THE SCOTS COLLEGE

MATHEMATICS EXTENSION II

YEAR 12 PRETRIAL

23TH MARCH 2015

GENERAL INSTRUCTIONS

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- Show all necessary working in Section II

WEIGHTING

30%

TOTAL MARKS

70

SECTION I (7 MARKS)

- Answers to be recorded on the multiple choice answer sheet provided
- Clearly label your answer sheet with your student number
- Allow about 10 minutes for this section

SECTION II (63 MARKS)

- Questions 8 11
- Answers to be recorded in the answer booklets provided
- Each question must be completed in a new answer booklet.
- Label each answer booklet with your student number and the question number attempted. Clearly indicate the booklet order if more than one booklet is used for a question. E.g. Book 1 of 2 and 2

Section 1

Question 1

The equation of a conic is $25x^2 - 16y^2 = -400$. The eccentricity of the conic is given by

A.
$$e = \frac{\sqrt{14}}{5}$$
 B. $e = \frac{\sqrt{41}}{15}$ **C**. $e = \frac{\sqrt{21}}{5}$ **D**. $e = \frac{\sqrt{41}}{5}$

Question 2

If
$$e^{x+y} = xy$$
 then $\frac{dy}{dx} =$

- $A. \qquad \frac{y^{1-x}}{x^{y-1}}$
- $\mathbf{B}. \qquad \frac{y(x-1)}{x(y-1)}$
- $\mathbf{C}. \qquad \frac{y(1-x)}{x(y-1)}$
- $\mathbf{D}. \qquad \frac{x(1-y)}{y(x-1)}$

Question 3

If
$$z^2 = 4cis\left(\frac{4\pi}{3}\right)$$
 then $z =$

A. $1 - \sqrt{3}i \ or \ -1 + \sqrt{3}i$

B.
$$3 + i \ or \ -3 - i$$

C.
$$-1 + \sqrt{3}i \ or \ -1 - \sqrt{3}i$$

D.
$$3 - i \ or - 3 + i$$

Question 4

If $P(z) = z^3 - 2z^2 + 4z - 8$, and $z \in C$ then a linear factor of P(z) is

A. z + 2i **B**. z + 2 **C**. 2i **D**. 2

Question 5

Which one of the graphs below represents $|y| = |\sin x|$?

С.

Question 6

Let α,β,γ be the roots of the equation $x^3+4x^2-3x+1=0$. The equation with roots $\alpha^{-1},\beta^{-1},\gamma^{-1}$ is

- **A**. $x^3 + 4x^2 3x + 1 = 0$
- **B**. $x^3 3x^2 + 4x + 1 = 0$

C. $x^3 - 8x^2 + 12x + 3 = 0$

D.
$$x^3 - 4x^2 + 8x - 3 = 0$$

Question 7

The line y = mx + c will touch the hyperbola xy = k if and only if

- **A**. $c^2 4mk = 0$
- $\mathbf{B}. \qquad c^2 + 4mk = 0$

$$\mathbf{C}. \qquad k^2 + 4mc = 0$$

D. $m^2 + 4ck = 0$

Question 8 (Marks 13)

a) Given the complex numbers $z_1 = \frac{p}{1+2i}$ and $z_2 = \frac{q}{1+i}$ where p and q are real, find [3] p and q if $z_1 - z_2 = 4i$.

b) Show that $z^n + z^{-n} = 2\cos n\theta$ where $z = \cos \theta + i\sin \theta$. [4] Hence or otherwise show that

$$\cos^4\theta = \frac{\cos 4\theta + 4\cos 2\theta + 3}{8}$$

c) The locus of a point (x, y), which moves in the complex plane is represented by [3] |z - 3i| = 2.

[3]

- i) Sketch the locus on an Argand diagram.
- ii) Show that the minimum value of $\arg z$ is $\cos^{-1}\left(\frac{2}{3}\right)$.
- iii) Find the modulus of z when P is in the position of minimum argument.

d)

Triangle *ABC* is drawn on the Argand plane, where $\angle BAC = 45^{\circ}$, *A* represents the complex number 10 + 2i and *B* represents 6 + 8i.

