The Scots College

HSC Mathematics Extension 2

Pre Trial Examination

April 2013

General Instructions

- Working time : 2 hours +5 minutes reading time.
- Write using blue or black pen
- Board approved calculators may be used (Non Graphic)
- All necessary working should be shown in every question
- Standard Integrals Table attached
- Answer each question on a SEPARATE answer booklet

TOTAL MARKS: 75

SECTION I

7 marks
O Attempt Questions 1-7
o Answer on the Multiple Choice answer sheet provided.
o Allow about 10 minutes for this section.

SECTION II

68 marks

o Attempt questions 8 - 11
o Answer on the booklets provided, unless otherwise instructed. Start a new booklet for each question.
o Allow about 1 hours \& 50 minutes for this section

Weighting: 30 \%

Section I

7 marks

Attempt Questions 1-7

Allow about 10 minutes for this section

Use the multiple choice answer sheet for questions $1-7$.
Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample

$2+4=$?
(A) 2
(B) 6
(C) 8 (D) 9
AB
-
C \bigcirc
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A

$\mathrm{C} \bigcirc$
D \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:
A

D
$1 \quad$ Let $z^{2}=\sqrt{3} i$, what is the value of $z^{8 n+4}$?
A) $-3^{2 n+1}$
B) $(-3)^{8 \mathrm{n}+2}$
C) $(-3)^{6 n+4}$
D) $3^{2 n+1}$

2 The point P represents the complex number ω where $\omega \bar{\omega}=4$. Which of the points A, B, C, or D shown in the Argand diagram could represent the complex number $i \omega^{-1}$?

3 For the curve with equation $y=[f(x)]^{n}$:
(A) The x intercept(s) of $y=f(x)$ correspond to the stationary points of the curve.
(B) The curve exhibits point symmetry about the origin.
(C) The curve does not exist for values for which $f(x)<0$.
(D) More information is needed about the curve to determine further properties.

4 The roots of the equation $x^{3}-3 x+3=0$ are α, β and γ. What is the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$.
A) -6
B) - 3
C) 3
D) 6

5 The Cartesian equation of the locus of complex number z, such that $|z+3|+|z-3|=12$, isj
(A) $\frac{x^{2}}{36}-\frac{y^{2}}{27}=1$
(B) $\frac{x^{2}}{36}+\frac{y^{2}}{27}=1$
(C) $\frac{x^{2}}{27}-\frac{y^{2}}{36}=1$
(D) $\frac{x^{2}}{27}+\frac{y^{2}}{36}=1$

6 The foci of the ellipse $25 x^{2}+9 y^{2}=225$ have the coordinates
A) $(\pm 4,0)$
B) $(\pm \sqrt{34}, 0)$
C) $(0, \pm 4)$
D) $(0, \pm \sqrt{34})$
$7 \quad$ The eccentricity of the hyperbola $x^{2}-y^{2}=4$ is
A) 2
B) $\frac{1}{2}$
C) $\frac{1}{\sqrt{2}}$
D) $\sqrt{2}$

End of Section I

Section II

Total Marks (68)
Attempt Questions 8-11.
Allow about $\mathbf{1}$ hours $\boldsymbol{\&} \mathbf{5 0}$ minutes for this section.

Answer all questions, starting each question on a new answer booklet with your name and question number at the top of the page.
All necessary working should be shown in every question.

Question 8 (Marks 17) Answer on a new booklet.

a) Evaluate i^{2054}
b) Let $z=\frac{9+2 i}{2+i}$.
i) \quad Simplify $(9+2 i)(\overline{2+\quad})$
ii) Express z in the form $a+i b$, where a and b are real numbers.
iii) Hence, or otherwise, find $|z|$ and $\arg (z)$.
c) If $z=\cos \theta+i \sin \theta$

Show that $1+z=2 \cos \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)$.
d) Let $z=\cos \theta+i \sin \theta$.

