is the probability that no more than 2 mice come out the same exit.

1

$$
\begin{aligned}
& P(\text { ne more than } 2 \text { mice out same exit }) \\
&=1-[P(3 \text { mice same exit })+P(4 \text { mice same } \\
&\text { exit })] \\
&=1-\left(\frac{1}{125}+\frac{16}{125}\right) \\
&=\frac{108}{125}
\end{aligned}
$$

(B) If $\mu_{1}=1$ and $\mu_{n}=\sqrt{3+2 \mu_{n-1}}$ for $n \geq 2$

In-equality: show by induction method
(i) show that $\mu_{n}<3$ for $n \geq 1$
shew $\quad u_{n}<3, u_{1}=1$
Test true for $n=2: u_{z}=\sqrt{3+2 u_{1}}$

$$
\begin{aligned}
& =\sqrt{3+2 \times i} \\
u_{2} & =\sqrt{5}<3
\end{aligned}
$$

The statement is true for $n=2$
Assuming true for $n=k$, ie $u_{k}<3$
Prove true for $n=k+1$, i.e, $u_{k+1}<3$

Proof:

$$
\begin{array}{ll}
\text { Since } & u_{k}<3 \\
\text { Then } & 2 u_{k}<6 \\
\text { Hence } & 3+2 u_{k}<9 \\
\text { Therefore } & \sqrt{3+2 u_{k}}<\sqrt{9} \\
\text { So } & u_{k+1}<3
\end{array}
$$

Conclusion:

$$
\text { Since the statement is true for } n=1 \text {, it is proved }
$$

also true for $n=2$ and so on it is true for every integers n.
(ii) deduce that $\mu_{n+1}>\mu_{n}$ for $n \geq 1$
, Deduce $u_{n+1}>u_{n}$

- Since

Then

- And
$3>u_{n}$

$$
2 u_{n}+3>3 u_{n}
$$

- So

$$
2 u_{n}+3>u_{n}^{2}
$$

$$
u_{n+1}^{2}>u_{n}^{2}
$$

$$
\therefore
$$

$u_{n+1}>u_{n}$
(C) By using induction method, prove that $3^{4 n+2}+2.4^{3 n+1}$ is divisible by 17 for $n \geq 1$
Induction method, prove $3^{4 n+2}+2.4^{3 n+1}$ is
divisible by 17

- Test true for $n=1$

$$
\begin{aligned}
2^{4+2}+2 \times 4^{3+1} & =1241 \\
& =73 \times 17 \text { is divisible by } 17
\end{aligned}
$$

- Assuming true for $n=k$

$$
3^{4 k+2}+2 \times 4^{3 k+1}=17 p \quad \text { (} p \text { is integer) }
$$

- Prove true for $n=k+1$

$$
3^{4(k+1)+2}+2 \times 4^{3(k+1)+1}=179 \text { (ais integer) }
$$

Since

$$
3^{4 k+2}=1 F_{p}-2 \times 4^{3 k+1}
$$

Then

$$
\begin{aligned}
& 3^{4 k+4+2}+2 \times 4^{3 k+3+1}=3^{4}\left(17 p-2 \times 4^{3 k+1}\right)- \\
& \text { LHS }=17 \times 81 p-2 \times 4^{3 k+1}(8 i-64) \\
&=17\left(81 p-2 \times 4^{3 k+1}\right) \\
&=179 \text { divisible by } 17
\end{aligned}
$$

- Since the statement is true for $n=1$, it is also true for $n=2$, and so on it is true for any values of integer n.

