The Scots College

Year 12 Mathematics Extension 2

Pre-Trial

April 2010

General Instructions

- Working time - 2 hours
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Standard Integrals Table attached

Name: \qquad

TOTAL MARKS: 80

There are 4 Questions, each worth 20 Marks.

Weighting: 30%

Question 1: (Marks 20)

a)

Let $z=\cos \theta+i \sin \theta$, show that
i) $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$,
ii) $\quad z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta$
b)

For each of the following, find and sketch the locus of the point representing the complex number Z :
i) $\quad \operatorname{Re}(i z)=-1$
ii) $\quad|z+1+i|=2$
iii) $\left|\frac{z-1}{z+1}\right| \leq 2$
iv) $\quad \operatorname{Arg}(z-i)=\frac{\pi}{4}$

Continue.
 \qquad

Question 1 continued..........

c)
i) $\quad P$ is a point in an Argand diagram representing a non-zero complex number z such that $\arg \left(\frac{z}{1-i}\right)=\frac{\pi}{2}$
a) Find $\arg (1-i)$ and $\arg z$. 2
b) Hence or otherwise sketch the locus of P in an Argand diagram.
ii) $\quad R$ is a point on the Argand diagram representing a non-zero complex number w, such that

$$
w^{3}=(\bar{w})^{3} \text { and } \frac{\pi}{2}<\arg w<\pi
$$

Find $\arg w$
(Hint: you may let $w=r(\cos \theta+i \sin \theta)$
i) It is given that in part (i), $|z|=2 \sqrt{2}$ and in part (ii), $|w|=2$, furthermore, $O P Q R$ is a parallelogram in an Argand diagram, where O represents the complex number 0 .

Find the complex number represented by the point Q, giving your answer in standard form.

Continue.

Question 2: (Marks 20)

a)

The graph of $y=x e^{-x}$ is shown below:

On separate axes, sketch the following curves. Indicate clearly any turning points, asymptotes and intercepts with the coordinate axes.
i) $\quad y=x^{2} e^{-2 x}$
ii) $\quad y=\log _{e}\left(x e^{-x}\right)$
iii) $y=\frac{1}{x^{2} e^{-2 x}}$ 2
iv) $y=e^{x e^{-x}}$
b)

Draw a sketch of the following, showing important features :
i) $\quad f(x)=\frac{4}{x}-x$
ii) $\quad y=\sqrt{f(x)}$

Question 2 continued.......

c)

The diagram below shows the graph of the continuous function $y=f(x)$. Critical points occur at $x=-2,-1,0,1,2$
Draw separate sketches for each of the following:

ii) $y=\frac{1}{f(x)}$
i) $\quad|y|=|f(x)|$
iii) $y=\sqrt{f(x)}$
iv) $y=x f(x)$

Question 3: (Marks 20)

a)

The hyperbola H has equation $x y=16$
i) Sketch this hyperbola and indicate on your diagram the positions and co-ordinates of all points at which the curve intersects the axes of symmetry.
ii) $\quad P\left(4 p, \frac{4}{p}\right)$ and $Q\left(4 q, \frac{4}{q}\right)$ are two distinct arbitrary points on $H(p>0, q>0)$. Find the equation of the chord $P Q$.
iii) Prove that the equation of the tangent at P is $x+p^{2} y=8 p$.
iv) \quad The tangents at P and Q intersect at T. Find the coordinates of T.

Question 3 continued........

b)

In the diagram above $P(a \cos \theta, b \sin \theta)$ is a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where P lies in the first quadrant.
A straight line through the origin parallel to the tangent at P meets the ellipse at the point Q, where P and Q both lie on the same side of the y -axis.
i) Prove that the equation of the line $O Q$ is

$$
x b \cos \theta+y a \sin \theta=0 .
$$

ii) Find the coordinates of the point Q given that Q lies in the fourth quadrant.
iii) Prove that the area of the $\triangle O P Q$ is independent of the position of P.
c)
i) Express $\frac{x^{2}-2 x-3}{(x+2)\left(x^{2}+1\right)}$ as $\frac{A}{x+2}+\frac{B x+C}{x^{2}+1}$
ii) Hence evaluate $\int_{0}^{1} \frac{x^{2}-2 x-3}{(x+2)\left(x^{2}+1\right)} d x$.
\qquad

Question 4: (Marks 20)

a)

$P(x)$ is a cubic polynomial with real coefficients. One zero of $P(x)$ is $1+2 i$, the constant term is -15 and $P(2)=5$.

