

The Scots College

Year 12 Mathematics Extension 2

Pre-Trial

25th March 2011

Name:_____

General Instructions

- Working time 2 hours
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Standard Integrals Table attached

TOTAL MARKS:

THERE ARE 4 QUESTIONS.

WEIGHTING: 30 %

Question 1: (Marks 20)

a)

Using De Moivre's Theorem, or otherwise, find the square root of $\sqrt{3} + i$. 2

b)

Sketch on separate Argand diagrams, the locus of z defined by:-

i)
$$|z - 2 - 3i| = 4$$
 2

ii)
$$Arg\left(\frac{z-i}{z+1}\right) = 0$$
 2

iii)
$$z\bar{z} = z + \bar{z}$$
 4

iv)
$$z + z^{-1}$$
 given that $z + z^{-1}$ is real. 4

3

3

c)

Given the equation $(5 + 3i)z^2 - (1 - 4i)z + 8 - 2i = 0$ Find:-

i) The product of the roots.

iii) The argument of your answer in part i)

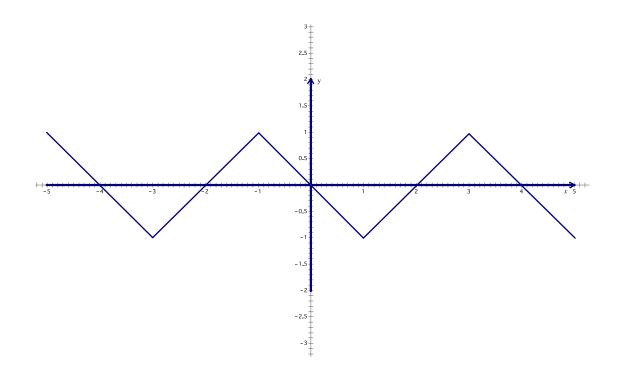
d)

If z is a point on the unit circle with $\arg(z) = \alpha$

- i) Prove that $|z^2 z| = |z 1|$
- ii) Find the arguments of z^2 and $z^2 z$ in terms of α .

Question 2: (23 Marks) Start a New Booklet a)

The graph of y = f(x) for $-5 \le x \le 5$ is shown below.



On separate axes, sketch the following curves. Indicate clearly any turning points, asymptotes and intercepts with the coordinate axes.

i)
$$y = f(|x|)$$

ii) $y = \frac{1}{f(x)}$
iii) $y = \sqrt{f(x)}$
2

2

$$iv) \quad y = x f(x)$$

b)

i) Sketch the graph of $y = \frac{9x - 27}{x^2 - x - 2}$, clearly indicating any asymptotes and any points 4 where the graph intercepts the axes.

ii) Find the equation of the normal to the curve $x^3 + 6xy + y^3 = 1$ at (1, 0) 3

c)

- i) Show that the function $f(x) = \ln(\ln x)$ is an increasing function for all values of x in its domain.
- ii) On separate diagrams, sketch the curves

$$\alpha) \quad y = f(x) \tag{2}$$

2

2

2

2

6

$$\beta) \quad y = \ln \left(\left| \ln x \right| \right) \tag{2}$$

$$y = |\ln|\ln x||$$

Question 3: (20 Marks) Start a New Booklet a)

Consider the ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$

i) Find the coordinates of its foci S and S^{I} .

ii) Find the equations of its directrices.

b)

i) Find the equation of the tangent to the ellipse $4x^2 + 9y^2 = 36$ at the point $\left(1, \frac{4\sqrt{2}}{3}\right)$.

ii) Show that this tangent passes through the point $\left(6, \frac{1}{\sqrt{2}}\right)$.

c)

i) If y = mx + c is a tangent to the Hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ then show that $c^2 = a^2 m^2 - b^2$.

ii) The point *P* ($a \cos \theta$, $b \sin \theta$) lies on the ellipse $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Prove that *PS* + *PS'* = 2*a* where, *S* and *S'* are the two foci of the ellipse. 3

d)