If the length of the side AC is twice the length of AB then find the complex number that point C represents.

Question 9 [marks 10]

- (a) Consider the function $(x) = \frac{e^x 1}{e^x + 1}$.
 - i) Show that the function is odd.
 - ii) Show that the function is always increasing.
 - iii) Find f'(0).
 - iv) Sketch f(x) showing any asymptotes.
 - v) Use your graph to find the values of k for which $\frac{e^x 1}{e^x + 1} = kx$ has 3 real solutions.
- (b) Given $f(x) = 1 x^2$, without using any calculus, draw neat sketches of the following [3] curves showing intercepts, asymptotes and turning points. The sketches should be about half a page each.

i)
$$y = \frac{1}{f(x)}$$

ii) $y = e^{f(x)}$

Question 10 [marks 21]

- a) i) Show that the point $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$ [6]
 - ii) Find the equation of the tangent to above ellipse at *P*.

iii) Q is a point on the circle $x^2 + y^2 = a^2$ having the same x value as P. Write down the coordinates of Q.

iv) Show that the tangents at P and Q (provided $\neq \frac{\pi}{2}$) meet on the x - axis.

b) The hyperbola has equation $\frac{x^2}{16} - \frac{y^2}{9} = 1$.

i) Sketch the hyperbola showing the coordinates of its foci, the equation of it's directrices and asymptotes.

ii) $P(4 \sec \theta, 3 \tan \theta)$, is a point on the hyperbola. Perpendiculars form P to the asymptotes meet these lines in M and N. Prove that PM.PN is independent of the position of P.

- c) The point $P\left(cp, \frac{c}{p}\right)$ lies on the rectangular hyperbola $xy = c^2$ in the first quadrant. The [9] tangent to the hyperbola at the point P, crosses the x axis at the point A and the y axis at the point B.
 - i) Find the equation of the tangent to the hyperbola at the point *P*.
 - ii) Show that the equation to the normal to the hyperbola at the point P is

$$p^3x - py = cp^4 - c$$

iii) If the normal at P meets the other branch of the hyperbola at the point Q, determine the coordinates of Q.

iv) Show that the area of the triangle ABQ is

$$c^2 \left(p^2 + \frac{1}{p^2} \right)^2$$

v) Prove that the area of this triangle is a minimum when p = 1.

Question 11 [marks 19]

a) For what values of r is z - ri a factor of $P(z) = z^4 - z^3 + 9z^2 - 4z + 20$? [4]

Hence or otherwise, solve P(z) = 0, $r \neq 0$ over the set of Complex numbers.

b) Given that
$$P(x) = x^3 + 3px + q$$
 has a factor of $(x - k)^2$, [4]

- i) Show that $p = -k^2$
- ii) Find q in terms of k.
- iii) Hence verify that $4p^3 + q^2 = 0$.

c) If α , β and γ are the roots of $x^3 - x^2 - 4x + 1 = 0$ find the equation whose [4] roots are $\alpha + \beta - \gamma$, $\beta + \gamma - \alpha$, and $\gamma + \alpha - \beta$. Hence evaluate $(\alpha + \beta - \gamma)(\beta + \gamma - \alpha)(\gamma + \alpha - \beta)$.

d) Given
$$\frac{3-x}{(1+6x)(1+2x)^2} = \frac{c_1}{(1+6x)} + \frac{c_2}{1+2x} + \frac{c_3}{(1+2x)^2}$$
, [3]

Find c_1 , c_2 and c_3 .

e) Show that if the equation $x^n - ax^2 + b = 0$ has a multiple root, then [4]

$$n^n b^{n-2} = 4a^n(n-2)^{n-2}$$
.

