The Scots College

Year 12 Mathematics Extension 2

Pre-Trial Assessment

April 2009

General Instructions

- All questions are of equal value
- Working time - 2 hours
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Standard Integrals Table is attached

TOTAL MARKS: 75

Weighting: 30 \%

- Start each question in a new booklet
(a) In the diagram below, the graph $f(x)$ is drawn.

On separate diagrams, and without the use of calculus, sketch the following graphs. Indicate clearly any asymptotes, any intercepts with the coordinate axes, and any other significant features.
(i) $\mathrm{y}=\frac{1}{f(x)}$

2
(ii) $\mathrm{y}=-\sqrt{f(x)}$
(iii) $\mathrm{y}=e^{f(x)}$
(iv) $\mathrm{y}=f(2-x)$
(v) $\mathrm{y}=f^{\prime}(x)$
(b) Given the function $f(x)=\sqrt{2-\sqrt{x}}$.
(i) What is the domain of this function
(ii) Show that $f(x)$ is a decreasing function and hence find its range
(iii) Draw a neat sketch of $f(x)=\sqrt{2-\sqrt{x}}$.
(a) Find $\int 7 x \sqrt{\left(4 x^{2}-3\right)} d x$
2
2
(b) Find $\sqrt{(}$
(c) Evaluate
(i)

$$
\int_{0}^{\frac{\pi}{3}} \tan x \cdot \sec ^{4} x d x
$$

Find $\int \frac{x+1}{\sqrt{(x-1)}} d x$
(c) Find the values of A and B such that

$$
\begin{aligned}
& \frac{e^{x}}{\left(e^{x}+2\right)\left(e^{x}+1\right)}=\frac{A}{\left(e^{x}+2\right)}+\frac{B}{\left(e^{x}+1\right)} \\
& \text { Hence find } \int \frac{e^{x}}{e^{2 x}+3 e^{x}+2} d x
\end{aligned}
$$

(d)

$$
I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x \quad n \geq 0
$$

(i) Show that $I_{n}=\frac{n-1}{n} I_{n-2}$
(ii)

(a) Find the equation of the circle which has the points $\mathrm{A}(3,-1)$ and $\mathrm{B}(9,3)$ which are at opposite ends of a diameter.
(b) State the foci, directrices and eccentricity of $4 x^{2}+25 y^{2}-100=0$

2
the difference of its distances from the foci, S and S^{\prime} is constant.
Find the value of this constant.
1
(d)
(a) Reduce the complex number $(2-i)(8+3 i) /(3+i)$ to the form $a+i b$, where a and b are real numbers.
(b) The complex number z is given by $\mathrm{z}=-$ Root $3+\mathrm{i}$.
(i) Write down the values of $\operatorname{Arg}(\mathrm{z})$ and $!\mathrm{z}$!

1
(ii) Hence or otherwise show that z (to the 7) $+64 \mathrm{z}=0$
(c) Sketch the following loci on separate Argand diagrams;
(i) $\quad \operatorname{Arg}(\mathrm{z}+1+\mathrm{i})=\mathrm{Pi} / 4$ 1
(ii) $\quad!\mathrm{z}-2!=!\mathrm{z}+\mathrm{i}$!
(d) Given that $\mathbf{z}=\mathbf{3}+\mathbf{4 i}$. Find \mathbf{w} so that \mathbf{O}, \mathbf{z} and \mathbf{w} form a right angled isosceles triangle, 3 (whose right angle is at \mathbf{z}) on the Argand diagram.
(e) Using any complex number \mathbf{z} and on separate Argand diagrams, illustrate the geometric properties of the following;
(i) $\quad z$ squared
(ii) $\mathbf{z x}(\mathbf{1}+\mathbf{i})$
(iii) $\mathbf{z}-\mathbf{z}$ (bar)
(f) Given z (to the 4) $=$ i. Find the four roots of unity
(a) Using Integration by parts, to show $\int_{1}^{e} \sin (\ln x) d x=\frac{e}{2}(\sin 1-\cos 1)+\frac{1}{2}$.
(b) Complex qu
(c) Sketch the following equation; $|y|=(x-1)(x-2)(x-3)$
(d) Conics qu