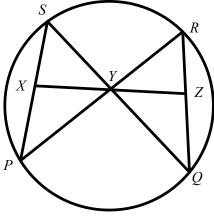
Find the equation of that diameter which bisects the chord 7x + y - 20 = 0 of the hyperbola $\frac{x^2}{3} - \frac{y^2}{7} = 1$

Question 4: (15 Marks)

a)

PQRS is a cyclic quadrilateral. The diagonals *PR* and *QS* intersect at right angles at *Y*. *X* is the midpoint of *PS*. *XY* produced meets *QR* at *Z*.

- i) Copy the diagram onto your answer scripts. Show that XY = SX.
- ii) Hence show that XZ perpendicular to QR.



b)

- i) The equation $2x^3 x^2 6x + 3$ has roots α , β and γ . Evaluate $\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2$ 2
- ii) The roots of the equation $x^3 + 3x^2 + 7x + q = 0$ are in arithmetic progression. 2 Find the value of the constant q.

c)

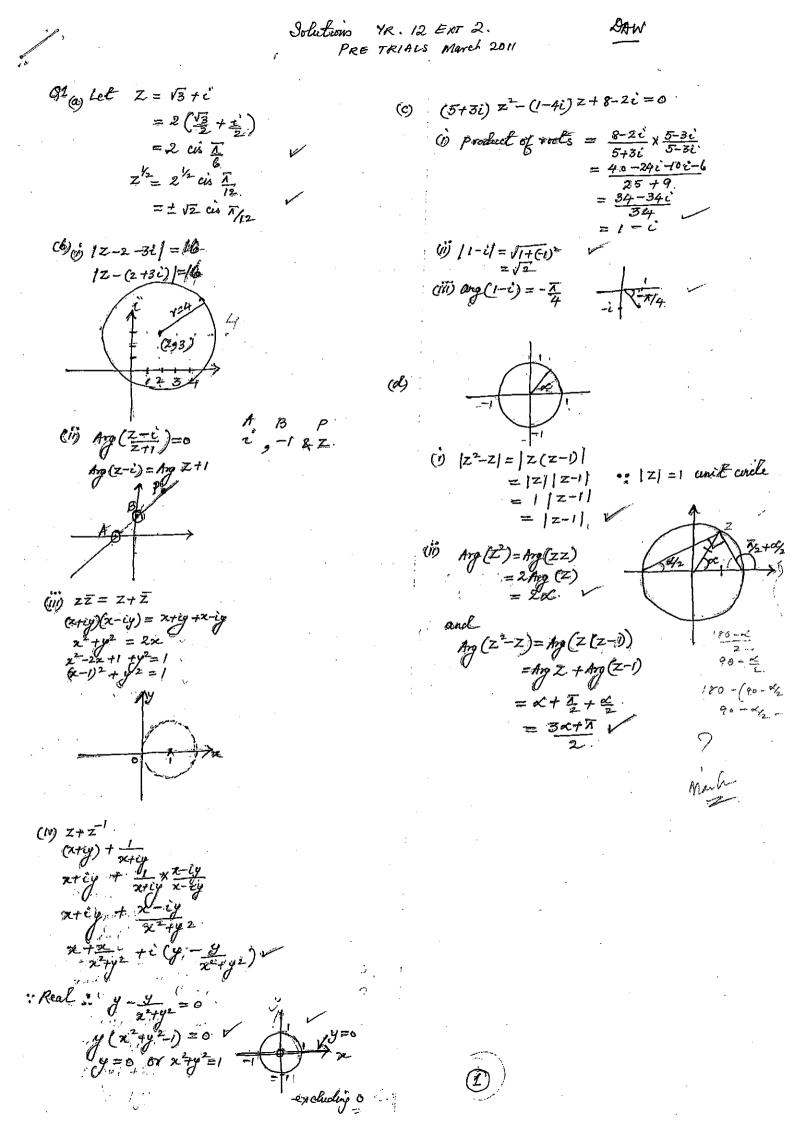
Prove by mathematical induction $2^{2^n} \ge 5^{2n}$ for $n \ge 5$.

