THE SCOTS COLLEGE

MATHEMATICS EXTENSION II

YEAR 12 PRETRIAL

$23^{\text {TH }}$ MARCH 2015

GENERAL INSTRUCTIONS

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- Show all necessary working in Section II

WEIGHTING

30\%

TOTAL MARKS

SECTION I (7 MARKS)

- Answers to be recorded on the multiple choice answer sheet provided
- Clearly label your answer sheet with your student number
- Allow about 10 minutes for this section

SECTION II (63 MARKS)

- Questions 8-11
- Answers to be recorded in the answer booklets provided
- Each question must be completed in a new answer booklet.
- Label each answer booklet with your student number and the question number attempted. Clearly indicate the booklet order if more than one booklet is used for a question. E.g. Book 1 of 2 and 2

Section 1

Question 1

The equation of a conic is $25 x^{2}-16 y^{2}=-400$. The eccentricity of the conic is given by
A. $e=\frac{\sqrt{14}}{5}$
B. $e=\frac{\sqrt{41}}{15}$
C. $e=\frac{\sqrt{21}}{5}$
D. $e=\frac{\sqrt{41}}{5}$

Question 2

If $e^{x+y}=x y$ then $\frac{d y}{d x}=$
A. $\frac{y^{1-x}}{x^{y-1}}$
B. $\frac{y(x-1)}{x(y-1)}$
C. $\frac{y(1-x)}{x(y-1)}$
D. $\frac{x(1-y)}{y(x-1)}$

Question 3

$$
\text { If } z^{2}=4 \operatorname{cis}\left(\frac{4 \pi}{3}\right) \text { then } z=
$$

A. $\quad 1-\sqrt{3} i$ or $-1+\sqrt{3} i$
B. $\quad 3+i$ or $-3-i$
C. $\quad-1+\sqrt{3} i$ or $-1-\sqrt{3} i$
D. $\quad 3-i$ or $-3+i$

Question 4

If $P(z)=z^{3}-2 z^{2}+4 z-8$, and $z \in C$ then a linear factor of $P(z)$ is
A. $z+2 i$
B. $z+2$
C. $2 i$
D. 2

Question 5

$$
\text { Which one of the graphs below represents }|y|=|\sin x| \text { ? }
$$

A.

B.

C.

D.

Question 6

Let α, β, γ be the roots of the equation $x^{3}+4 x^{2}-3 x+1=0$. The equation with roots $\alpha^{-1}, \beta^{-1}, \gamma^{-1}$ is
A. $x^{3}+4 x^{2}-3 x+1=0$
B. $x^{3}-3 x^{2}+4 x+1=0$
C. $\quad x^{3}-8 x^{2}+12 x+3=0$
D. $x^{3}-4 x^{2}+8 x-3=0$

Question 7

The line $y=m x+c$ will touch the hyperbola $x y=k$ if and only if
A. $\quad c^{2}-4 m k=0$
B. $c^{2}+4 m k=0$
C. $k^{2}+4 m c=0$
D. $m^{2}+4 c k=0$

Section 2

Question 8 (Marks 13)

a) Given the complex numbers $z_{1}=\frac{p}{1+2 i}$ and $z_{2}=\frac{q}{1+i}$ where p and q are real, find p and q if $z_{1}-z_{2}=4 i$.
b) Show that $z^{n}+z^{-n}=2 \cos n \theta \quad$ where $z=\cos \theta+i \sin \theta$.

Hence or otherwise show that
$\cos ^{4} \theta=\frac{\cos 4 \theta+4 \cos 2 \theta+3}{8}$.
c) The locus of a point (x, y), which moves in the complex plane is represented by $|z-3 i|=2$.
i) Sketch the locus on an Argand diagram.
ii) Show that the minimum value of $\arg z$ is $\cos ^{-1}\left(\frac{2}{3}\right)$.
iii) Find the modulus of Z when P is in the position of minimum argument.
d)

Triangle $A B C$ is drawn on the Argand plane, where $\angle B A C=45^{\circ}$, A represents the complex number $10+2 i$ and B represents $6+8 i$.

