THE SCOTS COLLEGE

MATHEMATICS EXTENSION II

YEAR 12 PRETRIAL

26^{TH} MARCH 2014

GENERAL INSTRUCTIONS

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- Show all necessary working in Section II

WEIGHTING
30\%

TOTAL MARKS

SECTION I (5 MARKS)

- Answers to be recorded on the multiple choice answer sheet provided
- Clearly label your answer sheet with your student number
- Allow about 10 minutes for this section

SECTION II (65 MARKS)

- Questions 6-9
- Answers to be recorded in the answer booklets provided
- Each question must be completed in a new answer booklet.
- Label each answer booklet with your student number and the question number attempted. Clearly indicate the booklet order if more than one booklet is used for a question. E.g. Book 1 of 2 and 2 of 2.

QUESTION 1

Consider a polynomial $P(x)$ of degree 3 and the two real numbers, a and b, such that the following three conditions hold true:

1) $a<b$
2) $P(a)>P(b)>0$
3) $P^{\prime}(a)=P^{\prime}(b)=0$

The polynomial $P(x)$ has:
(A) 3 real zeros
(B) 1 real zero γ such that $\gamma<a$
(C) 1 real zero γ such that $a<\gamma<b$
(D) 1 real zero γ such that $\gamma>b$

QUESTION 2

The shaded region of the Argand plane below represents the points where which of the following inequalities hold simultaneously?

(A) $\quad|\mathrm{z}| \leq 6$ and $\overline{4} \quad \arg (z) \quad \overline{4}$
(B) $|z| \leq 6$ and $\frac{-}{4} \quad \arg (z) \frac{3}{4}$
(C) $\quad|z| \geq \sqrt{6}$ and $\frac{-}{4} \arg (z) \quad \overline{4}$
(D) $\quad|z| \geq \sqrt{6}$ and $\frac{-}{4} \arg (z) \frac{3}{4}$

The graph $f(x)=\frac{1}{x^{2}+m x \quad n}$, where m and n are real constants, has no vertical asymptotes if:
(A) $m^{2}<4 n$
(B) $m^{2}>4 n$
(C) $m^{2}<4 n$
(D) $m^{2}>4 n$

QUESTION 4

The complex number ω is a root of the equation $z^{3}+1=0$. Which of the following is FALSE?
(A) ${ }^{-}$is also a root.
(B) ${ }^{2}+1=0$
(C) $\frac{1}{}$ is also a root.
(D) $(1)^{2}=1$

Given the equation of the hyperbola, \mathcal{H}, is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ has eccentricity e, then the ellipse, \mathcal{E}, with equation $\frac{x^{2}}{a^{2}+b^{2}}+\frac{y^{2}}{b^{2}}=1$ has which of the following as its eccentricity?
(A) e
(B) $\frac{1}{e}$
(C) \sqrt{e}
(D) e^{2}

```
QUESTION 6 (START A NEW ANSWER BOOKLET) 21 MARKS
```

a) Consider the complex number $z=x+i y$, where x and y are real, and the complex number $w=i z+\bar{z}$.
i) Find w in terms of x and y and hence show that $\operatorname{Re}(w)=\operatorname{Im}(w)$.
ii) Find all possible values of the principal argument of w.
iii) Given that x and y are both positive and $x<y$, draw vectors representing $z, i z, \bar{z}$ and w on an Argand diagram.
b) Let $z=12$ cis $\frac{13 \pi}{15}$ and $w=3$ cis $\frac{\pi}{5}$
i) Evaluate $\frac{z}{w}$ and express your answer in the form $a+i b$.
ii) Explain why $\frac{z^{3}}{w^{3}}$ is a real number.
c) The locus of z is the region simultaneously satisfied by the following conditions:

$$
|z-i| \leq 2 \quad \& \quad \operatorname{Im}(z) \quad 1
$$

i) Draw a neat sketch of the locus on an Argand diagram.
ii) Find the values of z for which $|z|$ is a maximum and justify your answer.
d) OABC is a quadrilateral in the complex plane. The complex numbers, $0, z, v$ and w are represented by $\mathrm{O}, \mathrm{A}, \mathrm{B}$ and C respectively. $\mathrm{K}, \mathrm{L}, \mathrm{M}$ and N are the midpoints of $\mathrm{OA}, \mathrm{AB}, \mathrm{BC}$ and CO respectively.

