THE SCOTS COLLEGE

MATHEMATICS EXTENSION II

YEAR 12 PRETRIAL

26^{TH} MARCH 2014

GENERAL INSTRUCTIONS

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- Show all necessary working in Section II

WEIGHTING

30%

TOTAL MARKS

70

SECTION I (5 MARKS)

- Answers to be recorded on the multiple choice answer sheet provided
- Clearly label your answer sheet with your student number
- Allow about 10 minutes for this section

SECTION II (65 MARKS)

- Questions 6 9
- Answers to be recorded in the answer booklets provided
- Each question must be completed in a new answer booklet.
- Label each answer booklet with your student number and the question number attempted. Clearly indicate the booklet order if more than one booklet is used for a question. E.g. Book 1 of 2 and 2 of 2.

QUESTION 1

Consider a polynomial P(x) of degree 3 and the two real numbers, *a* and *b*, such that the following three conditions hold true:

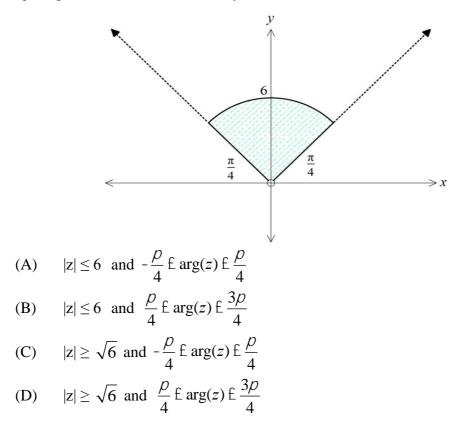
- 1) a < b
- 2) P(a) > P(b) > 0
- 3) P'(a) = P'(b) = 0

The polynomial P(x) has:

- (A) 3 real zeros
- (B) 1 real zero γ such that $\gamma < a$
- (C) 1 real zero γ such that $a < \gamma < b$
- (D) 1 real zero γ such that $\gamma > b$

QUESTION 2

The shaded region of the Argand plane below represents the points where which of the following inequalities hold simultaneously?



QUESTION 3

The graph $f(x) = \frac{1}{x^2 + mx - n}$, where *m* and *n* are real constants, has no vertical asymptotes if: (A) $m^2 < -4n$ (B) $m^2 > -4n$ (C) $m^2 < 4n$ (D) $m^2 > 4n$

QUESTION 4

The complex number ω is a root of the equation $z^3 + 1 = 0$. Which of the following is FALSE?

- (A) \overline{W} is also a root.
- (B) $W^2 + 1 W = 0$
- (C) $\frac{1}{W}$ is also a root. (D) $(W-1)^2 = -1$

QUESTION 5

Given the equation of the hyperbola, \mathcal{H} , is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ has eccentricity *e*, then the ellipse, \mathcal{E} , with equation $\frac{x^2}{a^2 + b^2} + \frac{y^2}{b^2} = 1$ has which of the following as its eccentricity? (A) -*e* (B) $\frac{1}{e}$ (C) \sqrt{e} (D) e^2

QUESTION 6 (START A NEW ANSWER BOOKLET) 21 MARKS

- a) Consider the complex number z = x + iy, where x and y are real, and the complex number $w = iz + \overline{z}$.
 - i) Find w in terms of x and y and hence show that $\operatorname{Re}(w) = \operatorname{Im}(w)$. [2]
 - ii) Find all possible values of the principal argument of *w*. [1]
 - iii) Given that x and y are both positive and x < y, draw vectors representing z, iz, \overline{z} and w on an Argand diagram. [2]

b) Let
$$z = 12cis \frac{13\pi}{15}$$
 and $w = 3cis \frac{\pi}{5}$
i) Evaluate $\frac{z}{w}$ and express your answer in the form $a + ib$. [2]
ii) Explain why $\frac{z^3}{w^3}$ is a real number. [2]