If the length of the side $A C$ is twice the length of $A B$ then find the complex number that point C represents.

Question 9 [marks 10]

(a) Consider the function $(x)=\frac{e^{x}-1}{e^{x}+1}$.
i) Show that the function is odd.
ii) Show that the function is always increasing.
iii) Find $f^{\prime}(0)$.
iv) Sketch $f(x)$ showing any asymptotes.
v) Use your graph to find the values of k for which $\frac{e^{x}-1}{e^{x}+1}=k x$ has 3 real solutions.
(b) Given $f(x)=1-x^{2}$, without using any calculus, draw neat sketches of the following curves showing intercepts, asymptotes and turning points. The sketches should be about half a page each.
i) $y=\frac{1}{f(x)}$
ii) $y=e^{f(x)}$

Question 10 [marks 21]

a) i) Show that the point $P(\operatorname{acos} \theta, b \sin \theta)$ lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
ii) Find the equation of the tangent to above ellipse at P.
iii) Q is a point on the circle $x^{2}+y^{2}=a^{2}$ having the same x value as P. Write down the coordinates of Q.
iv) Show that the tangents at P and Q (provided $\neq \frac{\pi}{2}$) meet on the x-axis.
b) The hyperbola has equation $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$.
i) Sketch the hyperbola showing the coordinates of its foci, the equation of it's directrices and asymptotes.
ii) $P(4 \sec \theta, 3 \tan \theta)$, is a point on the hyperbola. Perpendiculars form P to the asymptotes meet these lines in M and N. Prove that $P M . P N$ is independent of the position of P.
c) The point $P\left(c p, \frac{c}{p}\right)$ lies on the rectangular hyperbola $x y=c^{2}$ in the first quadrant. The tangent to the hyperbola at the point P, crosses the x-axis at the point A and the $y-$ axis at the point B.
i) Find the equation of the tangent to the hyperbola at the point P.
ii) Show that the equation to the normal to the hyperbola at the point P is

$$
p^{3} x-p y=c p^{4}-c
$$

iii) If the normal at P meets the other branch of the hyperbola at the point Q, determine the coordinates of Q.
iv) Show that the area of the triangle $A B Q$ is

$$
c^{2}\left(p^{2}+\frac{1}{p^{2}}\right)^{2}
$$

v) Prove that the area of this triangle is a minimum when $p=1$.

Question 11 [marks 19]

a) For what values of r is $z-r i$ a factor of $P(z)=z^{4}-z^{3}+9 z^{2}-4 z+20$?

Hence or otherwise, solve $P(z)=0, r \neq 0$ over the set of Complex numbers.
b) Given that $P(x)=x^{3}+3 p x+q$ has a factor of $(x-k)^{2}$,
i) Show that $p=-k^{2}$
ii) Find q in terms of k.
iii) Hence verify that $4 p^{3}+q^{2}=0$.
c) If α, β and γ are the roots of $x^{3}-x^{2}-4 x+1=0$ find the equation whose roots are $\quad \alpha+\beta-\gamma, \quad \beta+\gamma-\alpha, \quad$ and $\quad \gamma+\alpha-\beta$.

Hence evaluate $(\alpha+\beta-\gamma)(\beta+\gamma-\alpha)(\gamma+\alpha-\beta)$.
d) Given $\frac{3-x}{(1+6 x)(1+2 x)^{2}}=\frac{c_{1}}{(1+6 x)}+\frac{c_{2}}{1+2 x}+\frac{c_{3}}{(1+2 x)^{2}}$,

Find c_{1}, c_{2} and c_{3}.
e) Show that if the equation $x^{n}-a x^{2}+b=0$ has a multiple root, then

$$
\begin{equation*}
n^{n} b^{n-2}=4 a^{n}(n-2)^{n-2} . \tag{4}
\end{equation*}
$$

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

THE SCOTS COLLEGE-2015-MATHEMATICS EXTENSION 2 MATHEMATICS PRE-TRIAL HSC

CANDIDATE NUMBER:

Section I - Multiple Choice Answer Sheet (7 Marks)

Mark the correct answer by filling in the circle. To make a correction, neatly place a cross over the circle and then fill in the correct circle.