Given that $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$
and that $z^{n}-\frac{1}{z^{n}}=2 \mathrm{i} \sin n \theta$
Show that $\sin ^{4} \theta+\cos ^{4} \theta=\frac{1}{4}(\cos 4 \theta+3)$
e) Express $(3+2 i)(5+4 i)$ and $(3-2 i)(5-4 i)$ in the form $x+i y$.
Hence express $7^{2}+22^{2}$ as a product of prime factors.
f) On an Argand diagram, shade in the region containing all points
representing the complex number z, such that

$$
|z-(2+2 i)| \leq 2 \text { and }|z-(2+2 i)| \leq|z|
$$

Question 9 (Marks 17) Answer on a new booklet.

a)

The sketch above shows the parabola

$$
y=f(x) \quad \text { where } \quad f(x)=\frac{1}{2}\left(x^{2}+2 x-3\right)
$$

Without the use of calculus, draw separate sketches of the following, showing all important features such as intercepts, asymptotes and turning points.
i) $\quad y^{2}=f(x)$
ii) $y=e^{f(x)}$
iii) $y=\tan ^{-1} f(x)$
iv) $y=\frac{1}{2}(x+3)|x-1|$
b) Consider the graph of the function $y=\frac{x^{2}}{x+2}$
i) Find the equations of the asymptotes for the graph.
ii) Find the stationary points and state their nature
iii) Draw a neat sketch of the graph, showing all important features.
iv) Hence, or otherwise, sketch the graph of $y=\frac{|x+2|}{x^{2}}$
c) Find the coordinates of the stationary points and determine their nature, for the curve

$$
x^{2}+x y-2 y^{2}+9=0
$$

Question 10 (Marks 17) Answer on a new booklet.
a) Consider the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$. Find
i. its eccentricity
ii. the coordinates of the foci
iii. equation of the directrices
iv. equation of the asymptotes
v. the length of the latus rectum
vi. draw a neat sketch of the hyperbola, showing all the important features.
b) The point $P\left(4 p, \frac{4}{p}\right)$, lies on the hyperbola $x y=16$ and is in the first quadrant. The normal to the hyperbola at P meets the hyperbola again at the point $Q\left(4 q, \frac{4}{q}\right)$.
i. Find the equation of the normal at P.
ii. Show that $q=-\frac{1}{p^{3}}$
iii. Hence show that there is only one value of p for which the normal at P is also a normal to the hyperbola at Q. Find the coordinates of P and Q for this normal.
c) Let $C_{1}=x^{2}+4 y^{2}-2$ and $C_{2}=3 x^{2}+y^{2}-1$, and let k be a real number.
i. Show that $C_{1}+k C_{2}=0$ is the equation of the curve passing through the point of intersection of the ellipses $C_{1}=0$ and $C_{2}=$ 0 .
ii. Find the value of k such that $C_{1}+k C_{2}=0$ is the equation of an ellipse.

Question 11 (Marks 17) Answer on a new booklet.

a) Prove by Mathematical Induction that
$\frac{(3+\sqrt{5})^{n}+(3-\sqrt{5})^{n}}{2^{n}}$ is a positive integer, for all positive integer values of n.
You may assume that the statement is true for $n=k$ and $n=k+1$, and that

$$
a^{n+1}+b^{n+1}=(a+b)\left(a^{n}+b^{n}\right)-a b\left(a^{n-1}+b^{n-1}\right)
$$

b) Show that $x^{5}-5 x+1=0$ cannot have a double root.
c) Solve the equation

$$
8 x^{4}-14 x^{3}-69 x^{2}-14 x+8=0
$$

d) (i) Solve the equation

$$
x^{6}-x^{3}+1=0
$$

(ii) Hence express $x^{6}-x^{3}+1$ as a product of three real quadratic factors.
(iii) Hence show that

$$
\begin{aligned}
& \cos \frac{\pi}{9}+\cos \frac{7 \pi}{9}+\cos \frac{13 \pi}{9}=0, \text { and } \\
& \cos \frac{\pi}{9} \times \cos \frac{7 \pi}{9} \times \cos \frac{13 \pi}{9}=\frac{1}{8}
\end{aligned}
$$

End of Assessment

Standard Integrals

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin { }^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
&
\end{array}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Pre-Trial HSC Examination 2013
Mathematics Extension 2

Multiple Choice Answer Sheet

Name \qquad
Completely fill the response oval representing the most correct answer.