End of Exam

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_e x, x > 0$$

THE SCOTS COLLEGE-2015-MATHEMATICS EXTENSION 2 MATHEMATICS PRE-TRIAL HSC

CANDIDATE NUMBER:

SECTION I – MULTIPLE CHOICE ANSWER SHEET (7 MARKS)

Mark the correct answer by filling in the circle. To make a correction, neatly place a cross over the circle and then fill in the correct circle.

EXAMPLE:	А	В	С	D	
	0	X	•	0	
		-			
		Α	В	С	D
Question 1		0	0	0	0
Question 2		0	0	0	0
Question 3		0	0	0	0
Question 4		0	0	0	0
Question 5		0	0	0	0
Question 6		0	0	0	0
Question 7		0	0	0	0

$$\begin{array}{c} \underbrace{\textcircled{0}} \underbrace{\textcircled{0}}_{i} & z_{i} = \underbrace{\oiint{0}}_{i+2i} & z_{2} = \underbrace{\oiint{0}}_{i+i} \\ z_{i} = \underbrace{\oiint{0}}_{i+2i} \underbrace{x_{i-2i}}_{i-2i} & z_{2} = \underbrace{\image{0}}_{i+i} \underbrace{x_{i-i}}_{i+i} \\ = \underbrace{\varliminf{0}}_{i+2i} \underbrace{\overbrace{i-2i}}_{i-2i} & z_{2} = \underbrace{\image{0}}_{i+i} \underbrace{x_{i-i}}_{i+i} \\ = \underbrace{\varliminf{0}}_{i+2i} \underbrace{\Huge{0}}_{i-2i} & = \underbrace{\image{0}}_{i+i} \underbrace{\Huge{0}}_{i+i} \\ \underbrace{\Huge{0}}_{i-2pi} = \underbrace{\Huge{0}}_{i-2i} & = \underbrace{\Huge{0}}_{i-9i} \\ \underbrace{\Huge{0}}_{i-2pi} & = \underbrace{\Huge{0}}_{i-9i} \underbrace{\Huge{0}}_{i-2i} \\ \underbrace{\Huge{0}}_{i-2pi} & = \underbrace{\Huge{0}}_{i-9i} \underbrace{\overbrace{0}}_{i-2i} \\ \underbrace{\Huge{0}}_{i-2pi} & = \underbrace{\operatornamewithlimits{0}}_{i-2i} \\ \underbrace{\vcenter{0}}_{i-2pi} & = \underbrace{\operatornamewithlimits{0}}_{i-2i} \\ \underbrace{\vcenter{0}}_{i-2pi} & = \underbrace{\operatornamewithlimits{0}}_{i-2i} \\ \underbrace{\overbrace{0}}_{i-2pi} & = \underbrace{\operatornamewithlimits{0}}_{i-2pi} \\ \underbrace{\overbrace{0}}_{i-2pi} \\ \underbrace{1}_{i-2pi} \\ \underbrace{1}_{i-2$$

С
C
A
C
B

1) Solutions ExT2

(2) Let
$$Z = \cos \theta + i \sin \theta$$

 $\therefore Z^{-1} = \cos \theta - i \sin \theta$
 $Z + Z^{-1} = 2 \cos \theta - (1)$
Now $Z^{2} + Z^{-2} = (Gre \theta + i \sin \theta)^{2} + (i \cos \theta - i \sin \theta)^{2}$
 $= Cre^{2} + 2 i \sin \theta \cos \theta - \sin^{2} \theta$
 $+ (r_{1}^{-2} \theta - 2 i \sin \theta \cos \theta - \sin^{2} \theta)$
 $= 2 (cre^{2} \theta - \sin^{2} \theta)$
 $= 16 (cre^{4} \theta)$
 $\Rightarrow (cre^{4} + z^{-4}) + 4z^{2} + 6 + 4z^{-2} = 16 (cre^{4} \theta)$
 $\Rightarrow 2 (cre^{4} \theta - 4z^{-2}) + 6 = 16 (cre^{4} \theta)$
 $\Rightarrow 2 (cre^{4} \theta - 4z^{-2}) + 6 = 16 (cre^{4} \theta)$
 $\Rightarrow 2 (cre^{4} \theta - 4z^{-2}) + 6 = 16 (cre^{4} \theta)$
 $\Rightarrow 2 (cre^{4} \theta - 4z^{-2}) + 6 = 16 (cre^{4} \theta)$
 $\Rightarrow cre^{4} \theta - 4z^{-2} \theta + 4z^{-2} \theta$