ExAMPLE:

Question 1

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

(a) $z_{1}=\frac{p}{1+2 i}, z_{2}=\frac{q}{1+i}$

Solutions ExT 2

$\frac{\text { Multi Choce }}{1$| 1 | D |
| :--- | :--- |
| 2 | C |
| 3 | C |
| 4 | A |
| 5 | C |
| 6 | B |
| 7 | B |}

$$
\begin{aligned}
z_{1} & =\frac{p}{1+2 i} \times \frac{1-2 i}{1-2 i} & z_{2} & =\frac{q}{1+i} \times \frac{1-i}{1+i} \\
& =\frac{p-p i}{5} & & =\frac{q-q i}{2}
\end{aligned}
$$

$$
z_{1}-z_{2}=4 i
$$

$$
\frac{p-2 p i}{5}-\frac{q-q i}{2}=4 i
$$

$$
2 p-4 p i-5 q+5 q i=40 i
$$

$$
2 p-5 q=0-0 \times 2
$$

$$
5 q-4 p=40 \text {-(2) }
$$

ux (1) in (2)

$$
\begin{aligned}
5 q-10 q & =40 \\
-5 q & =40 \\
q & =-8 \\
\therefore p & =+\frac{5(-8)}{2} \\
& =\frac{-40}{2} \\
& =-20
\end{aligned}
$$

(b) Let $z=\cos \theta+i \sin \theta$

$$
\begin{align*}
& \therefore z^{-1}=\cos \theta-i \sin \theta \\
& z+z^{-1}=2 \cos \theta . \tag{1}
\end{align*}
$$

Now $z^{2}+z^{-2}=(\cos \theta+i \sin \theta)^{2}+(\cos \theta-i \sin \theta)^{2}$

$$
\begin{aligned}
=\cos ^{2} \theta & +2 i \sin \theta \cos \theta-\sin ^{2} \theta \\
& +\cos ^{2} \theta-2 i \sin \theta \cos \theta-\sin ^{2} \theta . \\
=2 & \left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
= & 2 \cos 2 \theta .
\end{aligned}
$$

my
$\therefore z^{n}+z^{-n}=2 \cos n \theta$.
From (1)

$$
\begin{aligned}
\left(z+z^{-1}\right)^{4} & =2^{4} \cos ^{4} \theta \\
& =16 \cos ^{4} \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { Expanding L.H.A. } \\
& z^{4}+4 z^{3} z^{-1}+6 z^{2} z^{-2}+4 z z^{-3}+z^{-4}=16 \cos ^{4} \theta . \\
& \Rightarrow\left(z^{4}+z^{-4}\right)+4 z^{2}+6+4 z^{-2}=16 \cos ^{4} \theta . \\
& \Rightarrow 2 \cos 4 \theta+4\left(z^{2}+z^{-2}\right)+6=16 \cos ^{4} \theta . \\
& \Rightarrow 2 \cos 4 \theta+4 x \cos 2 \theta+6=16 \cos ^{4} \theta . \\
& \Rightarrow \quad \cos 4 \theta+4 \cos 2 \theta+3=8 \cos ^{4} \theta . \\
& \Rightarrow \quad \cos 4 \theta=\frac{\cos 4 \theta+4 \cos 2 \theta+3}{8}
\end{aligned}
$$

Q8
(c). $|z-3 i|=2$.