Write $P(x)$ with real coefficients.
b)

The equation $x^{3}-4 x+5=0$ has roots α, β and γ.
i) Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
ii) Find the equation whose roots are $\alpha+\beta, \beta+\gamma, \gamma+\alpha$.
c)

Factorise $x^{4}-2 x^{2}-15$ over the Complex number field.
d)

Solve the equation $x^{4}-5 x^{3}+4 x^{2}+3 x+9$ over complex field, given it has a root of multiplicity 2 .
e)

If the roots of $x^{3}-p x+q=0$ are α, β and γ, find in terms of p and q a cubic equation with roots $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$.

f)

i) By considering the expansion of $(\cos \theta+i \sin \theta)^{5}$ and by using De Moivre's theorem, show that

$$
\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta
$$

ii) Hence find all the four roots of the equation $16 x^{4}-20 x^{2}+5=0$.

END OF EXAM

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
&
\end{array}
$$

NOTE: $\ln x=\log _{e} x, x>0$

(ii)

$$
\begin{gathered}
\omega=r(\cos \theta+i \sin \theta) \quad \bar{\omega}=r(\cos \theta-i \sin \theta) \\
r^{3}(\cos 3 \theta+i \sin 3 \theta)=r^{3}(\cos 3 \theta-i \sin 3 \theta) \\
2 i \sin 3 \theta=0 \\
3 \theta=0, \pi, 2 \pi, 3 \pi \ldots \\
\theta=0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi \cdots \\
\end{gathered}
$$

$$
\begin{aligned}
\theta & =0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi \\
\arg (\omega) & =\frac{2 \pi}{3} \quad\left(\text { since } \frac{\pi}{2}<\theta<\pi\right)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
P(I: & 2 \sqrt{2}\left(\cos 45^{\circ}+i \sin \cdot 45^{\circ}\right) \\
= & 2 \sqrt{2}\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right) \\
= & 2+2 i \\
R: & 2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) \\
= & 2\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \\
= & -1+\sqrt{3} i^{\circ}
\end{aligned}
$$

3 (b)
(i) $O Q: x b \cos \theta+y a \sin \theta=0$

$$
y=-\frac{x b \sin \theta}{a \operatorname{sen} \theta}
$$

(ii)

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \operatorname{sut}: y=-\frac{x b \sin \theta}{a \sin \theta} \\
& \frac{x^{2}}{a^{2}}+\frac{x^{2} b^{2} \cos ^{2} \theta}{a^{2} \sin ^{2} \theta \cdot b^{2}}=1 \\
& x^{2}\left(x+\cos ^{2} \theta\right)=a^{2} \sin ^{2} \theta \\
& x^{2} \sin ^{2} \theta+x^{2} \cos ^{2} \theta=a^{2} \sin ^{2} \theta \\
& \therefore \quad x^{2}=a^{2} \sin ^{2} \theta \\
& \left.\therefore \quad x i+a \sin \theta \quad(\because x>0)^{2} \mathrm{~m}^{\prime} 4^{\text {th }} \text { quadhart }\right) \\
& y=-\frac{a b \sin \theta \cos \theta}{a \sin \theta} \\
& =-b \cos \theta \\
& \therefore Q(a \sin \theta,-b \cos \theta)
\end{aligned}
$$

(iii) Perpendicular distance from $P(a \cos \theta, b \sin \theta)$ to

$$
\begin{aligned}
& \operatorname{OQ} \mid x b \cos \theta+y a \sin \theta=0)=\left|\frac{a b \cos ^{2} \theta+a b \sin ^{2} \theta}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\right|=\frac{a b}{\sqrt{b^{2} a^{2} \theta+a^{2} \sin ^{2} \theta}} \\
& d \text {. } r \text { ea } A O P Q=\frac{1}{2} 0
\end{aligned}
$$