$$\begin{array}{l} (3) & (1) \\ (2) & (1) \\ (2) & (1) \\ (2) & (1) \\ (2) & (1) \\ (2) & (1) \\ (2) \\$$

V) OLKL 1/2

G10
a) (i)
$$\frac{\pi^{2}}{4} + \frac{y^{2}}{6b} = 1$$

 $k \cdot 4s = \frac{a^{2}(\alpha \cdot 2)}{a^{2}} + \frac{b^{2}b^{2}b^{2}}{b^{2}}$
 $(a^{2} a + sin^{2} \theta)$
 $= 1 = R + 5$.
i) P levo on the ellipse
ii)
 $At P$, $x = a(\alpha \cdot 0)$, $y = bsin^{2} \theta$
 $\frac{dy}{d\theta} = -asin^{2} \frac{dy}{d\theta} = bcn^{2} \cdot \cdot \cdot$
 $\frac{dy}{d\theta} = -asin^{2} \frac{bcn^{2} \theta}{asin^{2}} (x - a(\alpha \cdot \theta))$
 $asin^{2} \varphi = -\frac{bcn^{2} \theta}{asin^{2}} (x - a(\alpha \cdot \theta))$
 $asin^{2} \varphi = -\frac{bcn^{2} \theta}{asin^{2}} (x - a(\alpha \cdot \theta))$
 $asin^{2} \varphi + bcn^{2} x = ab(in^{2} + en^{2} \theta)$
 $asin^{2} \varphi + bcn^{2} x = ab(in^{2} + en^{2} \theta)$
 $asin^{2} \varphi + bcn^{2} x = ab(in^{2} + en^{2} \theta)$
 $y' = a^{2}(i - (\alpha \cdot^{2} \theta))$
 $y'' = a^{2}(i - (\alpha \cdot^{2} \theta))$
 $y'' = a^{2}(i - (\alpha \cdot^{2} \theta))$
 $y'' = a^{2} \sin^{2} \theta$
 $i = a^{2}(i - (\alpha \cdot^{2} \theta))$
 $y'' = a^{2} \sin^{2} \theta$
 $i = a^{2}(i - (\alpha \cdot^{2} \theta))$
 $y'' = a^{2} \sin^{2} \theta$
 $i = a^{2}(i - (\alpha \cdot^{2} \theta))$
 $y'' = a^{2} \sin^{2} \theta$
 $i = a^{2}(i - (\alpha \cdot^{2} \theta))$
 $y'' = a^{2} \sin^{2} \theta$
 $i = a^{2}(i - (\alpha \cdot^{2} \theta))$
 $y'' = a^{2} \sin^{2} \theta$
 $i = a^{2}(i - (\alpha \cdot^{2} \theta))$
 $y'' = a^{2} \sin^{2} \theta$
 $i = a^{2}(i - (\alpha \cdot^{2} \theta))$
 $y'' = a^{2} \sin^{2} \theta$
 $i = a^{2}(i - (\alpha \cdot^{2} \theta))$
 $y'' = a^{2} \sin^{2} \theta$
 $i = a^{2}(i - (\alpha \cdot^{2} \theta))$
 $y'' = a^{2} \sin^{2} \theta$
 $i = a^{2}(i - (\alpha \cdot^{2} \theta))$
 $y'' = a^{2} \sin^{2} \theta$
 $i = a^{2}(i - (\alpha \cdot^{2} \theta))$
 $(i = a^{2} - (\alpha \cdot \theta))$

)

