

Year 12: APRIL ASSESSMENT

MATHEMATICS

4 UNIT (ADDITIONAL)

Time allowed—Two hours (Plus 5 minutes' reading time)

Examiner: P.R.Bigelow

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- The mark value of each question is shown to its right.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board-approved calculators may be used.
- Each section attempted is to be returned in a separate bundle, clearly marked Section A
 (Q1, Q2), Section B (Q3, Q4), Section C (Q5, Q6). Each bundle must also show your
 name.
- You may ask for extra Writing Booklets if you need them.

SECTION A.

QUESTION 1. Use a separate Writing Booklet.

Marks

(a) Write down the exact value of $\cos^{-1}0.5$.

(b) State the domain and range of:

2

(i) $y=2\sin^{-1}3x,$

(ii) $y = 3\cos^{-1}(1-x)$.

(c) Sketch $f(x) = \sin^{-1}(\cos x)$.

(d)

- (i) Show that the tangent to $y = \tan^{-1}x$ at $P(1, \pi/4)$ is given by $x 2y = 1 \frac{\pi}{2}$.
- (ii) Find the exact area (shaded) bounded by the line, the curve, and the y-axis.

QUESTION 2

			Mar	ks
(a)	Given that z	$\frac{2+3i}{1-i}$		2
		1-1		J
	find (i)	z .		

(1) |2

(ii) \bar{z} ,

(iii) $z + \bar{z}$.

(b) (i) Express $z = -\sqrt{3} - i$ in mod-arg form.

(ii) Hence express $\frac{1}{z^6}$ in the form a+ib.

(c) Sketch the following loci:

(i) $\arg z = -\frac{\pi}{3}$,

(ii) |z| = |z-1+i|.

(d) (i) Sketch on an Argand diagram the locus of a point which satisfies the equation |z-6-8i|=6.

(ii) Hence or otherwise determine the maximum values of |z| and arg z for various positions of P.

SECTION B.

Qī	QUESTION 3. Use a separate Writing Booklet.			
(a)	In how many ways may the letters of the word ALGEBRA be arranged if the vowels must fill the second, fourth, and sixth places?			
(b)	Find (i) $\int xe^{x}dx$, (ii) $\int \cos^{5}x \sin^{3}x dx$.	4		
	(ii) $\int \cos^5 x \sin^3 x dx.$			
(c)	Find the value of $\int_{0}^{\sqrt{2}} \frac{x^3}{x^2 + 4} dx.$. 2		
(d)	Decompose $\frac{2(x+1)}{(x-1)(2x-1)}$ into partial fractions	3		
	and hence find $\int_{2}^{5} \frac{2(x+1)}{(x-1)(2x-1)} dx$.			
(e)	(i) Prove that if $u_n = \int_0^{\frac{\pi}{2}} x^n \sin x dx$, $n \ge 0$,	3		
	then $u_n + n(n-1)u_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}$, $n \ge 2$, and			
	(ii) deduce the value of $\int_{0}^{\frac{\pi}{2}} x^{4} \sin x dx.$			

QUESTION 4.			
(a)	Solve the equation $6z^2 + (1+i)z - 1 + 3i = 0$.	Marks 2	
(b)	Given that $(3 - i)$ is a zero of $P(z) = z^3 - 4z^2 - 2z + m$, and that m is real, find the other roots and the value of m .	3	
(c)	If α , β , and γ are the roots of $x^3+3x-5=0$, find the cubic equation whose roots are α^2 , β^2 , and γ^2 .	2	
(d)	ABCD is a cyclic quadrilateral and CD is produced to F . The bisector of ABC cuts the circle at E .	3	

Prove that ED bisects $A\hat{D}F$.

SECTION C.

QUESTION 5. Use a separate Writing Booklet.

Marks

(a) (i) By using the substitution $u = \frac{1}{x}$, or otherwise, show that

2

$$\int_{\frac{1}{2}}^{1} \frac{\ln x}{1+x^2} dx = \int_{2}^{1} \frac{\ln u}{1+u^2} du.$$

(ii) Deduce the value of $\int_{\frac{1}{2}}^{2} \frac{\ln x}{1+x^2} dx.$

2

3

In the diagram OABC is a rhombus with A being the point (4,2) and $A\hat{O}C = 60^{\circ}$. Find the coordinates of the other two points, B and C.

(c) Solve $z^6 - 9z^3 + 8 = 0$ for z. Express your answer in the form a + ib where $a, b \in \mathbb{R}$.

3

QU	ESTION	1 6.	Mark	
(a)	It is required to seat 7 people at a round table. Find the possible number of arrangements if 3 specified people are to sit together.			
(b)	ABCD is a cyclic quadrilateral whose diagonals intersect at M. A circle is drawn through A, B, and M. Prove that the tangent at M to this circle is parallel to CD.		3	
(c)	(i)	Solve $z^5 = 1$ and let α be the complex root of unity with smallest positive argument. Deduce that $1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4 = 0$.	٠ 6	
	(ii)	Find a quadratic equation whose roots are $\alpha + \alpha^4$ and $\alpha^2 + \alpha^3$.		
	(iii)	Hence or otherwise, show that $\cos \frac{2\pi}{5} = \frac{\sqrt{5}-1}{4}$.		

THIS IS THE END OF THE PAPER