i) Show that the complex number represented by L is $\frac{v+z}{2}$.
ii) Find similar results for K, M and N and hence calculate the complex numbers representing the vectors $\overrightarrow{N M}$ and $\overrightarrow{K L}$ and show that they are equal.
iii) What type of quadrilateral is KLMN? Justify your answer.
e) The Argand diagram below shows the points A and B, which represent the complex numbers z_{1} and z_{2} respectively. Given that $B O A$ is a right-angled, isosceles triangle, prove that $\left(z_{1}+z_{2}\right)^{2}=2 z_{1} z_{2}$.

a) The diagram below shows the graph of the function $y=f(x)$.

Draw a one half-page sketch for each of the following. Make sure you indicate all significant features.
i) $y=f(-x)$
ii) $\quad y=|f(x)|$
iii) $y=\frac{1}{f(x)}$
iv) $y=[f(x)]^{2}$
v) $y^{2}=f(x)$
b) Consider the curve $x^{3}+3 x^{2} y-2 y^{3}=16$
i) Show that $\frac{d y}{d x}=\frac{x^{2}+2 x y}{2 y^{2}-x^{2}}$
ii) Find the coordinates of the stationary points on the curve. You do not need to determine the nature of the stationary points.
a) Consider the polynomial $P(x)=x^{6}-6 x^{4}+5 x^{2}+12$
i) Show that i is a zero of $P(x)$ and explain why $-i$ is also a zero of $P(x)$.
ii) Explain why $\left(x^{2}+1\right)$ is a factor of $P(x)$.
iii) Given that $x^{4}-7 x^{2}+12=\left(x^{2}-3\right)\left(x^{2}-4\right)$, factorise $P(x)$ over:
α) the rational field Q
β) the real field R
γ) the complex field C
b) The polynomial $P(x)=x^{4} \quad 3 x^{3}+7 x^{2}+a x+b$ has real coefficients.
i) Given that 2 is a multiple zero of $P(x)$, find the values of a and b.
ii) Explain why 2 is a double zero of $P(x)$

QUESTION 9
(START A NEW ANSWER BOOKLET) 21 MARKS
a) The equation of an ellipse is $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$.
i) Show that the eccentricity of the ellipse is $\frac{4}{5}$ and determine the foci and directrices of the ellipse.
ii) Draw a neat sketch of the ellipse showing significant features.
b) $\mathrm{P}\left(c p, \frac{c}{p}\right)$ and $\mathrm{Q}\left(c q, \frac{c}{q}\right)$ lie on the rectangular hyperbola $x y=c^{2}$. The tangents at the points P and Q meet at the point T .
i) Show that the equation of the tangent at P is $x+p^{2} y=2 c p$.
ii) Show that the coordinates of T are $\left(\frac{2 p q c}{p+q}, \frac{2 c}{p+q}\right)$.
iii) If $q=3 p$, show that the locus of T is a rectangular hyperbola and find its foci.
c) The equation of the hyperbola, \mathcal{H}, is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. The tangent at the point P with coordinates $(a \sec \theta, b \tan \theta)$ on \mathcal{H} cuts the asymptotes at A and B as shown in the diagram below.

i) Write down the equations of the asymptotes.
ii) Show that the equation of AP is $\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1$
iii) Show that AP crosses the x-axis at the point $\left(\frac{a}{\sec \theta}, 0\right)$.
iv) Show that A is the point $\left(\frac{a}{\sec \theta-\tan \theta}, \frac{b}{\sec \theta-\tan \theta}\right)$.
v) Given that B is the point $\left(\frac{a}{\sec \theta+\tan \theta},-\frac{b}{\sec \theta+\tan \theta}\right)$, find the exact area of $\triangle \mathrm{OAB}$.

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, \quad x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, \quad a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, \quad a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, \quad a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, \quad a \neq 0 \\
\int \frac{\sec ^{2} a x \tan a x d x}{}=\frac{1}{a} \sec a x, \quad a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin -\frac{x}{a}, \quad a>0, \quad-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
\int
\end{array}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

THE SCOTS COLLEGE-2014-MATHEMATICS EXTENSION 2 MATHEMATICS PRETRIAL HIC

CANDIDATE NUMBER:

Section I - Multiple Choice Answer Sheet (5 Marks)

Mark the correct answer by filling in the circle. To make a correction, neatly place a cross over the circle and then fill in the correct circle.