Distance $O Q=\sqrt{a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta} \quad \therefore$ Area $A O P Q=\frac{1}{2} O Q \times d$ Whech is indupendent $\frac{1}{2} a b$
$Q 4$
(a)

$$
\begin{align*}
& P(x)=a x^{3}+b x^{2}+c x+d \\
& d=-15 \quad \therefore P(x)=a x^{3}+b x^{2}+c x-15 \\
& P(2)=8 a+4 b+2 c-15=5 \\
& \text { or } 8 a+4 b+2 c-20=0 \\
& \text { or } 4 a+2 b+c-10=0 \tag{D}
\end{align*}
$$

ore zers is $1+21$. $\quad(\cdots(2)$ has real
\therefore another zero is $1-2 i^{\circ}(\because P(x)$ coefficients $)$

$$
\begin{align*}
& \alpha \beta \gamma=-(-15) / a \\
&=15 / a \\
&(1+2 i)(1-2 i) \gamma=\frac{15}{a} \\
& 5 r=\frac{15}{a} \\
& \therefore r=3 / a \tag{2}
\end{align*}
$$

$$
\alpha+\beta+\gamma
$$

$$
=1+2 i+1-2 i+\frac{3}{a}=-\frac{b}{a}
$$

$$
t\left|\frac{b}{a}\right| 15 \quad \begin{array}{r}
2 a+3=-b \\
2 a+b+3=0
\end{array}
$$

$$
2 a+b+3=0
$$

$$
\begin{align*}
& 4 a+2 b+c=10 \\
& 2 a+b=-3 \tag{2}
\end{align*}
$$

$$
\begin{equation*}
(1+2 i)(1-2 i)+(1+2 i) \frac{3}{a}+\frac{3}{a}(1+2 i)=c / a \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
5 a-c=-6 \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& 1+4+\frac{3}{a}-\frac{6 c}{a}+\frac{3}{a}+\frac{6 c}{a}=c / a \\
& 5 a+6=c \\
& 5 a
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{a} \\
& 5 a+b=c \\
& 5 a
\end{aligned}
$$

$$
\begin{aligned}
& B=c \\
& 5 a-c+6=0 \\
& \text { (3) }
\end{aligned}
$$

(1) + (3)
$9 a+2 b=$
(4)

$$
\begin{aligned}
& -2 \times 2 \\
& 5 a=10 \quad \therefore a=2 \\
& \therefore b=-3-4=-7 \\
& c=-6-10=-16 .
\end{aligned}
$$

$$
\alpha \beta+\beta \gamma+\gamma \alpha
$$

$$
\begin{equation*}
\therefore P(x)=2 x^{3}-7 x^{2}-16 x-15=0 \tag{4}
\end{equation*}
$$

4(b) (1) $x^{3}-4 x+5=0 \quad \alpha+\beta+\gamma=0, \alpha \beta+\beta \gamma+\gamma \alpha=-4$

$$
\begin{align*}
& P(\alpha)=\alpha^{3}-46 \alpha+5=0 \tag{1}\\
& P(\beta)=\beta^{2}-4 \beta+5=0 \tag{2}\\
& p(\gamma)=\gamma^{3}-4(2)+5=0 \tag{3}
\end{align*}
$$

$\alpha \beta \gamma=-5$
(1) + (2) + (3)

$$
\begin{aligned}
& \alpha^{3}+\beta^{3}+\gamma^{3}-4(\alpha+\beta+\gamma)+15=0 \\
& 3+\gamma^{3}=-15
\end{aligned}
$$

$$
\alpha^{3}+\beta^{3}+\gamma^{3}=-15
$$

(ii)

$$
\begin{aligned}
\alpha+\beta & =(\alpha+\beta+\gamma)-\gamma \\
& =0-\gamma=-\gamma \\
\beta+\gamma & =-\alpha \\
\gamma+\alpha & =-\beta
\end{aligned}
$$ $-\alpha,-\beta,-\gamma$

ler $\ell y=-x$

$$
\begin{gathered}
P(x)=x^{3}-4 x+5=0 \\
P(-y)=(-y)^{3}-4(-y)+5=0 \\
-y^{3}+4 y+5=0
\end{gathered}
$$

ar $\quad x^{3}-4 y-5=0$
$=$ (polt of 2005$)^{2}$
$=[-(-5)]^{2}$

$$
\begin{aligned}
& =p \text { por of roos } \\
& =[(-5)]^{2}=25
\end{aligned}
$$

(c) Factonse $x^{4}-2 x^{2}-15$

$$
\text { (i) }\left(x^{2}-5\right)\left(x^{2}+3\right)=
$$

(ii) $(x+\sqrt{5})(x-\sqrt{5})(x+\sqrt{3} i)(x-\sqrt{3} i)$