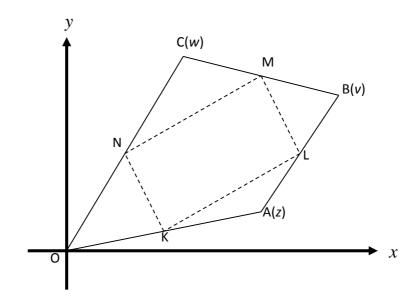
c) The locus of *z* is the region simultaneously satisfied by the following conditions:

$$|z-i| \le 2$$
 & Im(z) $\pounds 1$

- i) Draw a neat sketch of the locus on an Argand diagram. [2]
- ii) Find the values of z for which |z| is a maximum and justify your answer. [2]

QUESTION 6 CONTINUES ON THE FOLLOWING PAGE...

d) OABC is a quadrilateral in the complex plane. The complex numbers, 0, *z*, *v* and *w* are represented by O, A, B and C respectively. K, L, M and N are the midpoints of OA, AB, BC and CO respectively.



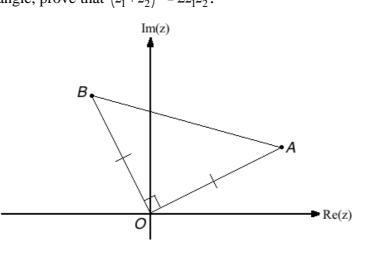
i) Show that the complex number represented by L is $\frac{v+z}{2}$. [2]

ii) Find similar results for K, M and N and hence calculate the complex numbers representing the vectors \overrightarrow{NM} and \overrightarrow{KL} and show that they are equal. [2]

iii) What type of quadrilateral is KLMN? Justify your answer. [1]

[3]

e) The Argand diagram below shows the points *A* and *B*, which represent the complex numbers z_1 and z_2 respectively. Given that DBOA is a right-angled, isosceles triangle, prove that $(z_1 + z_2)^2 = 2z_1z_2$.



END OF QUESTION 6

a) The diagram below shows the graph of the function y = f(x).



Draw a one half-page sketch for each of the following. Make sure you indicate all significant features.

i)
$$y = f(-x)$$
 [2]

$$y = |f(x)|$$
[2]

iii)
$$y = \frac{1}{f(x)}$$
 [2]

iv)
$$y = [f(x)]^2$$
 [2]

$$\mathbf{v}) \qquad \mathbf{y}^2 = f(\mathbf{x}) \tag{2}$$

b) Consider the curve $x^3 + 3x^2y - 2y^3 = 16$

i) Show that
$$\frac{dy}{dx} = \frac{x^2 + 2xy}{2y^2 - x^2}$$
 [2]

ii) Find the coordinates of the stationary points on the curve. You do not need to determine the nature of the stationary points. [2]

END OF QUESTION 7

- a) Consider the polynomial $P(x) = x^6 6x^4 + 5x^2 + 12$
 - i) Show that *i* is a zero of P(x) and explain why -i is also a zero of P(x). [2]
 - ii) Explain why $(x^2 + 1)$ is a factor of P(x). [1]
 - iii) Given that $x^4 7x^2 + 12 = (x^2 3)(x^2 4)$, factorise P(x) over: [3] α) the rational field **Q** β) the real field **R**
 - γ) the complex field **C**
- b) The polynomial $P(x) = x^4 3x^3 + 7x^2 + ax + b$ has real coefficients.
 - i) Given that 2 is a multiple zero of P(x), find the values of *a* and *b*. [2]
 - ii) Explain why 2 is a double zero of P(x) [1]

QUESTION 9 (START A NEW ANSWER BOOKLET) 21 MARKS

a) The equation of an ellipse is
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

i) Show that the eccentricity of the ellipse is $\frac{4}{5}$ and determine the foci and directrices of the ellipse. [3]

ii) Draw a neat sketch of the ellipse showing significant features. [2]