1.e. arg $z=\cos ^{-1}\left(\frac{2}{3}\right)$

$$
|z|=\sqrt{3^{2}-2^{2}}
$$

$$
=\sqrt{5} .
$$

(c)

$$
\begin{aligned}
\overrightarrow{A B} & =(6+8 i)-(10+2 i) \\
& =-4+6 i
\end{aligned}
$$

Now

$$
\overrightarrow{O A}+\overrightarrow{A C}=\overrightarrow{O C}
$$

$$
\begin{aligned}
\overrightarrow{A C} & =2 \operatorname{cis} 45^{\circ} \times \overrightarrow{A B} \\
& =2\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)(-4+6 i) \\
& =\sqrt{2}(1+i)(-4+6 i) \\
& =\sqrt{2}(-10+2 i)
\end{aligned}
$$

$$
\begin{aligned}
\therefore \overrightarrow{O C} & =(10+2 i)+\sqrt{2}(-10+2 i) \\
& =10(1-\sqrt{2})+2 i(1+\sqrt{2})
\end{aligned}
$$

Qq.
a) i)

$$
\begin{aligned}
f(x) & =\frac{e^{x}-1}{e^{x}+1} \\
f(-x) & =\frac{e^{-x}-1}{e^{-x}+1} \\
& =\frac{\frac{1}{e^{x}-1}}{\frac{1}{e^{x}}+1} \\
& =\frac{\frac{1-e^{x}}{e^{x}}}{\frac{1+e^{x}}{e^{x}}} \\
& =\frac{1-e^{x}}{1+e^{x}} \\
& =-\frac{e^{x}-1}{e^{x}+1} \\
& =-f(x)
\end{aligned}
$$

\therefore Function is odd.
ii)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(e^{x}+1\right) e^{x}-\left(e^{x}-1\right) e^{x}}{\left(e^{x}+1\right)^{2}} \\
& =\frac{2 e^{x}}{\left(e^{x}+1\right)^{2}} \\
& >0 \quad \text { for all } x, e^{x}>0
\end{aligned}
$$

\therefore function is an increasing function.
iii) $f^{\prime}(0)=\frac{2 e^{0}}{\left(e^{0}+1\right)^{2}}=\frac{1}{2}$
iv)

v) $0<k<1 / 2$
b) $f(x)=1-x^{2}$
(ii)
(i)

Q 10

$$
\begin{aligned}
& \text { a) (i) } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \text { L.H.S }=\frac{a^{2} \cos ^{2} \theta}{a^{2}}+\frac{b^{2} \sin ^{2} \theta}{b^{2}} \\
& \cos ^{2} \theta+\sin ^{2} \theta \\
& =1=\text { RmS } \text {. }
\end{aligned}
$$

$\therefore P$ Pies on the ellipse
ii)

$$
\text { At } \begin{aligned}
P, x & =a \cos \theta, \quad y=b \sin \theta \\
\frac{d x}{d \theta} & =-a \sin \theta \quad \frac{d y}{d \theta}=b \cos \theta . \\
\frac{d y}{d x} & =-\frac{b \cos \theta}{a \sin \theta}
\end{aligned}
$$

\therefore tangent at P is:

$$
y-b \sin \theta=-\frac{b \cos \theta}{a \sin \theta}(x-a \cos \theta)
$$

$a \sin \theta y-a b \sin ^{2} \theta=-b \cos \theta x+a b \cos ^{2} \theta$

$$
\begin{equation*}
a \sin \theta y+b \cos \theta x=a b\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \tag{2}
\end{equation*}
$$

$a \sin \theta y+b \cos \theta x=a b$

$$
\text { icier) } \begin{aligned}
& Q=(a \cos \theta, a \sin \theta) \\
& \because x^{2}+y^{2}=a^{2} \\
& a^{2} \cos ^{2} \theta+y^{2}=a^{2} \\
& y^{2}=a^{2}\left(1-\cos ^{2} \theta\right) \\
& y^{2}=a^{2} \sin ^{2} \theta \\
& y=a \sin \theta
\end{aligned}
$$

iv) at Q.

$$
\begin{array}{ll}
x=a \cos \theta & y=a \sin \theta \\
\frac{d x}{d \theta}=-a \sin \theta & \frac{d y}{d y}=a \cos \theta \\
\frac{d y}{d x}=-\frac{\cos \theta}{\sin \theta} &
\end{array}
$$