EXAMPLE:

○

C
D

- 0
A
B
C
D

Question 1

0
0
0
0

Question 2

0
0
0
0
Question 3
0
0
0
0

Question 4

\circ
○
0
0

Question 5

0
0
0
0

Mathematics Extension 2 - Pretrial 2014
section 1:
(1) $B: P(x)$ has 1 real zero γ such that $\gamma<\alpha$

$a<b, P(a)>P(b)>0$ and

$$
p^{\prime}(a)=p^{\prime}(b)=0
$$

(2) $B:|z| \leqslant 6$ and $\frac{\pi}{4} \leqslant \arg z \leqslant \frac{3 n}{4}$
(3) A: $f(x)=\frac{1}{x^{2}+m x-n}$

For $f(x)$, to here no vertical asymptotes, we need $\Delta<0$ for $x^{2}+m x-n$

$$
\begin{aligned}
\Delta & <0 \\
m^{2}-4(1)(-n) & <0 \\
m^{2}+4 n & <0 \\
m^{2} & <-4 n
\end{aligned}
$$

$$
\text { (4) } \quad \begin{aligned}
D: \quad z^{3}+1 & =0 \\
z^{3} & =-1
\end{aligned}
$$

$$
z^{3}=\cos (\pi+2 k \pi)+i \sin (\pi+2 k \pi
$$

$$
\text { for } k=0,1,2
$$

$$
z=\cos \left(\frac{\pi+2 h \pi}{3}\right)+i \sin \left(\frac{n+2 h \pi}{3}\right)
$$

$$
=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}
$$

$$
\cos \pi+i \sin \pi \text { or }
$$

$$
\cos \frac{\frac{5 \pi}{3}}{3}+i \sin \frac{5 \pi}{3}
$$

$=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3},-1$ or $\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}$
$\therefore \bar{\omega}$ is a root
$\frac{1}{w}$ is a root
Also, $w^{3}+1=0$

$$
(w+1)\left(w^{2}-w+1\right)=0
$$

So $\quad \omega^{2}+1-w=0$
But if $w=-1,(w-1)^{2}=(-1-1)^{2}$

$$
\begin{aligned}
& =(-2)^{2} \\
& =4 \\
& \neq-1
\end{aligned}
$$

So D is false
(5) B: For the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
we have

$$
\begin{aligned}
b^{2} & =a^{2}\left(e^{2}-1\right) \\
\frac{b^{2}}{a^{2}} & =e^{2}-1 \\
e^{2} & =1+\frac{b^{2}}{a^{2}} \\
& =\frac{a^{2}+b^{2}}{a^{2}} \\
e & =\frac{\sqrt{a^{2}+b^{2}}}{a}
\end{aligned}
$$

For the ellipse $\frac{x^{2}}{a^{2}+b^{2}}+\frac{y^{2}}{b^{2}}=1$ we have $b^{2}=\left(a^{2}+b^{2}\right)\left(1-E^{2}\right)$

$$
\begin{aligned}
\frac{b^{2}}{a^{2}+b^{2}} & =1-E^{2} \\
E^{2} & =1-\frac{b^{2}}{a^{2}+b^{2}} \\
& =\frac{a^{2}+b^{2}-b^{2}}{a^{2}+b^{2}} \\
& =\frac{a^{2}}{a^{2}+b^{2}} \\
E & =\frac{a}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{1}{e}
\end{aligned}
$$

Altematively:
Hyperbolue have eccentricity e such that $e>1$
So $-e<0$

$$
\frac{1}{e}<1
$$

$$
\sqrt{e}>1
$$

and $e^{2}>1$
Ellipses have eccentricity e such that $0<e<1$
$\therefore \quad \frac{1}{e}$ is the ellipse eccentricity