Standard Integrals

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}+C, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x+C, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}+C, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x+C, a \neq 0 \\
\int \sin a x d x & =\frac{1}{a} \tan a x+C, a \neq 0 \\
\int \sec a x+C, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x+C, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin { }^{-1} \frac{x}{a}+C, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{array}
$$

$$
\text { NOTE }: \ln x \equiv \log _{e} x, x>0
$$

111)

b) $\quad f(x)=\sqrt{2-\sqrt{x}}$

1) Domain $\sqrt{x} 2$

$$
0: 5 x<4
$$

11)

$$
\begin{aligned}
f(x) & =\left(2-x^{1 / 2}\right)^{1 / 2} \\
\therefore f^{\prime}(x) & =+1 / 2\left(2-x^{1 / 2}\right)^{1 / 2} \times-x^{-1 / 2} \\
& =-\frac{1}{4\left(2-x^{1 / 2}\right)^{1 / 2}} x^{k} \longleftarrow \text { Bostini } f=\text { Diman }
\end{aligned}
$$

$\therefore f(*)$ aluays - ve \therefore Alway docrean

$$
\therefore \quad f(0)=\sqrt{2} \quad f(4)=0
$$

Range $0 \leqslant y \leqslant \sqrt{2}$
1II)

a)

$$
\int 7 x \sqrt{4 x^{2}-3}
$$

by olservatir. $7 \times\left(4 x^{2}-3\right)^{1 / 2}$

$$
\frac{7}{12}\left(4 x^{2}-3\right)^{\frac{3}{2}}+C
$$

b) $\quad \int \frac{x+1}{\sqrt{x-1}} d$ by $\operatorname{sub} 0=x-1$ $\frac{d x}{d x}=1$

$$
\int \frac{u+2}{\sqrt{v}} d u
$$

$$
d u=d x
$$

$$
\begin{aligned}
& \int u^{1 / 2} d u+\int 2 u^{-2} d x \\
& =\frac{2}{3} u^{3 / 2}+4 u^{1 / 2}+C
\end{aligned}
$$

can tray un

$$
\begin{aligned}
& \frac{2}{3}(x-1)^{\frac{3}{2}}+4(x-1)^{\frac{3}{2}} \\
& (x-1)^{1 / 2}\left[\frac{2}{3}(x-1)+4\right] \\
& \frac{1(x-1)^{1 / 2}}{3}(2 x-10)+c
\end{aligned}
$$

C

$$
\begin{aligned}
& \int_{0}^{\frac{1}{3}} \tan x \sec ^{4} x d x \\
& \tan x\left(\tan ^{2} x+1\right) \sec ^{2} x \\
& \sec ^{2} x \tan ^{3} x+\sec ^{2} x \tan x \\
& {\left[1 / 4 \tan ^{4} x+1 / 2 \tan ^{2} x\right]_{0}^{\pi / 3}} \\
& \frac{1}{4}(\sqrt{3})^{4}+\frac{1}{2}(\sqrt{3})^{2} \\
& 9 / 4+\frac{3}{2} \quad=3 \frac{3}{4} \\
& \int_{0}^{\frac{\pi}{2}} \frac{d x}{\cos x+2} \\
& \int_{0}^{1} \frac{1}{\frac{1-t^{2}}{1+t^{2}}+2} \times \frac{2}{1+t^{2}} \\
& t=\tan \frac{x}{2} \\
& \frac{d t}{\partial x}=\sec ^{2} x / 2 \\
& \frac{d x}{d t}=\frac{2}{\sec ^{2} \frac{2}{2}} \\
& d x=\frac{2}{1+t^{2}} d t \\
& x=\frac{\pi}{2} \quad t=\tan \pi / 4 \\
& \int_{0}^{1} \frac{1}{\frac{1-t^{2}+2+2 t^{2}}{1+t^{2}}} \\
& x=0 \quad=1 \\
& \begin{aligned}
x=0 \quad t & =\tan 0 \\
& =0
\end{aligned} \\
& \int_{0}^{1} \frac{1+t^{2}}{3+t^{2}} \frac{2}{1+t^{2}} d t \\
& \frac{2}{3} \int_{0}^{1} \frac{1}{3+t^{2}} \Rightarrow \frac{2}{\sqrt{3}}\left[\tan ^{-1} \frac{t}{\sqrt{3}}\right]_{0}^{1} \\
& 2 / \sqrt{3}\left[\tan ^{-1} 1 / \sqrt{3}\right]-0 \quad \frac{\pi}{3 \sqrt{3}}
\end{aligned}
$$