\therefore tangent at Q is:

$$
\begin{align*}
& y-a \sin \theta=-\frac{\cos \theta}{\sin \theta}(x-a \cos \theta) \\
& \sin \theta y-a \sin ^{2} \theta=-\cos \theta x+a \cos ^{2} \theta \\
& \cos \theta x+\sin \theta y=a\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \tag{B}\\
& \cos \theta x+\sin \theta y=a
\end{align*}
$$

$$
\begin{aligned}
& y=0 \text { in } A \Rightarrow x=\frac{a}{\cos \theta} \\
& y=0 \text { in } B \Rightarrow x=\frac{a}{\cos \theta}
\end{aligned}
$$

Both tangents have the same x-intercept, hence they meet on x-axis.

Q10 (b)
i) $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

$$
\begin{aligned}
& \frac{9}{16}=e^{2}-1 \\
& e^{2}=\frac{25}{16}
\end{aligned}
$$

$$
e=\frac{5}{4}
$$

$$
3(\pm a e, 0)=(\pm 5,0)
$$

directorices

$$
\begin{aligned}
x & = \pm a r e=\frac{16}{5} \\
& = \pm 31 / 5
\end{aligned}
$$

asymprotes.

$$
\begin{aligned}
y^{\prime} & = \pm \frac{b}{a} x \\
& = \pm \frac{3}{4} x
\end{aligned}
$$

ii)

$$
P(4 \sec \theta, 3 \tan \theta)
$$

asymptrtes

$$
\begin{aligned}
& 3 x+4 y=0 \\
& 3 x-4 y=0 \\
& P M=\frac{|12 \sec \theta-12 \tan \theta|}{\sqrt{3^{2}+4^{2}}} \\
& =\frac{12|\sec \theta-\tan \theta|}{5}
\end{aligned}
$$

$P N=\frac{12|\sec \theta+\tan \theta|}{5}$

Q10 c)
i) $x y=c^{2}$

$$
\frac{d y}{d x}=-\frac{c^{2}}{x^{2}}
$$

$$
\text { at } p, \frac{d y}{d x}=-\frac{1}{p^{2}}
$$

\therefore Equation of tangent at P
is

$$
\begin{gathered}
y-\frac{c}{p}=-\frac{1}{p^{2}}(x-c p) \\
x+p^{2} y=2 c p .
\end{gathered}
$$

(ii) Equation of Normal

$$
\begin{align*}
& y-\frac{c}{p}=p^{2}(x-c p) \\
& p y-c=p^{3} x-c p^{4} \\
& p^{3} x-p y=c p^{4}-c . \tag{A}
\end{align*}
$$

(iii)

$$
\begin{aligned}
& x y=c^{2} \\
& y=\frac{c^{2}}{x} \text { sub in } A \\
& p^{3} x^{3}-p \frac{c^{2}}{x}=c p^{4}-c \\
& p^{3} x^{2}-p c^{2}=c p^{4} x-c x . \\
& \left.p^{3} x^{2}-c c p^{4}-c\right) x-c^{2} p=0 \\
& (x-c p)\left(p^{3} x+c\right)=0 . \\
& \Rightarrow x=-c / p^{3} \text { at } Q \text { and } y=-c p^{3} \\
& \therefore Q\left(-\frac{c}{p^{3}},-c p^{3}\right)
\end{aligned}
$$

(iv) $A(2 c p, 0) \quad B\left(0, \frac{2 c}{p}\right)$

$$
\begin{aligned}
d_{A B} & =\sqrt{4 c^{2} p^{2}+\frac{4 c^{2}}{p^{2}}}=\frac{2 c}{p} \sqrt{p^{4}+1} \\
d_{p Q} & =\sqrt{\left(c p+\frac{c}{p^{8}}\right)^{2}+\left(\frac{c}{p}+c p^{3}\right)^{2}} \\
& =\frac{c p^{4}+c}{p^{3}} \sqrt{1+p^{4}}
\end{aligned}
$$

Area of $\triangle=\frac{1}{2} A B \times P Q$.