(i)
(i)
$$2y = c^{2}$$

 $dy = -\frac{c^{2}}{x^{2}}$
 $dt^{p}, dy = -\frac{1}{p^{2}}$
(i) Equation of tangent at p
 $i^{n}, y - \frac{c}{p} = -\frac{1}{p^{2}}(x - cp)$
 $x + p^{3}y = 2cp$
(ii) Equation of Normal
 $y - \frac{c}{p} = p^{2}(x - cp)$
 $py - c = p^{3}x - cp^{4}$
 $p^{3}x - py = cp^{4} - c.$ (A)
(iii) $2y = c^{2}$
 $dy = \frac{c^{2}}{x}$ sub in (A)
 $p^{3}x^{3} - pc^{2} = cp^{4} - c.$
 $p^{3}x^{2} - cc^{3}xc)x - c^{2}p = 0.$
 $(x - cp)(p^{5}x + c) = 0.$
 $y = c - \frac{c}{p^{3}} at \cdot Q \text{ and } y = -cp^{3}$
(iv) $A(2cp, o) = B(0, \frac{2c}{p})$
 $d_{AB} = \sqrt{4cp^{3} + 4c^{2}} = \frac{2c}{p}\sqrt{p^{4} + 1}$
 $d_{PQ} = \sqrt{(cp + \frac{c}{p^{3}})^{2} + (\frac{c}{p} + cp^{3})^{2}}$
 $= \frac{cp^{4} + c}{p^{2}}\sqrt{1 + p^{4}}$
Area of $\Delta = \frac{1}{2}AB \times PQ.$
 $= \frac{c^{2}}{p^{4}}(p^{4} + 1)^{2}$
 $= c^{2}(p^{4} + 1)^{2}$

(v)
$$A = c^{2} (p^{2} + \frac{1}{p^{2}})^{2}$$

 $A = c^{2} (p^{4} + 2 + \frac{1}{p^{4}})$
 $\frac{dA}{dp} = c^{2} (4p^{3} - \frac{4}{p^{5}})$
 $\frac{dA}{dp} = 0 \implies p^{3} = \frac{1}{p^{5}}$
 $= p^{8} = 1$
 $p = 1$
 $\frac{d^{2}A}{dp^{2}} = 4c^{2} (3p^{2} + 5p^{5}) > 0$
 $\therefore Area is minimum$.

•

.

$$\begin{array}{c} (3) \\ (3) \\ (4) \\ (7) \\ (7) \\ (7) \\ = (7i)^{4} - (8i)^{3} + q(7i)^{2} - 4(7i) + 20 = 0 \\ \Rightarrow r^{4} + r^{3}i + qr^{2} - 4ri + 20 = 0 \\ \Rightarrow r^{4} + r^{3}i + qr^{2} - 4ri + 20 = 0 \\ \Rightarrow r^{4} - qr^{2} + 20 + i(r^{2} - 4r) = 0 \\ r^{4} - qr^{2} + 20 = 0 \quad and \quad r^{3} - 4r = 0 \\ (r^{2} - s)(r^{2} - 4) = 0 \\ r^{2} = s \quad 0r \quad r^{2} = 4 \\ r = \pm 2 \\ r^{2} = s \quad other r^{2} = 4 \\ r^{2} = s \quad satisfies only \\ one \quad solution \\ r^{2} = s \quad satisfies only \\ one \quad solution \\ r^{2} = s \quad satisfies only \\ r^{2} = s \quad sa$$

$$\Rightarrow z = \frac{1 \pm \sqrt{r^2 - 4\chi 5}}{2}$$
$$= \frac{1 \pm \sqrt{-19}}{2}$$
$$= \frac{1 \pm \sqrt{19}}{2}$$

Q 11 b)

$$i) P(x) = x^3 + 3px + qy$$

has a factor $(x-k)^2$
then $P(x) = 3x^2 + 3p$
has a factor $(x-k)$ V
 $i \cdot P'(k) = 3k^2 + 3p = 0$
 $3p = -3k^2$
 $p = -k^2$ V