1.	$\mathrm{A} \bigcirc$	$\mathrm{B} \bigcirc$	$\mathrm{C} \bigcirc$	$\mathrm{D} \bigcirc$
2.	$\mathrm{A} \bigcirc$	$\mathrm{B} \bigcirc$	$\mathrm{C} \bigcirc$	$\mathrm{D} \bigcirc$
3.	$\mathrm{A} \bigcirc$	$\mathrm{B} \bigcirc$	$\mathrm{C} \bigcirc$	$\mathrm{D} \bigcirc$
4.	$\mathrm{A} \bigcirc$	$\mathrm{B} \bigcirc$	$\mathrm{C} \bigcirc$	$\mathrm{D} \bigcirc$
5.	$\mathrm{A} \bigcirc$	$\mathrm{B} \bigcirc$	$\mathrm{C} \bigcirc$	$\mathrm{D} \bigcirc$
6.	$\mathrm{A} \bigcirc$	$\mathrm{B} \bigcirc$	$\mathrm{C} \bigcirc$	$\mathrm{D} \bigcirc$
7.	$\mathrm{A} \bigcirc$	$\mathrm{B} \bigcirc$	$\mathrm{C} \bigcirc$	$\mathrm{D} \bigcirc$

Pre-Trial HSC Examination 2013
Mathematics Extension 2

Multiple Choice Answer Sheet

Completely fill the response oval representing the most correct answer.

1.	A	$\mathrm{B} \bigcirc$	$\mathrm{C} \bigcirc$
2.	A	B \bigcirc	$\mathrm{C} \bigcirc$
3.	A	$\mathrm{B} \bigcirc$	$\mathrm{C} \bigcirc$
4.	A	$\mathrm{B} \bigcirc$	$\mathrm{C} \bigcirc$
5.	A \bigcirc	B	$\mathrm{C} \bigcirc$
6.	A	B \bigcirc	C
7.	A \bigcirc	B \bigcirc	$\mathrm{C} \bigcirc$

\qquad Name: \qquad
Teacher: \qquad
YEARI2 MATHEMATICS EXTENSION 2

$$
\text { PRE-TRIACS SOLOTIOMS - } 2013
$$

Q1. $z^{2}=\sqrt{3}:$

$$
z^{8 n+4}-\left(z^{2}\right)^{4 n+2}
$$

$$
\begin{aligned}
& =(\sqrt{3} i)^{4 n+2} \\
& =\left[(\sqrt{3} i)^{2}\right]^{2 n+\gamma} \\
& =(-3)^{2 n+1}
\end{aligned}
$$

(A)

$$
2 \cdot \frac{i}{\omega}=\frac{\omega}{\omega \omega}=\frac{\omega}{4}
$$

(D)

3 (A)

$$
\begin{aligned}
& 4 \cdot \alpha^{2}+\beta^{2}+\gamma^{2} \\
&=0-(-3) \\
&=6
\end{aligned}
$$

(D)
\qquad Name: \qquad
Teacher: \qquad
0.5

$$
(z-3)+1 z+3 \mid=12
$$

\qquad

$$
\begin{aligned}
& a=6 \quad a^{2}=36 \\
& a e=3 \quad e=1 / 2
\end{aligned}
$$

$$
b^{2}=36(1-1 / 4)
$$

$$
=27
$$

(B)
(c)

Q7
(5)

$$
\begin{aligned}
& \text { Q6 } \quad 25 x^{2}+9 y^{2}=225 \\
& \frac{x^{2}}{9}+\frac{y^{2}}{25}=\cdots 1 \\
& a^{2}=25 \quad b^{2}=9 \\
& 9=25\left(1-e^{2}\right) \\
& 1-e^{2}=9 / 25 \\
& e^{2}=1-9 / 25 \\
& =16 / 25 \\
& e=4 / 5 \quad a e=4
\end{aligned}
$$