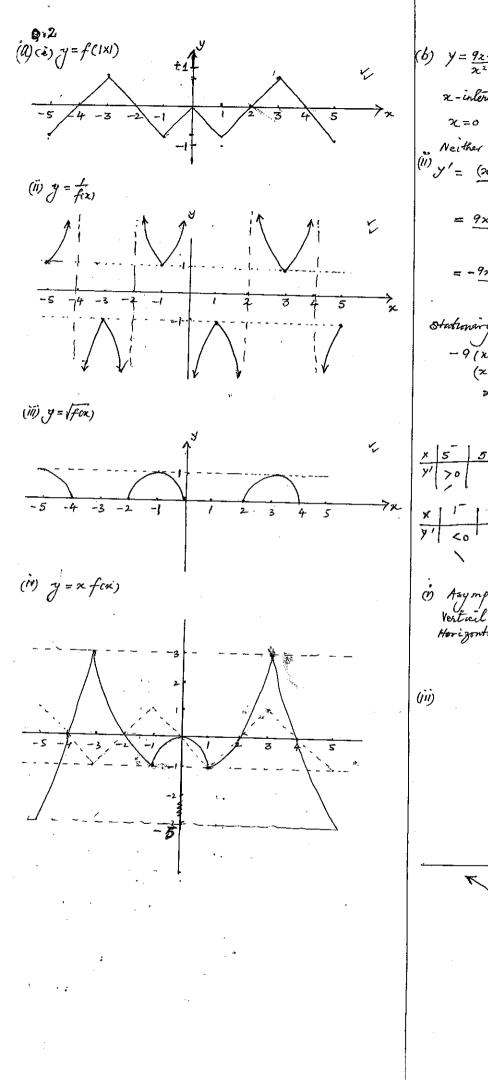
END OF EXAM

Standard Integrals

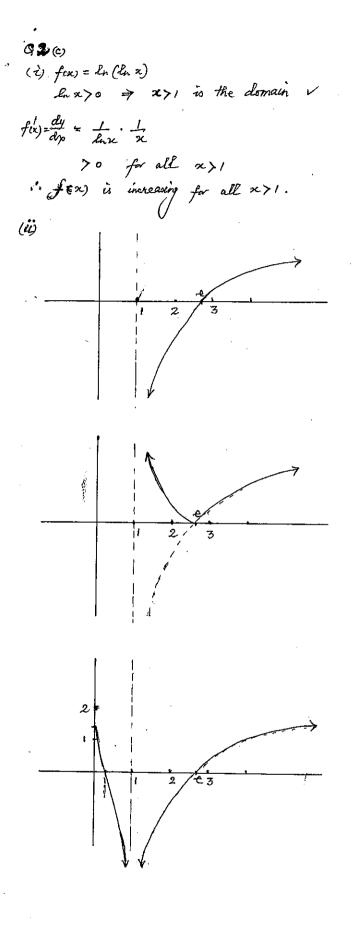
$\int x^n dx$	$=\frac{1}{n+1}x^{n+1}, \ n \neq -1; x \neq 0, \text{if } n < 0$
$\int \frac{1}{x} dx$	$= \ln x, x > 0$
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}, \ a\neq 0$
$\int \cos ax dx$	$=\frac{1}{a}\sin ax, \ a\neq 0$
$\int \sin ax dx$	$= -\frac{1}{a}\cos ax, a \neq 0$
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax, \ a\neq 0$
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, \ a\neq 0$
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, \ a\neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a > 0, -a < x < a$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$=\ln(x+\sqrt{x^2-a^2}), x > a > 0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$=\ln\left(x+\sqrt{x^2+a^2}\right)$