(6) Complex Numbers

$$
\text { (a)(i) } \begin{aligned}
w & =i z+\bar{z} \\
& =i(x+i y)+x-i y \\
& =i x-y+x-i y \\
& =x-y+i(x-y) \\
\operatorname{Re}(w) & =x-y \\
& =\operatorname{Im}(w)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \text { If } \operatorname{Re}(\omega)=\operatorname{Im}(\omega) \text {, then } \\
& \arg \omega=\frac{\pi}{4} \text { or } \frac{-3 \pi}{4}
\end{aligned}
$$

(iii)

(b)

$$
\begin{aligned}
\frac{z}{\omega} & =\frac{12 \operatorname{cis} \frac{13 \pi}{15}}{3 \operatorname{cis} \frac{\pi}{5}} \\
& =\frac{12}{3} \times \operatorname{cis}\left(\frac{13 \pi}{15}-\frac{\pi}{5}\right) \\
& =4 \times \operatorname{cis}\left(\frac{13 \pi}{15}-\frac{3 \pi}{15}\right) \\
& =4 \operatorname{cis}\left(\frac{10 \pi}{15}\right) \\
& =4 \operatorname{cis} \frac{2 \pi}{3} \\
& =4\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) \\
& =4\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \\
& =-2+2 \sqrt{3} i
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{z^{3}}{w^{3}} & =\left(\frac{z}{\omega}\right)^{3} \\
& =\left(4 \operatorname{cis} \frac{2 \pi}{3}\right)^{3} \\
& =4^{3} \times \operatorname{cis}\left(\frac{3 \times 2 \pi}{3}\right) \quad J \\
& =64 \operatorname{cis} 2 \pi \\
& =64(\cos 2 \pi+i \sin 2 \pi) \\
& =64(1+0 i) \\
& =64 \text { which is a real number }
\end{aligned}
$$

(ii) The points in the region furthest from the origin are where the line $\operatorname{Im}(z)=$ intersects the circle, so $|z|$ would be at a maximum value

$$
\begin{aligned}
& \text { at a maximum value } \\
& \therefore z=-2+i \text { or } 2+i \sqrt{ } /
\end{aligned}
$$

(d) (i) $A L=\frac{1}{2} A B$
because L is the midpoint of $A B$

$O L=O A+A L$ (vector addition)

$$
\begin{aligned}
& =z+\frac{1}{2}(v-z) \\
& =\frac{2 z+v-z}{2} \\
& =\frac{v+z}{2}
\end{aligned}
$$

So L is represented by the complex number $\frac{v+z}{2}$
(ii) Similarly, K, M and N are represented' by the complex numbers

$$
\begin{aligned}
& \frac{z}{2}, \frac{v+w}{2} \text { and } \frac{w}{2} \\
& \begin{aligned}
\text { respectively }
\end{aligned} \\
& =\begin{aligned}
\overrightarrow{N M} & =\frac{v+w}{2}-\frac{w}{2} \\
\overrightarrow{K L} & =\frac{v+z}{2}-\frac{v}{2} \\
& =\frac{v}{2} \\
\text { So } \overrightarrow{N M} & =\overrightarrow{K L}^{2}
\end{aligned}
\end{aligned}
$$

(e) Since $\triangle B O A$ is vight-angled and isosceles, we have

$$
\begin{aligned}
z_{2} & =i z_{1} \\
\therefore\left(z_{1}+z_{2}\right)^{2} & =\left(z_{1}+i z_{1}\right)^{2} \\
& =z_{1}^{2}+2 i z_{1}^{2}+i^{2} z_{1}^{2} \\
& =z_{1}^{2}+2 i z_{1}^{2}-z_{1}^{2} \\
& =2 i z_{1}^{2} \\
& =2 \times z_{1} \times i z_{1} \\
& =2 \times z_{1} \times z_{2} \\
& =2 z_{1} z_{2}
\end{aligned}
$$

(iii) Because $\overrightarrow{N M}=\overrightarrow{K L}$, then

$$
N M=K L(\text { in length }) \text { and }
$$

$$
N M / / K L \text { (parallel) }
$$

So KLMN is a parallelogram because it has an equal pair of opposite sides which are parallel
(7) Graphs
(a) (i) $y=f(-x)$

(ii) $y=|f(x)|$

(iii) $y=\frac{1}{f(x)}$

(iv)