\qquad Name: \qquad
Teacher: \qquad
SEction II
Q 8
.....(a)

$$
\begin{aligned}
& 2054 \\
& =14(513)+2 \\
& =12 \\
& =1 \\
& =1
\end{aligned}
$$

(b)

$$
\begin{aligned}
&(9) \\
&=(9+2 i)\left(\frac{2+i}{2}\right) \\
&=18+2-i) \\
&=20-5 i
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 7 \cdots \frac{9+2 i^{\prime}}{2+i^{\prime}} \\
& =\frac{(9+2 i)(2-i)}{(2+i)(2-i)} \\
& =\frac{20-5 i}{5}=4-i
\end{aligned}
$$

(il!) $|z|=\sqrt{16+1}=\sqrt{17}$
$\arg (7) .=\tan ^{-1}(-1 / 4)$
\qquad
\qquad
Teacher: \qquad
(c)

$$
\begin{aligned}
& z=\cos \theta+\cos \theta \\
& 1+z=1+\cos \theta+u \sin \theta \\
&=2 \cos ^{2} \theta / 2+2 \sin \theta / 2 \cos \theta / 2 \\
&=2 \cos \theta / 2(\cos \theta / 2+i \sin \theta \\
&=1
\end{aligned}
$$

(d)

$$
\begin{aligned}
& z^{n}+\frac{1}{z^{n}}=2 \cos n \theta \\
& z^{n}-\frac{1}{z^{n}}=2 u \sin n \theta
\end{aligned}
$$

let no z.!
$(2 u \sin \theta)^{4}=\left(z-\frac{1}{2}\right)^{4}$

$$
\begin{equation*}
16 \sin ^{4} \theta=z^{4}-4 z^{2}+6-\frac{4}{z^{2}}+\frac{1}{z^{4}} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
&(2 \cos \theta)^{4}=\left(z+\frac{1}{2}\right)^{4} \\
&16 \cos)^{4} \theta=z^{4}+4 z^{2}+6+\frac{4}{z^{2}}+\frac{1}{z^{4}} \\
& 16\left(\sin ^{4} \theta+\cos ^{4} \theta\right)=2 z^{4}+42+\frac{2}{2} \\
&=2(2 \cos 4 \theta)+12 \\
&=4(\cos 4 \theta+3) \\
&
\end{aligned}
$$

Question \qquad

Name: \qquad
Teacher: \qquad
\qquad

$$
\begin{aligned}
& (e)(3+2 i)(5+4 i)=15-8+12 i+10 i \\
& \\
& (3-2 i)(5-4 i)=15-82-12 i-18 i \\
&
\end{aligned}
$$

\qquad
......... $3+2 i)(5+4 i)(3-2 i)(5-4 i)=(7+22 i)(7-22 i)$
$\ldots(9+4)(2 s+16)=7^{2}+2 z^{2}$
\qquad
$\ldots . a \cdots \cdots+7^{2}+22^{2}=13 \times 41$
\qquad
\qquad
\qquad
\qquad
\qquad

Question \qquad Name: \qquad
Teacher: \qquad
Q. 9

\qquad

Question \qquad

Name: \qquad
Teacher: \qquad
(iv)

\qquad
\qquad
Teacher: \qquad
$9(b)$

$$
y=x^{2} / x+2
$$

(i)

$$
\begin{aligned}
& y=\frac{x^{2}-4+4}{x+2} \\
& =x-2+\frac{4}{x+2}
\end{aligned}
$$