d)

$$
\begin{array}{r}
e^{x}=A\left(e^{x}+1\right)+B\left(e^{x}+2\right) \\
e^{x}=A e^{x}+B e^{x}+A+2 B \\
A+B=1 \quad A+2 B=0 \\
A=1-B+1-B+2 B=0 \\
B=-1 \\
A=2
\end{array}
$$

$\operatorname{lot} e^{x}+2=0$

$$
\operatorname{lot} e^{x+1}=v
$$

$$
\int \frac{1}{V} \times \frac{d V}{V-1}
$$

$$
\begin{gathered}
\frac{1}{V(V-1)}=\frac{A}{V}+\frac{B}{V-1} \\
1=A(V-1)+B V \\
V=0 \quad A=-1 \\
-2 \quad V=1 \quad B=1 \\
\quad \frac{-1}{V}+\frac{1}{V-1}
\end{gathered}
$$

$$
\begin{aligned}
& \therefore \frac{d u}{d x}=e^{x} \\
& d x=\frac{d u}{e^{x}} \\
& \int \frac{2}{u} \times \frac{d u}{u-2} \\
& \frac{d v}{d x}=e^{x} \\
& \dot{L}=\frac{d V}{D} \\
& v=A=-1 \\
& U=2 \cdot B=1
\end{aligned}
$$

Ext $<$ treirlax cum - question $<$

$$
\begin{aligned}
& I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x \quad n \geq 0 \\
& \int_{0}^{\frac{\pi}{2}} \cos ^{2} x \cos ^{n-1} x d x \\
& d v=\cos x \quad U=\cos ^{n-1} x \\
& v=\sin x \quad d u=n-1 \cos ^{n-2} x-\cos n x \\
& T_{n}=\left[\sin _{0} \cos _{0}^{n-1} x\right]_{0}^{\frac{\pi}{2}}+\int_{0}^{\pi / 2}(n-1) \sin ^{2} x \cos ^{(n-2)} x d x \\
& =(n-1) \int_{0}^{2}\left(1-\cos ^{2} x\right) \cos ^{n-2} x d x \\
& =n-1 \int_{0}^{n^{1}} \cos ^{n-2} x d x-(n-1) \int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x \\
& =n-I_{(n-2)}-(n-1) I_{n} \\
& n I_{n}=n-1 I_{(n-2)} \\
& I_{n}=\frac{(n-1)}{n} T_{(n-2)} \\
& I_{4}=\frac{3}{4} I_{2} \\
& I_{2}=\frac{1}{2} I_{0} \\
& I_{0}=\int_{0}^{\pi} \cos ^{2} x \\
& \begin{array}{l}
=[x]_{0}^{\pi / 2} \\
=\pi
\end{array} \\
& I_{2}=\frac{\pi}{4} \\
& I_{4}=\frac{3 \pi}{16}
\end{aligned}
$$

a)

mid P ont $=$ conic $(6,1)$
$A M B^{2}=\sqrt{3^{2}+2^{2}}$
$M B^{2}=13=$ Roadie

$$
(x-6)^{2}+(y-1)^{2}=13
$$

b)