$$
\begin{aligned}
& =\frac{1}{2} \frac{2 c}{p} \sqrt{p^{4}+1} \times \frac{c p^{4}+c}{p^{3}} \sqrt{1+p^{4}} \\
& =\frac{c^{2}}{p^{4}}\left(p^{4}+1\right)^{2} \\
& =c^{2}\left(p^{2}+\frac{1}{p^{2}}\right)^{2}
\end{aligned}
$$

(v)

$$
\begin{aligned}
& A=c^{2}\left(p^{2}+\frac{1}{p^{2}}\right)^{2} \\
& A=c^{2}\left(p^{4}+2+\frac{1}{p^{4}}\right) \\
& \frac{d A}{d p}=c^{2} \cdot\left(4 p^{3}-\frac{4}{p^{5}}\right) \\
& \frac{d A}{d p}=0 \Rightarrow p^{3}=\frac{1}{p^{5}} \\
& =p^{8}=1 \\
& p=1 \\
& \frac{d^{2} A}{d p^{2}}=4 c^{2}\left(3 p^{2}+5 p^{-6}\right)>0
\end{aligned}
$$

\therefore Area is minimum .

Qlla)
(i)

$$
\begin{array}{rl}
P(z) & =z^{4}-z^{3}+9 z^{2}-4 z+20 \\
P(r i) & =(r i)^{4}-(r i)^{3}+9(r i)^{2}-4(r i)+20=0 \\
& \Rightarrow r^{4}+r^{3} i-9 r^{2}-4 r i+20=0 \\
& \Rightarrow r^{4}-9 r^{2}+20+i\left(x^{3}-4 r\right)=0 . \\
& r^{4}-9 r^{2}+20=0 \quad \text { and } \quad r^{3}-4 r=0 \\
\left(r^{2}-5\right)\left(r^{2}-4\right)=0 \quad r\left(r^{2}-4\right)=0 . \\
r^{2}=5 \text { or } r^{2}=4 \quad r= \pm 2 \quad r \text { or } r^{2}=4 \\
r & r= \pm 2 . \\
\quad\left(r^{2}=5\right. \text { satisfies only }
\end{array}
$$

\therefore two roots are $2 i^{\circ},-2 i^{\circ}$
Now $(z-2 i)(z+2 i)=z^{2}+4$

$$
\begin{aligned}
& z^{2}+4 \sqrt{z^{2}-z+z^{3}+9 z^{2}-4 z+20} \\
& \frac{-z^{4} \pm 4 z^{2}}{-z^{3}+5 z^{2}-4 z} \\
& \frac{5 z^{3}+4 z}{5 z^{2}+2 \phi}+20
\end{aligned}
$$

$$
\begin{aligned}
& \therefore P(z)=\left(z^{2}+4\right)\left(z^{2}-z+5\right) \\
& z^{2}-z+5=0 \\
& \Rightarrow z=\frac{1 \pm \sqrt{1^{2}-4 x^{5}}}{2} \\
&= \frac{1 \pm \sqrt{-19}}{2} \\
&= \frac{1 \pm i \sqrt{19}}{2}
\end{aligned}
$$

Q 11 b)
i) $p(x)=x^{3}+3 p x+q$
has a factor $(x-k)^{2}$
than $p^{\prime}(x)=3 x^{2}+3 p$
has a factor $(x-k)$

$$
\begin{array}{r}
\therefore p^{\prime}(k)=3 k^{2}+3 p=0 \\
3 p=-3 k^{2} \\
p=-k^{2}
\end{array}
$$

ii)

$$
\begin{gathered}
P(k)=k^{3}+3 p k+q=0 \\
\text { sub } p=-k^{2} \\
k^{3}+3\left(-k^{2}\right) k+q=0 \\
k^{3}-3 k^{3}+q=0 \\
\therefore q=2 k^{3}
\end{gathered}
$$

iii) show $4 p^{3}+q^{2}=0$.
sub for p and q

$$
\begin{aligned}
\text { L.H.S } & =4\left(-k^{2}\right)^{3}+\left(2 k^{3}\right)^{2} \\
& =-4 k^{6}+4 k^{6} \\
& =0 . \\
& =\text { R.H.S. }
\end{aligned}
$$

(c) $x^{3}-x^{2}-4 x+1=0$.