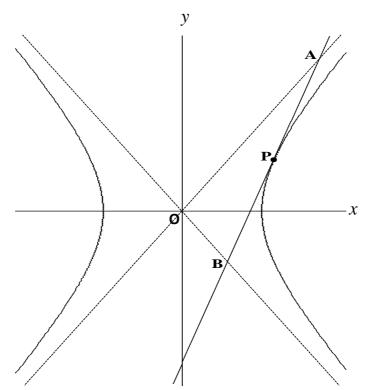
- b) $P(cp, \frac{c}{p})$ and $Q(cq, \frac{c}{q})$ lie on the rectangular hyperbola $xy = c^2$. The tangents at the points P and Q meet at the point T.
 - i) Show that the equation of the tangent at P is $x + p^2 y = 2cp$. [2]

ii) Show that the coordinates of T are
$$\left(\frac{2pqc}{p+q}, \frac{2c}{p+q}\right)$$
. [2]

iii) If q = 3p, show that the locus of T is a rectangular hyperbola and find its foci. [3]

QUESTION 9 CONTINUES ON THE FOLLOWING PAGE ...

c) The equation of the hyperbola, \mathcal{H} , is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. The tangent at the point P with coordinates $(a \sec \theta, b \tan \theta)$ on \mathcal{H} cuts the asymptotes at A and B as shown in the diagram below.



- i) Write down the equations of the asymptotes. [1]
- ii) Show that the equation of AP is $\frac{x \sec \theta}{a} \frac{y \tan \theta}{b} = 1$ [3]
- iii) Show that AP crosses the *x*-axis at the point $\left(\frac{a}{\sec\theta}, 0\right)$. [1]
- iv) Show that A is the point $\left(\frac{a}{\sec\theta \tan\theta}, \frac{b}{\sec\theta \tan\theta}\right)$. [2]
- v) Given that B is the point $\left(\frac{a}{\sec\theta + \tan\theta}, -\frac{b}{\sec\theta + \tan\theta}\right)$, find the exact area of $\triangle OAB$. [2]

END OF SECTION II. END OF EXAM.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x, x > 0$

THE SCOTS COLLEGE-2014-MATHEMATICS EXTENSION 2 MATHEMATICS PRE-TRIAL HSC

CANDIDATE NUMBER:

SECTION I – MULTIPLE CHOICE ANSWER SHEET (5 MARKS)

Mark the correct answer by filling in the circle. To make a correction, neatly place a cross over the circle and then fill in the correct circle.

EXAMPLE:	А	В	С	D	
	0	X	•	0	
		Α	В	С	D
0		0	0	0	0
Question 1		0	0	0	0
Question 2		0	0	0	0
Question 3		0	0	0	0
Question 4		0	0	0	0
Question 5		0	0	0	0

Mathematics Extension 2 - Pretrial 2014
Section 1:
(1) B:
$$P(\alpha)$$
 has I real zero
8 such that $8 < \alpha$
P(a)
P(b) = 0
(2) B: $|z| \leq 6$ and $\frac{n}{4} \leq \alpha n g \geq \frac{5n}{4}$
(3) A: $f(x) = \frac{1}{x^2 + n n x - n}$
For $f(\alpha)$, to have no vertical
asymptotes, we need $\Delta < 0$
for $x^2 + n n x - n$
 $\Delta < 0$
 $m^2 - 4(1)(n) < 0$
 $m^2 < -4n$
(b) D: $z^3 + 1 = 0$
(4) D: $z^3 + 1 = 0$
(4) D: $z^3 + 1 = 0$
(4) D: $z^3 + 1 = 0$
(5) $x^2 + 1 - w = 0$
(5) $w^2 + 1 - w = 0$
(5) D is false

$$\begin{aligned} & \textbf{B}: \text{ for the hyperbola } \frac{z^2}{a^2} - \frac{z^2}{b^2} = 1 \\ & \text{ we have } \quad b^2 = a^2(e^2 - 1) \\ & \frac{b^2}{a^2} = e^2 - 1 \\ & e^2 = 1 + \frac{b^2}{a^2} \\ & = \frac{a^2 + b^2}{a^2} \\ & e = \frac{a^2 + b^2}{a^2} \\ & e = \frac{\sqrt{a^2 + b^2}}{a^2} \\ & e = \frac{\sqrt{a^2 + b^2}}{a^2} \\ & \text{ for the ellipse } \frac{z^2}{a^2 + b^2} + \frac{d^2}{b^2} = 1 \\ & \text{ we have } \quad b^2 = (a^2 + b^2)(1 - E^2) \\ & \frac{b^2}{a^2 + b^2} = 1 - E^2 \\ & E^2 = 1 - \frac{b^2}{a^2 + b^2} \\ & = \frac{a^2 + b^2}{a^2 + b^2} \\ & = \frac{a^2}{a^2 + b^2} \\ & = \frac{a^2}{\sqrt{a^2 + b^2}} \\ & = \frac{a}{\sqrt{a^2 + b^2}} \\ & \text{Alternatively: have eccentricity} \\ & \text{Hyperbolace have eccentricity} \\ & \text{e such that } e > 1 \\ & \text{for -e < 0} \end{aligned}$$