(v)

$$
\begin{aligned}
& \text { (b) (id) } \\
& x^{3}+3 x^{2} y-2 y^{3}=16 \\
& \frac{d}{d x}\left(x^{3}+3 x^{2} y-2 y^{3}\right)=\frac{d}{d x}(16) \\
& 3 x^{2}+6 x y+3 x^{2} \frac{d y}{d x}-6 y^{2} \frac{d y}{d x}=0 \\
& x^{2}+2 x y+x^{2} \frac{d y}{d x}-2 y^{2} \frac{d y}{d x}=0
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{d x}\left(x^{2}-2 y^{2}\right) & =-x^{2}-2 x y \\
\frac{d y}{d x} & =\frac{-\left(x^{2}+2 x y\right)}{x^{2}-2 y^{2}} \\
& =\frac{x^{2}+2 x y}{2 y^{2}-x^{2}}
\end{aligned}
$$

(ii) $\frac{d y}{d x}=0$ for stationary points

$$
\begin{aligned}
x^{2}+2 x y & =0 \\
x(x+2 y) & =0 \\
x & =0 \text { or }-2 y
\end{aligned}
$$

when $x=0$,

$$
\begin{aligned}
(0)^{3}+3(0)^{2} y-2 y^{3} & =16 \\
-2 y^{3} & =16 \\
y^{3} & =-8 \\
y & =-2
\end{aligned}
$$

$\therefore(0,-2)$ is a stationary point
Also, when $x=-2 y, \quad(-2 y)^{3}+3(-2 y)^{2} y-2 y^{3}=16$

$$
\begin{aligned}
-8 y^{3}+12 y^{3}-2 y^{3} & =16 \\
2 y^{3} & =16 \\
y^{3} & =8 \\
y & =2
\end{aligned}
$$

when $y=2, \quad x=-2(2)$

$$
=-4
$$

$\therefore(-4,2)$ is a stationary point
So there are stationary points at $(0,-2)$ and $(-4,2)$
(4) POLNOMIALS
(8) (a)

$$
\begin{aligned}
P(i) & =(i)^{6}-6(i)^{4}+5(i)^{2}+12 \\
& =-1-6-5+12 \\
& =0
\end{aligned}
$$

$\therefore i$ is a zero of $P(x)$
Since the coefficients of $P(x)$ are all real numbers, the conjugate of i, which is $-i$, is also a zero because the complex roots of $P(x)$ must occur in conjugate pairs
Check:

$$
\begin{aligned}
P(-i) & =(-i)^{6}-6(-i)^{4}+5(-i)^{2}+12 \\
& =-1-6-5+12 \\
& =0
\end{aligned}
$$

(ii) Both $(x-i)$ and $(x+i)$ are factors of $P(x)$ so we have

$$
(x-i)(x+i)=x^{2}+1
$$

which is a factor of $P(x) \downarrow$
(iii) ($\alpha) P(x)=\left(x^{2}+1\right)\left(x^{2}-3\right)\left(x^{2}-4\right)$

$$
=\left(x^{2}+1\right)\left(x^{2}-3\right)(x+2)(x-2)
$$

over the rational field $Q d$
(B) $P(x)=\left(x^{2}+1\right)(x+\sqrt{3})(x-\sqrt{3})(x+2)(x-2)$ over the real field $\mathbb{R} \quad V$
($\gamma) P(x)=(x+i)(x-i)(x+\sqrt{3})(x-\sqrt{3})(x+2)(x-2)$ over the complex field (C

$$
\begin{aligned}
& \text { (b)(1) } p(x)=x^{4}-3 x^{3}+7 x^{2}+a x+b \\
& P^{\prime}(x)=4 x^{3}-9 x^{2}+14 x+a \\
& p^{\prime}(2)=4(2)^{3}-9(2)^{2}+14(2)+a \\
& 0=32-36+28+a \\
& a=-24
\end{aligned}
$$

Also, $p(2)=0$

$$
\begin{aligned}
& 0=2^{4}-3(2)^{3}+7(2)^{2}-24(2)+b \\
& 0=16-24+28-48+b \\
& b=28
\end{aligned}
$$

$$
\therefore P(x)=x^{4}-3 x^{3}+7 x^{2}-24 x+28
$$

(i)

$$
\begin{aligned}
& p^{\prime}(x)=4 x^{3}-9 x^{2}+14 x \\
& p^{\prime \prime}(x)=12 x^{2}-18 x+14
\end{aligned}
$$