$$
\frac{x^{2}}{5^{2}}+\frac{y^{2}}{2^{2}}=1 \quad[\text { Ellipse }]
$$

\Leftrightarrow

$$
b^{2}=a^{2}\left(1-e^{2}\right)
$$

$$
\begin{aligned}
& \begin{cases}\text { ore } & \text { Fri }[\pm \sqrt{21}, 0] \\
& \operatorname{Drod} \cdot\left[x= \pm \frac{25}{\sqrt{21}}\right] \\
& P S^{\prime}=e \text { PM }^{\prime}\end{cases} \\
& P S=e P M \\
& =e\left[P m^{\prime}+2 \%\right] \\
& \left|P S-P S^{\prime}\right| \\
& =e\left[P m^{\prime}-P m^{\prime}+2 c\right. \\
& -2 a \text {. }
\end{aligned}
$$

d) 1

$$
\begin{array}{ll}
y=\frac{c^{2}}{x} & y-\frac{c}{p}=p^{2}(x-c p) \\
\frac{d y}{x}=-\frac{c^{2}}{x^{2}} & y p-c=p^{3}(x-c p) \\
\text { at } p=\frac{-c^{2}}{c^{2} p^{2}} & \\
m_{\text {tima }}=-\frac{1}{p^{2}} &
\end{array}
$$

$m_{\text {acomal }}=P^{2}$
ii) Forthos is betrue

$$
\begin{aligned}
& x y=c^{2}-D \\
& p y-c=p^{3}(x-c p)
\end{aligned}
$$

Rearrange (D)

$$
\begin{aligned}
& y=\frac{c^{2}}{x} \\
& p y-c=\frac{p c^{2}}{x}-c \\
& \frac{p c^{2}}{x}-c=p^{3}(x-c P) \\
& \frac{c^{2}}{P^{2}}-\frac{c x}{P^{3}}=x^{2}-c p x \\
& x^{2}+\frac{c}{P^{3}} x-c p x-\frac{c^{2}}{P^{2}}=0 \\
& x^{2}-c\left[P-\frac{1}{P^{3}}\right] x-c \frac{c^{2}}{P^{2}}=0
\end{aligned}
$$

\therefore Pand Y statify the equat

Rols of Puadratic are X_{Q}, X_{P}
\therefore Producto a Rooh $=\frac{C^{2}}{P^{2}}$

$$
\begin{aligned}
& x_{p}=C p \\
& \dot{x_{q}}=C / p^{3}
\end{aligned}
$$

Sub in $x y=c^{2}$

$$
\begin{aligned}
& y_{p}=\frac{c}{c / p^{3}} \\
& y_{q}=c p^{3} \\
& x\left(-c p^{3}, c p^{3}\right)
\end{aligned}
$$

$x y=C^{2}$ is odo functiz

$$
\begin{aligned}
m_{p R} & =\left[\frac{R\left(-c p^{-} c / p\right)}{\frac{2}{p c p}}\right] \\
& =\frac{1}{p^{2}} \\
& m_{p R}\left[\frac{-c p^{3}-c / p}{-c / p^{3}-c p}\right] \\
1 / p^{2}+-p^{2} & \left.\frac{c}{c}\left[\frac{p^{4}-1}{p}\right] \frac{p^{4}-p^{4}}{p^{3}}\right] \\
& =-1
\end{aligned}
$$

a)

$$
\begin{aligned}
& \frac{5+i}{3-2 i} \times \begin{array}{l}
3+2 i \\
3+2 i \\
\frac{15+10 i+3 i-2}{9+4} \\
\frac{13}{13}+\frac{13}{13} i \\
\frac{1+i}{\sqrt{2}} \operatorname{cis} \pi / 4
\end{array}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \omega^{2}=5-12 i \\
& (a+b i)^{2}=5-12 i \\
& a^{2}-b^{2}+2 a b i=5-12 i \\
& a^{2}-b^{2}=5 \quad 2 a b=-12 \\
& 3 \frac{6^{*}}{b^{2}}-b^{2}=5 \\
& a=-6 \\
& b^{4}+5 b^{2}-36=0 \\
& {\left[b^{2}+9\right]\left[b^{2}-4\right]=0 \text {. }} \\
& \text { Ryect } b= \pm 2 \\
& a=\mp 3
\end{aligned}
$$