Obliqne Qaymptote ol $y=x-2$
Ventical Qoymptote $x=-2$

$$
\begin{aligned}
& \text { (ii) } \\
&=\frac{(x+2)(2 x)-x^{2}(1)}{(x+2)^{2}} \\
&=\frac{d^{2} y}{d x^{2}} x^{2}-x^{2} \\
&(x+2)^{2} \frac{4}{(x+2)^{2}} \\
&=\frac{x^{2} y}{(x+2)^{2}}
\end{aligned}
$$

for orationary ponts $d y / d x=0$

$$
\begin{aligned}
& \left.1=\frac{4}{(x+2)^{2}}-\cdots+2\right)^{2}=4 \\
& x+2= \pm 2
\end{aligned}
$$

$$
x+2= \pm 2
$$

$$
\text { When } x=0, d^{2} y>0
$$

$\therefore(0,0) \ldots \min p l$

$$
\begin{aligned}
& x=0 \text { or }-4 \\
& y=0 \text { or }-8
\end{aligned}
$$

$$
x=-4, \cdots \frac{d^{2} y}{d x^{2}}<0
$$

$\therefore(-4,-8)$ is maxpL

\qquad
\qquad
\qquad
\qquad
\qquad

Question \qquad Name: \qquad

Teacher: \qquad
(iv)

\qquad
\qquad
\qquad
\qquad
Teacher: \qquad
$9(c)$

$$
x^{2}+x y-2 y^{2}+9=0
$$

Differentiating wo r. w x

$$
\begin{aligned}
& 2 x+y+x y^{\prime}-4 y-y^{\prime}=0 \\
& 2 x+y=(4 y-x) y^{\prime} \\
& y^{\prime}=\frac{2 x+y}{4 y-x} \cdot y^{\prime \prime}=\frac{(4 y-x)\left(2+y^{\prime}\right)-(2 x+y)\left(4 y^{\prime}-1\right)}{(4 y-x)^{2}}
\end{aligned}
$$

for st port $\quad y^{\prime}=0$

$$
2 x+y=0
$$

$$
y=\frac{-2 x}{x^{2}+x}
$$

Sub into $x^{2}+x y-2 y^{2}+9=0$

$$
\begin{aligned}
& x^{2}-2 x^{2}-2\left(4 x^{2}\right)+9=0 \\
& -9 x^{2}+9=0 \\
& x^{2}=1 \\
& x=1, a x=-1 \\
& y=-2 a+1 \\
& y=2
\end{aligned}
$$

When $x=1, y=-2, y^{\prime}=0$

$$
y^{\prime \prime}=\frac{(-8-1)(2+0)-0}{(-8-1)^{2}}
$$

$$
<0 \quad \therefore(1 ; 2) \text { ba ming pt }
$$

When $x=-11, y=2, y^{\prime}=0$

$$
y^{\prime \prime}=\frac{(8+1)(2+0)-0}{(8+1)^{2}}
$$

$$
\ldots \ldots
$$

$\therefore(-1,2)$ is a min. pr
\qquad
\qquad
Teacher: \qquad

10
(a) $\frac{x^{2}}{16} \cdots \frac{y^{2}}{9} \cdots \cdots$

$$
\begin{aligned}
& a^{2}=16 \cdots b^{2}=9 \\
& 9=16\left(e^{2}-1\right) \\
& e^{2}=1 / 16 \\
& e^{2}=1+9=25 / 16
\end{aligned}
$$

(1) $\ldots e=5 / 4$
(ii) fou: ae $=4 \times 5 / 4$

$$
=5
$$

for: $:(\pm 5,0)$
(iii) equation of duiecticen:- $x= \pm a / e$

$$
x=\ldots+\ldots .
$$

(iv)asymptotes

$$
\begin{aligned}
& y=\frac{b x}{a} \\
& y= \pm \frac{3 x}{4}
\end{aligned}
$$

Question \qquad Name: \qquad
Teacher: \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Teacher: \qquad
$\ldots 10(b)$
\qquad

$$
x y=16
$$

(1) $-\quad y=16 / x$

$$
\frac{d y}{d x}=\cdots-16 / x^{2}
$$

at $p M_{t}=-16 / 16 p^{2}=-1 / p^{2}$

$$
m_{N}=p^{2}
$$

Equation of normal is

$$
\begin{aligned}
& y-4 / p=p^{2}(x-4 p) \\
& a p-p^{2}=p^{3}(x-4 p) \\
& a-p y=4 p^{4}-4
\end{aligned}
$$