is a real

-Im(=)=

> Re(z)

7 B(v)

A(Z)

$$OL = OA + AL (vector addition) (e)$$

$$= Z + \frac{1}{2}(V-Z)$$

$$= \frac{V+Z}{2}$$

$$= \frac{V+Z}{2}$$
So L is represented by the complex number $\frac{V+Z}{2}$
(i) Similarly, K, M and N are represented by the complex numbers
$$\frac{Z}{2}, \frac{V+W}{2} \text{ and } \frac{W}{2}$$

$$\frac{Z}{2}, \frac{V+W}{2} - \frac{W}{2}$$

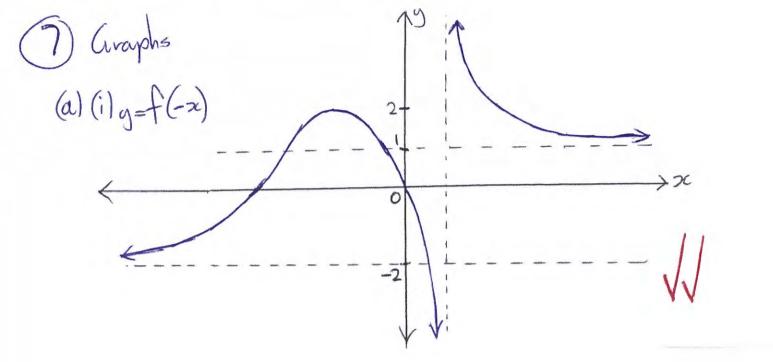
$$\frac{Z}{2} - \frac{V}{2}$$

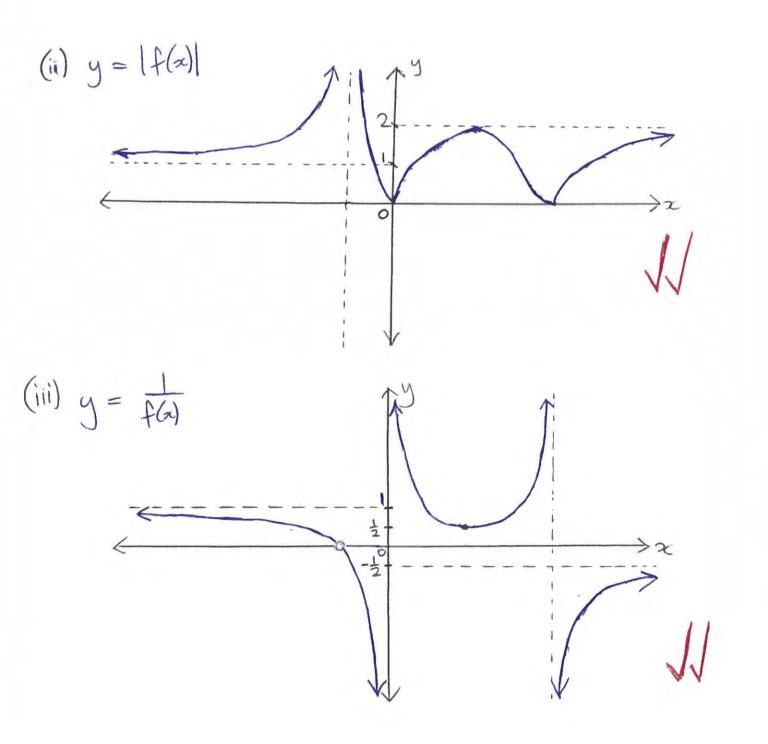
$$\frac{Z}{2} - \frac{V}{2}$$

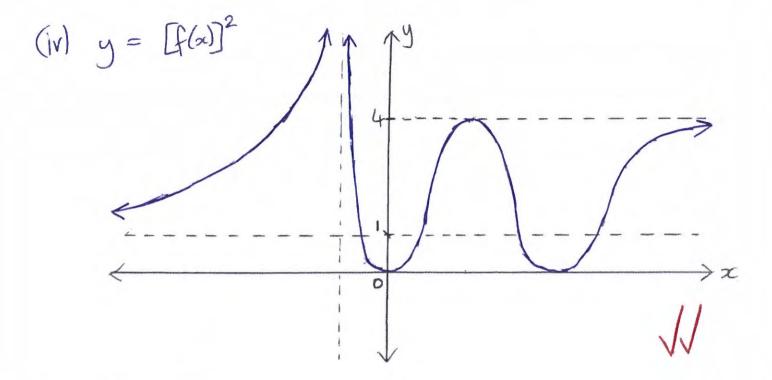
$$\frac{Z}{2} - \frac{V}{2}$$

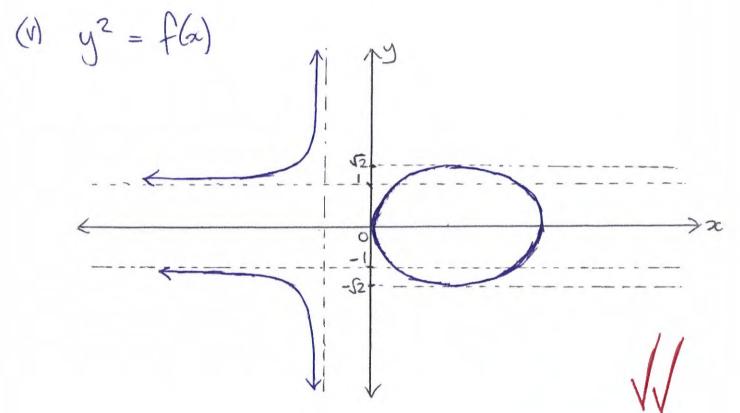
$$\frac{Z}{2} - \frac{V}{2}$$
(ii) Because $NM = KL$, then $NM = KL$ (in length) and $NM//KL$ (parallel gram $NM//KL$ (parallel gram because it has an equal pair of opposite sides which are parallel.

Since
$$\triangle BOA$$
 is vight-angled
and isosceles, we have
 $Z_2 = \lambda Z_1$