$-3+2 i$ 3-2i

$$
z \cdot \bar{z}+\omega^{2}
$$

$$
\begin{gathered}
\omega^{2}=9-16+24 i \\
z \bar{z}=(-2+24)(-2+i) \\
4+1=5 \\
-2+24 i
\end{gathered}
$$

d)

$$
P_{0}=\sqrt{3} \operatorname{Cls} \frac{\pi}{3}
$$

e)

$$
\begin{aligned}
& z^{6}=-1 \\
& z^{6}=1 \operatorname{cis}-\frac{\pi}{2} . \\
& \therefore z_{1}=1 \mathrm{Cls}^{-\pi / 12} \text {. } \\
& \frac{2 \pi}{6}=\frac{\pi}{3} \\
& \left.z_{2}=1 \operatorname{cis}\left(\frac{-\pi}{12}+\frac{\pi}{3}\right)=\operatorname{cis}\left(\frac{3 \pi}{12}\right)=\cos \frac{\left(\frac{3 \pi}{12}\right.}{\frac{11}{2}}\right) \\
& z_{3}=1 \mathrm{cis}\left(\frac{7 \pi}{12}\right) \\
& z_{4}=\left\lvert\, \cos \left(\frac{1111}{12}\right)\right. \\
& z_{s}=1 \cos \left(\frac{15 \pi}{12}\right)=1 \operatorname{cis}\left(-\frac{9 \pi}{12}\right)=\cos \left(\frac{-3 \pi}{4}\right) \\
& z_{31} z_{6}=1 \operatorname{Cls}\left(-\frac{5 \pi}{12}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) } \\
& \int_{1}^{e} \sin (\ln x) d x \\
& \begin{array}{l}
d v=1 \quad v=\sin (\ln x) \\
v=x \quad d u=1 / \cos (\ln x
\end{array} \\
& v=x \quad d u=1 / x \cos (\ln x) \\
& I=[x \sin (\ln x)]_{1}^{e}+\int_{-d}^{e}-\cos (\ln x) d x \\
& \begin{array}{l}
d y v=1 \quad u=-\cos (\ln x) \\
\frac{d v}{V=x}=1 \sin (\ln x)
\end{array} \\
& V=x \quad d 0=\sin (\ln x) \\
& I=[x \sin (\ln x)]_{1}^{e}+[-x \cos (\ln x)]_{1}^{e}-I . \\
& 2 I=e \sin 1-0+-\cos 1+1 \\
& 2 I=e[\sin 1-\cos 1]+1 \\
& I=e / 2[\sin 1-\cos 1]+1 / 2
\end{aligned}
$$

b)

c)

$$
\begin{aligned}
& 4 x^{2}+9 y^{2}=36 \\
& 8 x+18 y \frac{d y}{\partial x}=3 \\
& \frac{d y}{\partial x}=\frac{-\frac{8 x}{18 y}}{}=\frac{-24 \cos \alpha}{36 \sin \alpha} \\
& \text { at } P_{\text {TAN }}= \\
& P_{\text {NTINAL }}=+\frac{3 \sin \alpha}{2 \cos \alpha}
\end{aligned}
$$

Simulay $Q_{N \text { nonns: }}=\frac{3 \sin \beta}{2 \cos \beta}$
we kno $\frac{3 \sin \alpha}{2 \cos \alpha} \cdot \frac{3 \sin \beta}{2 \cos \beta}=-1$
Q $\frac{9 \tan \alpha}{4} \tan \beta=-1$

$$
\therefore 4 \cot \alpha \cot \beta=-9
$$

$$
\begin{aligned}
& \text { Zae }=10 \quad a=2 \\
& b^{2}=a^{2}\left(E^{2}-1\right) \\
& b^{2}=4\left(\frac{25}{4}-1\right) \\
& \frac{b^{2}}{4}=\frac{21}{4} \text {. } \\
& \begin{array}{l}
\text { Yand shoupe } \\
\text { rehobst } \\
\text { show shigt. }
\end{array} \\
& \frac{21}{4}=\frac{y^{2}}{21} \\
& \frac{21^{2}}{4}=y^{2} \\
& \pm \frac{21}{2} \\
& \therefore(\text { atus }=42 / 2 \\
& =21.1
\end{aligned}
$$