However,

$$
\begin{aligned}
p^{\prime \prime}(2) & =12(2)^{2}-18(2)+14 \\
& =48-36+14 \\
& =26 \\
& \neq 0
\end{aligned}
$$

Because $P(2)=0$ and $p^{\prime}(2)=0$
but $p^{\prime \prime}(2) \neq 0,2$ is a double, root of $P(x)$
(9)

CONICS
(a) (i)

$$
\begin{aligned}
b^{2} & =a^{2}\left(1-e^{2}\right) \\
9 & =25\left(1-e^{2}\right) \\
\frac{9}{25} & =1-e^{2} \\
e^{2} & =\frac{16}{25} \\
e & =\sqrt{\frac{6}{25}} \\
& =\frac{4}{5}
\end{aligned}
$$

foci are $(\pm a e, 0)$

$$
=\left(\pm 5 \times \frac{4}{5}, 0\right)
$$

$$
=(-4,0) \text { and }(4,0)
$$

directrices are $x=\neq \frac{a}{e}$

$$
\begin{aligned}
& = \pm \frac{5}{4 / 5} \\
& = \pm 5 \times \frac{5}{4} \\
& =-\frac{25}{4} \text { and } \frac{25}{4}
\end{aligned}
$$

(ii)

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

(b) (i)

$$
\begin{aligned}
x y & =c^{2} \\
y & =\frac{c^{2}}{x} \\
& =c^{2} x^{-1} \\
\frac{d y}{d x} & =-\frac{c^{2}}{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\text { At } p\left(c p, \frac{c}{p}\right), \frac{d y}{d x} & =-\frac{c^{2}}{(c p)^{2}} \\
& =-\frac{c^{2}}{c^{2} p^{2}}
\end{aligned}
$$

$$
=-\frac{1}{p^{2}}
$$

$\therefore y-y_{1}=m\left(x-x_{1}\right)$

$$
y-\frac{c}{p}=-\frac{1}{p^{2}}(x-c p)
$$

$$
p^{2} y-c p=-x+c p
$$

$$
x+p^{2} y=2 c p
$$

is the equation of the tangent at P
(ii) The tangent at Q has equation

$$
x+q^{2} y=2 c q
$$

So we have

$$
\begin{align*}
& x+p^{2} y=2 c p \tag{1}\\
& x+q^{2} y=2 c q \tag{2}
\end{align*}
$$

(1) -(2):

$$
\begin{aligned}
&-(2): \\
&\left(p^{2}-q^{2}\right) y=2 c(p-q) \\
&(p+q)(p-q) y=2 c(p-q) \\
& y=\frac{2 c}{p+q}
\end{aligned}
$$

when $y=\frac{2 c}{p+q}$

$$
\begin{aligned}
x+p^{2}\left(\frac{2 c}{p+q}\right) & =2 c p \\
x & =2 c p-\frac{2 c p^{2}}{p+q} \\
& =\frac{2 c p(p+q)-2 c p^{2}}{p+q} \\
& =\frac{2 c p^{2}+2 p q c-2 c p^{2}}{p+q} \\
& =\frac{2 p q c}{p+q}
\end{aligned}
$$

So T is the point $\left(\frac{2 p q c}{p+q}, \frac{2 c}{p+q}\right)$
(iii) If $q=3 p$

$$
\begin{aligned}
T & =\left(\frac{2 p(3 p) c}{p+}, \frac{2 c}{p+3 p}\right) \\
& =\left(\frac{6 p^{2} c}{4 p}, \frac{2 c}{4 p}\right) \\
& =\left(\frac{3 p c}{2}, \frac{c}{2 p}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { If } y & =\frac{c}{2 p} \\
p & =\frac{c}{2 y}
\end{aligned}
$$

and $x=\frac{3 p c}{2}$

$$
=\frac{3 c}{2} \times \frac{c}{2 y}
$$

$$
=\frac{3 c^{2}}{4 y}
$$

$$
\therefore x y=\frac{3 c^{2}}{4}
$$

This is a rectangular hyperbola

$$
\begin{aligned}
x y & =\left(\frac{\sqrt{3}}{2} c\right)^{2} \\
& =d^{2} \text { for } d=\frac{\sqrt{3} c}{2}
\end{aligned}
$$