 $(Z_1 + Z_2)^2 = (Z_1 + \lambda Z_1)^2$
 $= Z_1^2 + 2\lambda Z_1^2 + \lambda^2 Z_1^2$
 $= Z_1^2 + 2\lambda Z_1^2 - Z_1^2$
 $= 2\lambda Z_1^2$
 $= 2 \times Z_1 \times \lambda Z_1$
 $= 2 \times Z_1 \times Z_2$
 $= 2Z_1Z_2$









 $(b)(il) \quad x^{3} + 3x^{2}y - 2y^{3} = 16$ $\frac{d}{dx}(x^{3} + 3x^{2}y - 2y^{3}) = \frac{d}{dx}(16)$ $3x^{2} + 6xy + 3x^{2}\frac{dy}{dx} - 6y^{2}\frac{dy}{dx} = 0$ $x^{2} + 2xy + x^{2}\frac{dy}{dx} - 2y^{2}\frac{dy}{dx} = 0$

$$\frac{d}{dx}\left(x^2 - 2y^2\right) = -x^2 - 2xy$$

$$\frac{dy}{dx^2} = -\frac{(x^2 + 2xy)}{x^2 - 2y^2}$$

$$= \frac{x^2 + 2xy}{2y^2 - x^2}$$
(ii)
$$\frac{dy}{dx} = 0 \quad \text{for stationary points}$$

$$\frac{x^2 + 2xy}{2y^2 - x^2} = 0$$

$$x(x+2y) = 0$$

$$x = 0 \quad \text{or } -2y$$
When $x = 0$, $(0^3 + 3(0)^2 - 2y^3 = 16$

$$-2y^3 = 16$$

$$y^3 = -2$$

$$\therefore (0,-2) \text{ is a obtionary point}$$
Also, when $x = -2y$, $(-2y^3 + 3(-2y)^2 - 2y^3 = 16$

