SAINT IGNATIUS' COLLEGE RIVERVIEW

Mathematics Extension 2

Mid Year Examination

2004

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours and 15 minutes
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

QUESTION 1

a) Find $\sqrt{9-12 i}$ expressing your answer in the form $a+b i$ where a, b are real.
b) Find the modulus and argument of the following complex numbers:
(i) $-4+4 \sqrt{3} i$
(ii) $(\sin \theta+i \cos \theta)(\cos \theta-i \sin \theta)$
c) Write down the set of inequalities, in terms of z, if the complex number z lies in the shaded region shown on the diagram.

d) The complex number $\frac{z-2}{z+i}$ is purely imaginary. Find the Cartesian equation of the locus of the complex number z, and draw the graph of the locus, noting any discontinuities on the graph.
a) Given that $P(x)=a x^{3}+b x^{2}-7 x+6$ evaluate a and b if $(x-2)$ and $(x-1)$ are both factors of $P(x)$.
b) Sketch the graph of $y=x\left(x^{2}-9\right)$ and hence solve the equation $\frac{x^{2}-9}{x}>0$
c) Give all solutions for $2 \sin x=\tan x$
d) (i) Sketch the graphs of $y=\sin x$ and $y=x$ on the same set of axes and show that $x=1.8$ is a good approximation for the x value of the point of intersection of the graphs in the domain $\frac{\pi}{4} \leq x \leq \frac{3 \pi}{4}$.
(ii) Use Newton's method with 1 application to find a better approximation to the X value of this point of intersection.
a) Consider the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
(i) Find
$\alpha)$ the eccentricity
β) the foci
γ) the equations of the directices
(ii) Sketch the ellipse.
(iii) Find the gradient of the normal at $\left(1, \frac{4 \sqrt{2}}{3}\right)$
b) Sketch each of the following pairs of curves on separate axes, clearly indicating all intercepts and the location (you need not show the relevant testing) of any turning points.
(i) $y=\ln x^{2} \quad$ and $\quad \ln y=x^{2}$
(ii) $\quad y=\sin ^{-1}|x|$ and $\quad|y|=\sin ^{-1} x$
(iii) $y=\cos ^{2} x$ and $y=\cos ^{6} x$

QUESTION 4

a) Find the equations of the two tangents to the curve $x^{2}-y^{2}=3$ which are parallel to the line $y=2 x$.
b) If α, β and δ are the roots of the equation $x^{3}-7 x^{2}+3 x+1=0$ evaluate
(i) $\alpha+\beta+\delta$
(ii) $\quad \alpha \beta \delta$
(iii) $\alpha^{2}+\beta^{2}+\delta^{2}$
(iv) $\frac{1}{\alpha^{2} \beta^{2}}+\frac{1}{\beta^{2} \delta^{2}}+\frac{1}{\delta^{2} \alpha^{2}}$

Hence form the equation whose roots are $\frac{1}{\alpha^{2}}, \frac{1}{\beta^{2}}, \frac{1}{\delta^{2}}$
c)

$P(a \cos \theta, b \sin \theta)$ is any point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with foci S, S^{\prime}.
The equation of the tangent at P is $b x \cos \theta+a y \sin \theta-a b=0$.

The perpendicular to the tangent from S meets it at T, and the perpendicular from S^{\prime} meets the tangent at T^{\prime}.
(i) Find the length of
a) $S T$
乃) $S^{\prime} T^{\prime}$

$$
\begin{equation*}
\text { B) } 31 \tag{1}
\end{equation*}
$$

(ii) Prove that $S T \times S^{\prime} T^{\prime}=b^{2}$

QUESTION 5

a)

The diagram shows a triangular pyramid $A B C D$. The base is the triangle $B C D$ and $A D$ is the perpendicular height. The perpendicular height is h units and base edge $B C$ is x units.
Given that $A \hat{B} D=30^{\circ}, A \hat{C} D=45^{\circ}$ and $B \hat{C} D=30^{\circ}$,
show that $\frac{h}{x}=\frac{\sqrt{11}-\sqrt{3}}{4}$
b)
(i) $\quad P\left(4 p, \frac{4}{p}\right)$ and $Q\left(4 q, \frac{4}{q}\right)$ are two different variable points on the hyperbola $x y=16$. Find the equation of the tangent at P.
(ii) Show that if $p q=4$, the locus of the point of intersection of the tangents at P and Q lies on a straight line.
(iii) Determine the domain and range of the locus.
a) Find all integers n such that $(\sqrt{3}+i)^{n}-(\sqrt{3}-i)^{n}=0$
b) (i) Sketch $y=1+x^{2}$
(ii) On separate diagrams, and without the use of calculus, sketch
(a) $y=\frac{1}{x^{2}+1}$
(ß) $y=\frac{1}{x^{2}-2 x+2}$
(iii) Express $y=\frac{x}{x^{2}+1}$ as a quadratic equation in x.
(iv) Use the result of (iii) to find the range, turning points and asymptotes of the function $y=\frac{x}{x^{2}+1}$
(v) Hence sketch $y=\frac{x}{x^{2}+1}$
(vi) Also sketch on separate diagrams, clearly showing turning points and asymptotes,
(a) $\quad y=\left|\frac{x}{x^{2}+1}\right|$
(阝) $y^{2}=\frac{x}{x^{2}+1}$

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