NOTE : $\ln x = \log_e x, x > 0$





(b)
$$y = \frac{q_{1}z - 2r}{x^{2} - x - 2} = \frac{q(x - 3)}{(x - 2(x + 1))}$$
 S: all rul x
 $x \neq 2, -1$
 $x - inline ft x = 3$
 $x = 0, y = \frac{13}{2}$
Neither odd rur even
(ii) $y' = \frac{(x^{2} - x - 2)(9) - (9x - 27)(2x - 1)}{(x^{2} - x - 2)^{2}}$
 $= \frac{9x^{2} - 9x - 18 - 18x^{2} + 54x + 9x - 27}{(x^{2} - x - 2)^{2}}$
 $= -\frac{9x^{2} + 54x - 45}{(x^{2} - x - 2)^{2}} = -\frac{9((x - 5))(x - 1)}{\Gamma(x - 1)(x + 1)]^{2}}$
Other many ft . $y' = 0$
 $-9(x^{2} - 6x + 5) = 0$
 $(x - 5)(2x - 1) = 0$
 $x = 5$ or 1 $x = 5$, $y = \frac{9(2)}{(7)(2)} = 9$
 $\frac{x}{x - 5} + \frac{5}{1} = 0$
 $(x - 5)(2x - 1) = 0$
 $x = 1$, $y = \frac{q(-2)}{(-7)(2)} = 9$
 $\frac{x}{y} + \frac{5}{10} + \frac{5}{20} + \frac{1}{10} +$



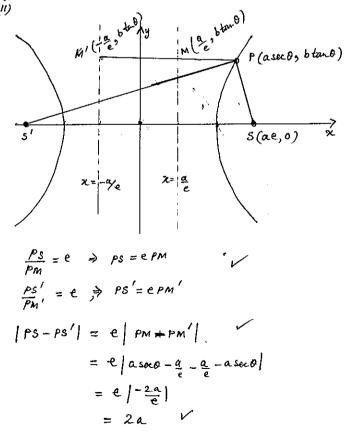
 $\frac{\pi^2}{9} + \frac{y^2}{16} = 1$ ФЗ(a) (i) a=3, 6=4 $e = \sqrt{(1 - \frac{9}{16})} = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{\frac{9}{4}}$ Foci $(0, \pm be) \Rightarrow (0, \pm \sqrt{7})$ V $y = \pm \frac{b}{e} \Rightarrow y = \pm \frac{4}{\sqrt{7}/4}$ (Ň) $-y = \pm \frac{16\sqrt{7}}{7}$ V (b). $4x^{2} + i$ (r) $\frac{x^{2}}{9} + \frac{y^{2}}{4} = 1$ $8x + 18y \frac{dy}{dy} = -\frac{4x}{9y}$ $4y = -\frac{4x}{9}$ at $\left(1, \frac{4\sqrt{2}}{3}\right)$ $\frac{dy}{dy} = \frac{-4 \times 1}{9 \times 4\sqrt{2}} \times 3$ -<u>/</u> 3√2 ~~ Equation of tangent is $y' - \frac{4\sqrt{2}}{3} = -\frac{1}{3\sqrt{2}}(x-1)$ $3\sqrt{2}y - 4\sqrt{2}x\sqrt{3}\sqrt{2} = -x+1$ $3\sqrt{2}y + x - 9 = 0$ \checkmark (\vec{n}) $3(\pm 6, 0)$ asymptotics $3y = \pm 4\pi$. $\Rightarrow y = \pm \frac{4}{3}\pi$. ae=6 $, \frac{b}{a} = \frac{4}{3}$ $b=\frac{4a}{3}$ $a^{2}+b^{2}=a^{2}e^{2}$ $+ \frac{16a^2}{9} = 36$ $qa^2 + 16a^2 = 9x36$ $25 a^{2} = 9 \times 36$ $a^{2} = \frac{9 \times 36}{25} = \frac{324}{25}$ $\therefore \ 6^2 = \frac{16}{9} \times \frac{924}{25}.$ Equation is $\frac{\chi^2}{\frac{324}{25}} = \frac{y^2}{\frac{576}{25}}$ 406 x 225 y = 5184 V