(ii) Sumo ($49,4 / 9$) vito the equation of the woman.

$$
p^{3}(4 q)-\frac{4 p}{q}=4 p^{4}-4
$$

$$
4 p^{3} q^{2}-4 p=4 p^{4} q-4 q
$$

$$
p^{3} q^{2}-p^{4} q=p-q
$$

$$
p^{3} q(q-p)=p-q \Rightarrow p^{3} q=-1 \Rightarrow q=-1 / p^{3}
$$

\qquad Name: \qquad
Teacher: \qquad
..
(iii.). M_{N} ar $Q=q^{2}=m_{N}$ ar p
$\cdots p^{2}=q^{2}$
$\cdots(\ldots)(-a)$
\qquad

Teacher: \qquad
(C) $\quad C_{1}=x^{2}+4 y^{2}-2 \quad C_{2} \equiv 3 x^{2}+y^{2}-1$
(i) The ph of witensection of C_{1} and C_{2} must oohsfy $C_{1}=0$ and $C_{2}=0$

It will satisfy

$$
C_{1}+k C_{2}=0
$$

$C_{1}+k C_{2}=0$ is the required equation

$$
\begin{aligned}
& \text { (i!) } \quad x^{2}+4 y^{2}-2+k\left(3 x^{2}+y^{2}-1\right)=0 \\
& 0 \quad(1+3 k) x^{2}+(4+k) y^{2}-2-k=0 \\
& \quad \frac{x^{2}}{(2+k)}=\frac{y^{2}}{\frac{2+k}{4}}=1 .
\end{aligned}
$$

For an ellipse

$$
\begin{aligned}
& \cdots \frac{2+k}{1+3 k} \rightarrow 0 \cdots \frac{2+k}{4+k} \gg \cdots \cdots \cdots \quad \text { and } \frac{2+k}{1+3 k} \neq \frac{2+k}{4+k} \\
& (2+k)(1+3 k)>0 \quad(2+k)(4+k)>0 \quad \cdots \cdots \cdots \cdots \cdots+3 \ldots \ldots \ldots
\end{aligned}
$$

$$
\begin{aligned}
& k \neq 3 / 2 \\
& \ldots \ldots, \ldots \ldots \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots
\end{aligned}
$$

\qquad
\qquad
Teacher: \qquad
Q 11
(a) $\frac{(3+\sqrt{5})^{\eta}+(3-\sqrt{5})^{\eta}}{2^{n}}$ is a poxitwe integer

Step .1.... prove true for $n=1$ and $n=2$

$$
\begin{aligned}
& \frac{(3+\sqrt{5})^{1}+(3-\sqrt{5})^{1}}{2^{\prime}} \cdot \frac{6}{2}=3 \\
& \frac{(3+\sqrt{5})^{2}+(3-\sqrt{5})^{2}}{2^{2}} \cdot \frac{9+5+6 \sqrt{5}+9+5-6 \sqrt{5}}{4} \\
& =7 \\
& =1
\end{aligned}
$$

Hence true for $n=1$ and $n=2$
Step 2 Assume trio for $n=k$ and $n=k+1$

$$
\frac{(3+\sqrt{5})^{k}+(3 \sqrt{5})^{k}}{2^{k}} \cdot \frac{1}{2^{k+1}}=\text { and }(3+\sqrt{5})^{k+}+\sqrt{k+1}
$$

where p and q are positue integers
\qquad
\qquad
Teacher: \qquad

Step 3 frove tre for $n=k+2$
i. $\frac{(3+\sqrt{5})^{k+2}+(3-\sqrt{5})^{k+2}}{2^{k+2}}$
is an integrer

$$
\begin{aligned}
& =\frac{6\left(4 \cdot 2^{k+1}\right)-(9-5)\left(p-2^{k}\right)}{2^{k+2}} \\
& =\frac{3 q: 2^{k+2}-\ldots \cdot 2^{k+2}}{2^{k+2}} \\
& =3 q-p
\end{aligned}
$$

which is an witger suice p \& q are positue vitegers.