We know $\alpha+\beta+\gamma=1$

$$
\begin{aligned}
\Rightarrow & \alpha+\beta+2 \gamma-\gamma=1 \\
& \alpha+\beta-\gamma=1-2 \gamma
\end{aligned}
$$

Let $y=1-2 x$.

$$
\therefore x=\frac{1-y}{2}
$$

The equation is

$$
\begin{aligned}
& \left(\frac{1-y}{2}\right)^{3}-\left(\frac{1-y}{2}\right)^{2}-4\left(\frac{1-y}{2}\right)+1=0 . \\
\Rightarrow & y^{3}-y^{2}-17 y+9=0 \\
\text { ore } \Rightarrow & x^{3}-x^{2}-17 x+9=0
\end{aligned}
$$

Prod. of roots.

$$
(\alpha+\beta-\gamma)(\beta+\gamma-\alpha)(\gamma+\alpha-\beta)=-9
$$

Qll d)

$$
\begin{aligned}
\frac{3-x}{(1+6 x)(1+2 x)^{2}} & =\frac{c_{1}}{1+6 x}+\frac{c_{2}}{1+2 x}+\frac{c_{3}}{(1+2 x)^{2}} \\
3-x & =c_{1}(1+2 x)^{2}+c_{2}(1+6 x)(1+2 x)+c_{3}(1+6 x) \\
x=-\frac{1}{6} \Rightarrow 3+\frac{1}{6} & =c_{1}\left(1+2 \times-\frac{1}{6}\right)^{2} \\
\frac{19}{6} & =c_{1}\left(\frac{4}{6}\right)^{2} \\
c_{1} & =\frac{19 \times 6}{\frac{4}{4}}=\frac{57}{8} \\
x=-\frac{1}{2} \Rightarrow 3+\frac{1}{2} & =c_{3}\left(1+6 x-\frac{1}{2}\right) \\
\frac{7}{2} & =c_{3}(-2) \\
-\frac{7}{4} & =c_{3}
\end{aligned}
$$

coctf. of $x^{2} \Rightarrow 0=4 c_{1}+12 c_{2}$

$$
\begin{aligned}
0 & =\frac{4}{4} \times \frac{35}{8}+12 c_{2} \\
12 c_{2} & =-\frac{67 / 2}{2} \quad=-\frac{19}{8} \\
c_{2} & =\frac{-54}{12 \times 2}=1
\end{aligned}
$$

(e)

$$
\begin{aligned}
& P(x)=x^{n}-a x^{2}+b \\
& P^{\prime}(x)=n x^{n-1} a 2 x
\end{aligned}
$$

Let α be a multiple root

$$
\begin{align*}
& n \times(1) \Rightarrow n \alpha^{n}-a n \alpha^{2}+b_{n}=0 \\
& \alpha \times(2) \Rightarrow n \alpha^{n}-2 a \alpha^{2}=0
\end{align*}
$$

(4)-(3) $\Rightarrow a \alpha^{2}(-2+n)-b_{n}=0$.

$$
\alpha^{2}=\frac{b n}{a(n-2)}
$$

sub an (4)

$$
\begin{aligned}
& n\left[\frac{b n}{a(n-2)}\right]^{n / 2}-2 a\left[\frac{b n}{a(n-2)}\right]=0 \\
\Rightarrow & n\left[\frac{b n}{a(n-2)}\right]^{n / 2}=2 d\left[\frac{b n}{\alpha(n-2)}\right]
\end{aligned}
$$

squaring

$$
\begin{align*}
& \frac{2}{a^{n} n^{n}}=4 a^{2}\left(n-2 b^{2} b^{2}\right. \tag{1}\\
& a^{4}(n-2)^{2} \\
& n^{n} b^{n-2}=4 a^{n}(n-2)^{n-2}
\end{align*}
$$