(a)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $y = mx + c$
(c) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $y = mx + c$
 $(c) (x) = bx^2 + a^2(m^2x^2 + 2mcx + c^2) = a^2b^2$
 $(b^2 + a^2m^2)x^2 + 2a^2cmx + a^2(c^2 - b^2) = 0$
 $A = 0$
 $\Rightarrow 4a^4c^2m^2 - 4a^2(c^2 - b^2)(b^2 + a^2m^2) = 0$
 $\Rightarrow a^4c^2m^2 - a^2(c^2b^2 - b^4 + a^2m^2 - a^2b^2m^2) = 0$
 $\Rightarrow a^4c^4m^2 + a^2b^4 + a^4b^2m^2 - a^2b^2c^2 - a^4c^4m^2 = 0$
 $\Rightarrow a^2b^2 [b^2 + a^2m^2 - c^2] = 0$
 $\Rightarrow c^2 = a^2m^2 + b^2$

$$\begin{array}{c} (\textcircled{A}) & \frac{x}{16}^{2} + \frac{y}{9}^{2} = 1 \\ & (3,4) \\ \\ & Y = m \times + c \\ & 4 = 3m + c \\ & c^{2} = 16m^{2} + 9 \\ & (4-3m)^{2} = 16m^{2} + 16m^{2} + 16m^{2} \\$$

(ii)

-



Q.3(d)
(i)
$$xy=c^{2}$$

 $y=\frac{c^{2}}{x^{2}}=\frac{-c^{2}}{c^{2}q^{2}}$
 $=-\frac{1}{q^{2}}a t Q(cq, \frac{d}{q}) \times$
Normal at $Q(cq, \frac{d}{q})$ Kas slipe q^{2}
Equivien at Q
 $y-\frac{c}{q}=q^{2}(x-cq)$
12. $qy=c=q^{3}(x-cq)$
(ii) The normal at Q inbruchs the
hypoched at $xy=c^{2}$ at P
From (i) $y=q^{2}x-cq^{3}+\frac{c}{q}$
at $Point P$
 $x(q^{2}x-cq^{3}+\frac{c}{q})x-c^{2}=0$
 $x^{2}-\frac{c}{q^{2}}(cq^{3}-\frac{c}{q})x-c^{2}=0$
 $x^{2}-\frac{c}{q^{2}}(cq^{3}-\frac{c}{q})x-c^{2}=0$
 $x^{2}-\frac{c}{q^{2}}(cq^{3}-\frac{c}{q})x-c^{2}=0$
 $x^{2}-\frac{c}{q^{2}}(cq^{3}-\frac{c}{q})x-c^{2}=0$
(iii) Let the $x-coordinatic of Q$ and P .
(iii) Let the $x-coordinatic of Q$ and P .
(iii) Let the $x-coordinatic of Q$ and P .
(iii) Let the $x-coordinatic of Q$ and P .
(iii) Let this in
 $xy=c^{2}$
 $y=c^{2}/cq^{3}$
The evordinatic q P are.
 $(-\frac{c}{q^{3}}, -cq^{3})$