$$-8y^3 + 12y^3 - 2y^3 = 16$$

$$2y^3 = 2$$
When $y = 2$, $x = -2(2)$

$$= -4$$

$$\therefore (-4,2) \text{ is a stationary point}$$
So there are stationary point at $(0,-2)$ and $(-4,2)$

$$\frac{14}{4}$$

POLYNOMIALS $\Im(a) P(i) = (i)^6 - 6(i)^4 + 5(i)^2 + 12$ = -1 - 6 - 5 + 12= 0 $\therefore is a zero of P(a)$ Since the coefficients of P(x) are all real numbers, the conjugate of i, which is -i, is also a zero because Check: $P(-i) = (-i)^6 - 6(-i)^4 + 5(-i)^2 + 12$ b = 28=-1-6-5+12 (ii) Both (x-i) and (x+i) are factors of P(x) so we have $(x-i)(x+i) = x^2+1$ which is a factor of P(2) (iii) (a) $P(x) = (x^2+1)(x^2-3)(x^2-4)$ $=(a^2+1)(a^2-3)(a+2)(a-2)$ over the rational field & $(B) P(a) = (a^2+1)(a+53)(a-53)(a+2)(a-2)$ over the real field R (V) P(a) = (2+i)(2-i)(2+53)(2-53)(2+2)(2-2) over the complex field C

(b)(i) $p(x) = x^4 - 3x^3 + 7x^2 + ax + b$ $p'(x) = 4x^3 - 9x^2 + 14x + a$ $p'(2) = 4(2)^3 - q(2)^2 + 14(2) + a$ 0 = 32 - 36 + 28 + a a = -24Also, P(2) = 0He complex voots of P(2) must occur $0 = 2^4 - 3(2)^3 + 7(2)^2 - 24(2) + b$ in conjugate poirs 0 = 16 - 24 + 28 - 48 + b $\therefore p(x) = x^4 - 3x^3 + 7x^2 - 24x + 28$ (ii) $p'(x) = 4x^3 - 9x^2 + 14x$ $p^{\mu}(2) = |2x^2 - 18x + 14$ However, $p''(2) = 12(2)^2 - 18(2) + 14$ = 48-36+14 = 26 Because P(z) = 0 and P'(z) = 0but $P''(2) \neq 0$, 2 is a double, root of $P(\alpha)$

19

$$\begin{array}{c} (a) (c) \\ (a) (c) \\ (b) \\ (c) \\ (c$$

When
$$y = \frac{2c}{p+q}$$
.
 $x + p^{2}\left(\frac{2c}{p+q}\right) = 2cp$
 $x = 2cp - \frac{2cp^{2}}{p+q}$.
 $= \frac{2cp(p+q)}{p+q} - \frac{2cp^{2}}{p+q}$
 $= \frac{2cp(p+q)}{p+q} - \frac{2cp^{2}}{p+q}$
 $= \frac{2cp^{2} + 2pqc - 2cp^{2}}{p+q}$
 $= \frac{(\pm \sqrt{2}d), \pm \sqrt{2}d)$
 $= (\pm \sqrt{2}d, \pm \sqrt{2}d)$
 $= (\pm$

$$y - y_{1} = m(x - x_{1})$$

$$y - b + am\theta = \frac{b x e \theta}{a + a + \theta} (x - x_{1})$$

$$y - b + am\theta = \frac{b x e \theta}{a + a + \theta} (x - x_{1})$$

$$y = \frac{b}{a} \times$$

$$= \frac{b}{a} \times \frac{a}{sec\theta - tam\theta}$$

$$= \frac{b}{a} \times \frac{a}{sec\theta - tam\theta}$$

$$= \frac{b}{sec\theta - tam\theta}$$

$$= \frac{2b}{sec\theta}$$

$$= \frac{b}{sec\theta - tam\theta}$$

$$= \frac{2b}{sec\theta}$$

$$= \frac{2$$