Foci of a rectangular hyperbola are at the points $(\pm a, \pm a)$

$$
\begin{aligned}
= & (\pm \sqrt{2} d, \pm \sqrt{2} d) \\
= & \left(\pm \sqrt{2} \times \frac{\sqrt{3}}{2} c, \pm \sqrt{2} \times \frac{\sqrt{3}}{2} c\right) \\
= & \left(-\frac{\sqrt{6}}{2} c,-\frac{\sqrt{6}}{2} c\right) \text { and } \\
& \quad\left(\frac{\sqrt{6}}{2} c, \frac{\sqrt{6}}{2} c\right)
\end{aligned}
$$

(c) (i) Asymptotes: $y=-\frac{b x}{a}$ and $y=\frac{b x}{a}$
(ii)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right) & =\frac{d}{d x}(1) \\
\frac{2 x}{a^{2}}-\frac{2 y}{b} \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =\frac{b^{2} x}{a^{2} y}
\end{aligned}
$$

At $P(a \sec \theta, b \tan \theta)$;

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{b^{2}}{a^{2}} \times \frac{a \sec \theta}{b \tan \theta} \\
& =\frac{b \sec \theta}{a \tan \theta}
\end{aligned}
$$

$$
\begin{aligned}
\therefore y-y_{1} & =m\left(x-x_{1}\right) \\
y-b \tan \theta & =\frac{b \sec \theta}{a \tan \theta}(x-a \sec \theta) \\
\operatorname{aytan} \theta-a b \tan ^{2} \theta & =b x \sec \theta-a b \sec ^{2} \theta
\end{aligned}
$$

$a b \sec ^{2} \theta-a b \tan ^{2} \theta=b x \sec \theta-a y \tan \theta$
$a b\left(\sec ^{2} \theta-\tan ^{2} \theta\right)=b x \sec \theta-a y \tan \theta$
$a b=b x \sec \theta-a y \tan \theta$
$1=\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b /}$
(iii) When $y=0$,

$$
\begin{aligned}
& 1=\frac{x \sec \theta}{a} \\
& a=x \sec \theta \\
& x=\frac{a}{\sec \theta}
\end{aligned}
$$

So AP cosses the x-axis at the point $\left(\frac{a}{\sec \theta}, 0\right)$
(iii) $A+A$, we have $y=\frac{b x}{a}$

$$
\begin{aligned}
& \text { i) At A, we have } y=\frac{x}{a} \\
& \therefore \frac{x \sec \theta}{a}-\left(\frac{b x}{a}\right) \frac{\tan \theta}{b}=1=a b \operatorname{cunits}^{2} \\
& \frac{x \sec \theta}{a}-\frac{x \tan \theta}{a}=1 \\
& x(\sec \theta-\tan \theta)=a \\
& x=\frac{a}{\sec \theta-\tan \theta}
\end{aligned}
$$

$\therefore A$ is the point $\left(\frac{a}{\sec \theta-\tan \theta}, \frac{b}{\sec \theta-\tan \theta}\right)$.
(v) Area $\triangle O A B=$ Area $\triangle O A X+$ Area $\triangle O B X$

Taking $O X$ as the base length of each triangle, we have

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} \times \text { base } \times\left(\text { height }_{1}+\text { height }_{2}\right) \\
& =\frac{1}{2} \times \frac{a}{\sec \theta} \times\left(\frac{b}{\sec \theta-\tan \theta}+\frac{b}{\sec \theta+\tan \theta}\right) \\
& =\frac{a}{2 \sec \theta}\left(\frac{b(\sec \theta+\tan \theta)+b(\sec \theta-\tan \theta)}{\sec ^{2} \theta-\tan ^{2} \theta}\right.
\end{aligned}
$$

$$
=\frac{a}{2 \sec \theta} \times \frac{2 b \sec \theta}{1}
$$

$$
=\frac{2 a b \sec \theta}{2 \sec \theta}
$$