(19)
Equation of OQ in
$$y = mx$$

 $m = \frac{Q}{Q_{q} - 0} = \frac{1}{Q_{q}^{2}}$
The liming $y = \frac{1}{Q_{q}} x$ cut $xy = c^{2}$ at the
action $x = \frac{1}{Q_{q}} x = c^{2}$
 $x^{2} = q^{2}c^{2}$
 $\therefore x = \pm cq$.
Le have $x - coordinate = -cq$
Sub. in $xy = c^{2}$
 $-q \cdot y = -\frac{Q}{q}$
 $y = -\frac{Q}{q}$
 $y = -\frac{Q}{q}$
 $y = -\frac{Q}{q}$
 $y = -\frac{Q}{q}$
 $\frac{12}{Q_{q}} - \frac{Q}{q} + \frac{cq^{3}}{q^{3}}$
 $= -\frac{1+qq}{q} + \frac{q}{q}^{3}$
 $= -\frac{1+qq}{Q_{q}} + \frac{q}{q}^{3}$
 $= -\frac{1+qq}{Q_{q}} + \frac{q}{q}^{3}$
 $= -q^{2}$
 $M_{QL} = -\frac{Q}{cq} = \frac{1}{q}$
 $m_{QL} = -q^{2} \times \frac{1}{q}$
 $= -1$
 $= -1$
 $= -1$
 $= -1$
 $= -1$

$$\begin{array}{l} \underbrace{94}{(9)} \underbrace{(9)}_{(1)} \ 25 \ YP = 90^{\circ} \ (6i \ ven) \\ \therefore \ Sp is the diameter of oricle passing through by, x is the mid pE, of SP Cavin, \therefore x is the centre \therefore \ Sx = xP = xY \ (equal radii) \\ (i) \ Let \ 2xSY = x \ (equal angle copp. to equal aides \ USX & xy \ of incells \ ASY) \\ \hline 0initally \ LPYX = Y \\ \therefore \ x+y = 90^{\circ} \ (:: \ SYP = 90^{\circ} \ given) \\ \ 2xFy = x \ (equal angle in the same argument \ Standary \ on arc Pg()) \\ H \ \Delta RYZ \ 180^{\circ} - 90^{\circ} \ (:: \ x+Y = 90^{\circ}) \\ \ x = 180^{\circ} - 90^{\circ} \ (:: \ x+Y = 90^{\circ}) \\ \ x = 10^{\circ} \ x^{\circ} + 5^{\circ} \ x^{\circ} + 5^{\circ} \\ \ x^{\circ} + 5^{\circ} \ x^{\circ} + 5^{\circ} \ x^{\circ} = -3^{\circ} \ x^{\circ} \ x^{\circ} = -3^{\circ} \ x^{\circ} \ x^{\circ} = -3^{\circ} \ x^{\circ} \ x^{\circ} = -1^{\circ} \ (i^{\circ} \ x^{\circ} + 5^{\circ} \ x^{\circ} \ x^{\circ} = -1^{\circ} \ (i^{\circ} \ x^{\circ} + 5^{\circ} \ x^{\circ} \ x^{\circ} = -1^{\circ} \ (i^{\circ} \ x^{\circ} = 5^{\circ} \ y^{\circ} \ x^{\circ} \ x^{\circ} = -1^{\circ} \ x^{\circ} \$$

(c)
$$2^{2^{n}} \ge 5^{2^{n}}$$
 for $n \ge 5$
Step 1. prove $true$ for $n = 5$
 $t.H.S. = 2^{32}$ T_{RUE}
 $R.H.S = 5^{10}$
Otep 2.
Assume true for $n = k$.
 $1e. 2^{2^{k}} \ge 5^{2k}$
or $2^{2^{k}} - 5^{2k} \ge 0$
Shep 3. Prove true for $n = k+1$
 $1e. 2^{2^{k+1}} \ge 5^{2(k+1)}$
 $1e. 2^{2^{k+1}} = 5^{2(k+1)} \ge 0$
 $t.H.S. 2^{2^{k} \cdot 2^{1}} = (2^{2^{k}})^{2}$
 $\ge (5^{2k})^{2}$
 $= 5^{4k} \cdot \cdot \cdot \cdot = 5^{2(k+1)} \ge 0$
 $t.H.S. 2^{2^{k} \cdot 2^{1}} = (2^{2^{k}})^{2}$
 $\ge 5^{2k+2k} = 5^{2(k+1)} \ge 5^{2(k+1)$