Hence true for $n=k+2$
Step 4: Thenefore by the principle of mothematical. unduetur the statement is true for oll positure witegens n
\qquad Name: \qquad
Teacher: \qquad
(b) $x^{5}-5 x+1=0$
let $P(x)=x^{5}-5 x+1$

$$
\begin{gathered}
P^{\prime}(x)=5 x^{4}-5=0 \\
P=1 \\
P(1)=1-5+1 \neq 0 \\
P(-1)=-1+5+1 \neq 0 \\
P(i)=i-5 i+1 \neq 0 \\
P(-i)=-i+5 i+1 \neq 0
\end{gathered}
$$

\therefore No root of $P^{\prime}(x)=0$ is a root of $P(x)=0$
No double root
\qquad Name: \qquad
Teacher: \qquad
\qquad
\qquad
Let $t=x^{2}+\frac{1}{x}$

$$
t^{2}=x^{2}+2+\frac{1}{\lambda^{2}} \Rightarrow \quad t-2=x^{2}+\frac{1}{2}
$$

$$
8\left(t^{2}-2\right)-14(t)-69=0
$$

or $8 t^{2}-14 t-85=0$ 8×85

$$
a(2 t+5)(4 t-17)=0
$$

$$
\therefore \ldots \therefore \therefore . \quad t=17.5 / 2 \ldots \ldots \ldots \ldots \ldots
$$

\qquad
\qquad

$$
\begin{aligned}
& 8 t^{2}-34 t+20 t-85=0 \quad=4 \times 2 \times 17 \times 5 \\
& 2 t(4 t-17)+5(4 t-17)=0 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) }
\end{aligned}
$$

$$
\begin{aligned}
& \cdots 0_{r} \cdots \cdot 8 \cdot\left(\lambda^{2}+\frac{1}{x^{2}}\right) \cdot \cdots \cdot 1.4 .\left(x \cdot+\cdot \frac{1}{x}\right) \cdot \cdots+\cdots \cdot \%=0 .
\end{aligned}
$$

\qquad
\qquad
Teacher: \qquad
(d)

$$
x_{k} \text { cis } \frac{2 k \pi+\sqrt{3}}{3} \quad k=0,2 \quad x^{3}=\text { ci }-2 k x-1 / 3, k=0,2
$$

$$
x_{1}=\operatorname{cis} \pi / 9
$$

$$
x_{4}=\text { cis }-1 / 9
$$

$$
x_{2}=\operatorname{cis} 7 / 9
$$

$$
x_{3} a_{s} 137 / 9
$$

$$
\begin{aligned}
& x^{6}-x^{3}+1=0 \\
& x^{3}=\frac{1 \pm \sqrt{1-4}}{2} \\
& =\frac{1 \pm \sqrt{3}}{1} \\
& x^{3}=\frac{1+\sqrt{3} c^{\prime}}{2} \text { or } \quad x^{3}=1-\frac{\sqrt{3} c}{2} \\
& =\text { cis } \pi / 3
\end{aligned}
$$

\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { (ii) } \alpha+\beta=2 \cos \%, \quad \alpha \beta=1 \\
& r+\delta=2 \cos 7 \pi, \quad r \delta=1 \\
& e+f=2 \operatorname{son} 3 \pi / 9 \quad e f=1 \\
& \therefore x^{6}-x^{3}+1=\left(x^{2}-2 x \cos 79+1\right)\left(x^{2}-2 x \cos ^{7}+1\right)\left(x^{2}-2 x \cos 39+1\right)
\end{aligned}
$$

(iii) Gratin coff of x

$$
\begin{aligned}
& \cos 79+\cos 7 / 9+\cos 13 / 9=0
\end{aligned}
$$

Yquatur coff of x^{3}

$$
\begin{aligned}
& -1=0-8 \text { an 7/ an } 77, \ln ^{137} \text { / } \\
& \therefore \cos 79 \cos 7 / 9 \cos ^{13 \pi / 7}=1 / 8
\end{aligned}
$$