8

ii)
$$P(k) = k^{3} + 3pk + q = 0$$

sub $p = -k^{2}$
 $k^{3} + 3(-k^{2})k + q = 0$
 $k^{3} - 3k^{3} + q = 0$
 $\therefore q = 2k^{3}$

iii) show
$$4p^{3} + q^{2} = 0$$
.
Sub for p and q
 $k.H.S = 4(-k^{2})^{3} + (2k^{3})^{2}$
 $= -4k^{6} + 4k^{6}$
 $= 0.$
 $= R.H.S.$

(c)
$$x^{3}-x^{2}-4x+1=0$$
.
We know $\alpha + \beta + \chi = 1$
 $\Rightarrow \alpha + \beta + \chi = 1$
 $x + \beta - \chi = 1-2\chi$
Let $y = 1-2\chi$.
 $\therefore \chi = \frac{1-y}{2}$.
The equation \hat{n}
 $(1-y)^{3}-(\frac{1-y}{2})^{2}-4(\frac{1-y}{2})+1=0$.
 $\Rightarrow y^{3}-y^{2}-17y+9=0$.
 $prod - y^{2}-17\chi + 9=0$.
 $(\kappa + \beta - \chi)(\beta + \chi - \chi)(\chi + \chi - \beta) = -9$

.

QII d)

$$\frac{3-x}{(l+6x)(l+2x)^2} = \frac{c_l}{l+6x} + \frac{c_2}{l+2x} + \frac{c_3}{(l+2x)^2}$$

$$3-x = C_l (l+2x)^2 + C_2 (l+6x)(l+2x) + C_3 (l+6x).$$

$$x = -\frac{l}{6} \Rightarrow 3 + \frac{l}{6} = C_l (1 + \frac{3xl}{6})^2$$

$$\frac{l_1}{6} = C_l (\frac{4}{6})^2.$$

$$C_l = \frac{l_1}{4} \times 6 = \frac{57}{8} V$$

$$x = -\frac{l}{2} \Rightarrow 3 + \frac{l}{2} = C_3 (1 + 6x - \frac{l}{2})$$

$$\frac{7}{2} = C_3 (-2)$$

$$-\frac{7}{4} = C_3$$

$$C_{\text{exff}} \cdot q x^2 \Rightarrow 0 = 4c_l + l_2c_2$$

$$0 = \frac{4}{2} \times \frac{57}{2} + l_2 C_2$$

$$l_2 C_2 = -\frac{67}{2}$$

$$C_2 = -\frac{57}{4} = -\frac{l_1}{8}$$

Î

(e)
$$P(x) = \pi^{n} - ax^{2} + b$$

 $P'(x) = n\pi^{n-1}a_{2}\pi$
Let κ be a multiple root
 $\pi^{n} - a\kappa^{2} + b = 0 - 0$
 $n\pi^{n-1} - 2a\pi = 0 - 2$
 $\pi \times (2) \Rightarrow \pi\pi^{n} - an\pi^{2} + bn = 0 - 3$
 $\pi \times (2) \Rightarrow \pi\pi^{n} - 2a\pi^{2} = 0 \cdot -4$
 $(4) - (5) \Rightarrow a\pi^{2}(-2+n) + bn = 0 \cdot$
 $\pi^{2} = \frac{bn}{a(n-2)}$
Sub mid $n \int \frac{4n}{a(n-2)} \int^{n/2} - 2a \int \frac{bn}{a(n-2)} = 0 \cdot$
 $\Rightarrow n \int \frac{bn}{a(n-2)} \int^{n/2} = 2\pi \int \frac{bn}{\pi(n-2)} \int^{n/2} \frac{bn}{\pi(n-2)} = 0$

Squarine

$$a^{2} \frac{b^{n}n^{n}}{a^{n}(n-2)^{n}} = 4a^{2} \frac{b^{2}n^{2}}{a^{2}(n-2)^{2}}$$

 $\pi^{n}b^{n-2} = 4a^{n}(n-2)^{n-2}$