

SAINT IGNATIUS' COLLEGE RIVERVIEW

Mathematics Extension 2

Mid Year Examination

2004

General Instructions

- Reading time 5 minutes
- Working time 2 hours and 15 minutes
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

QUESTION 1	[15 marks]	(Start a new answer booklet)
-------------------	------------	------------------------------

- a) Find $\sqrt{9-12i}$ expressing your answer in the form a+bi where a, b are real. [4]
- b) Find the modulus and argument of the following complex numbers:

(i)
$$-4 + 4\sqrt{3}i$$
 [2]

(ii)
$$(\sin\theta + i\cos\theta)(\cos\theta - i\sin\theta)$$
 [3]

c) Write down the set of inequalities, in terms of z, if the complex number z lies in the shaded region shown on the diagram.

[2]

d) The complex number $\frac{z-2}{z+i}$ is purely imaginary. Find the Cartesian equation of the locus of the complex number *z*, and draw the graph of the locus, noting any discontinuities on the graph. [4]

QUESTION 2

[15 marks]

(Start a new answer booklet)

a) Given that $P(x) = ax^3 + bx^2 - 7x + 6$ evaluate *a* and *b* if (x-2) and (x-1) are [4] both factors of P(x).

b) Sketch the graph of
$$y = x(x^2 - 9)$$
 and hence solve the equation $\frac{x^2 - 9}{x} > 0$ [3]

- c) Give all solutions for $2 \sin x = \tan x$
- d) (i) Sketch the graphs of $y = \sin x$ and y = x on the same set of axes and show that x = 1.8 is a good approximation for the x value of the point of intersection of the graphs in the domain $\frac{\pi}{4} \le x \le \frac{3\pi}{4}$. [2]
 - (ii) Use Newton's method with 1 application to find a better approximation to the x value of this point of intersection. [2]

[4]

QUESTION 3

a) Consider the ellipse
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

- (i) Find
 - α) the eccentricity
 - β) the foci
 - γ) the equations of the directices
- (ii) Sketch the ellipse.

(iii) Find the gradient of the normal at
$$\left(1, \frac{4\sqrt{2}}{3}\right)$$

- b) Sketch each of the following pairs of curves on separate axes, clearly indicating all intercepts and the location (you need not show the relevant testing) of any turning points.
 - (i) $y = \ln x^2$ and $\ln y = x^2$ [3]

(ii)
$$y = \sin^{-1} |x|$$
 and $|y| = \sin^{-1} x$ [3]

(iii)
$$y = \cos^2 x$$
 and $y = \cos^6 x$ [3]

	QUESTION 4	[15 marks]	(Start a new answer booklet)
--	-------------------	------------	------------------------------

- a) Find the equations of the two tangents to the curve $x^2 y^2 = 3$ which are parallel to the line y = 2x.
- b) If α , β and δ are the roots of the equation $x^3 7x^2 + 3x + 1 = 0$ evaluate
 - (i) $\alpha + \beta + \delta$
 - (ii) $\alpha\beta\delta$

c)

(iii) $\alpha^2 + \beta^2 + \delta^2$

(iv)
$$\frac{1}{\alpha^2 \beta^2} + \frac{1}{\beta^2 \delta^2} + \frac{1}{\delta^2 \alpha^2}$$

Hence form the equation whose roots are $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$, $\frac{1}{\delta^2}$

 $P(a\cos\theta, b\sin\theta)$ is any point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with foci S, S'.

The equation of the tangent at P is $bx \cos \theta + ay \sin \theta - ab = 0$.

The perpendicular to the tangent from $S\,$ meets it at $\,T$, and the perpendicular from S' meets the tangent at T' .

(i) Find the length of α) ST [1]

$$\beta) S'T' [1]$$

(ii) Prove that
$$ST \times S'T' = b^2$$
 [3]

[5]

The diagram shows a triangular pyramid ABCD. The base is the triangle BCD and AD is the perpendicular height. The perpendicular height is *h* units and base edge BC is *x* units. Given that $\hat{ABD} = 30^{\circ}$, $\hat{ACD} = 45^{\circ}$ and $\hat{BCD} = 30^{\circ}$,

show that
$$\frac{h}{x} = \frac{\sqrt{11} - \sqrt{3}}{4}$$

b) (i)
$$P\left(4p, \frac{4}{p}\right)$$
 and $Q\left(4q, \frac{4}{q}\right)$ are two different variable points on the hyperbola $xy = 16$. Find the equation of the tangent at *P*. [3]

(ii) Show that if
$$pq = 4$$
, the locus of the point of intersection of the tangents at P
and Q lies on a straight line. [4]

[5]

QUESTION 6

[15 marks]

(Start a new answer booklet)

a) Find all integers *n* such that
$$(\sqrt{3} + i)^n - (\sqrt{3} - i)^n = 0$$
 [3]

b) (i) Sketch
$$y = 1 + x^2$$
 [1]

(ii) On separate diagrams, and without the use of calculus, sketch

$$(\alpha) \quad y = \frac{1}{x^2 + 1} \tag{1}$$

(β)
$$y = \frac{1}{x^2 - 2x + 2}$$
 [2]

(iii) Express
$$y = \frac{x}{x^2 + 1}$$
 as a quadratic equation in x. [1]

(iv) Use the result of (iii) to find the range, turning points and asymptotes of the function $y = \frac{x}{x^2 + 1}$ [3]

(v) Hence sketch
$$y = \frac{x}{x^2 + 1}$$
 [1]

(vi) Also sketch on separate diagrams, clearly showing turning points and asymptotes,

$$(\alpha) \quad y = \left| \frac{x}{x^2 + 1} \right| \tag{1}$$

(β)
$$y^2 = \frac{x}{x^2 + 1}$$
 [2]

STANDARD INTEGRALS

 $\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x, \quad x > 0$ $\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$ $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \quad a \neq 0$ $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \quad a \neq 0$ $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$ $\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE : $\ln x = \log_e x$, x > 0