

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2004 HIGHER SCHOOL CERTIFICATE **ASSESSMENT TASK #1**

Mathematics Extension 2

General Instructions

- Reading time 5 minutes. •
- Working time 90 minutes. •
- Write using black or blue pen.
- Board approved calculators may • be used.
- All necessary working should be ٠ shown in every question if full marks are to be awarded.
- Marks may **NOT** be awarded for messy • or badly arranged work.
- Hand in your answer booklets in 3 • sections. Section A (Questions 1 - 5), Section B (Questions 6 - 9) and Section C (Questions 10 - 13).
- Start each NEW section in a separate ۰ answer booklet.

Total Marks - 90 Marks

- Attempt Sections A C •
- All questions are NOT of equal value.

Examiner: E. Choy

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Total marks – 90 Attempt Questions 1 – 13 All questions are NOT of equal value

Answer each section in a SEPARATE writing booklet. Extra writing booklets are available.

SECTION A (Use a SEPARATE writing booklet)

Marks

Question 1 (8 marks)

(a) Evaluate
$$(3+4i) \div (1+i)$$
 2
(b) If $(x+iy)(2+3i) = 5+6i$ find x and y 2
(c) (i) Express $\frac{-1-i\sqrt{3}}{1-i}$ in modulus-argument form 2
(ii) Hence evaluate $\left(\frac{-1-i\sqrt{3}}{1-i}\right)^6$ 2

Question 2 (8 marks)

If *P* represents the complex number *z*, sketch the locus of *P* (on *separate* diagrams) if:

(i)
$$|z-1| = 4$$
 2

(ii)
$$-1 \le \operatorname{Im}(z) \le 2$$
 2

(iii)
$$-\frac{\pi}{4} \le \arg(z) \le \frac{2\pi}{3}$$
 2

(iv)
$$\arg\left(\frac{z-i}{z-1}\right) = \frac{\pi}{6}$$
 2

Question 3 (6 marks)

(a)	If z is a non zero complex number such that $z + 1/z$ is real, prove that $\text{Im}(z) = 0$ or $ z = 1$	3
(b)	Find the square roots of $-2-2i$.	3
	Leave your answer in modulus-argument form.	

In the diagram $\arg(z_1) = \alpha$ and $\arg(z_2) = \beta$. If $|z_1| = |z_2|$ prove that $\arg(z_1 z_2) = \arg((z_1 + z_2)^2)$

Question 5 (4 marks)

The point A in an Argand diagram represents the complex number 3+4i.

Find the complex number represented by *B* if $\triangle OAB$ is an equilateral triangle with *B* in the fourth quadrant.

O represents the complex number 0.

Leave your answer in the form a + ib.

Marks

4

4

SECTION B (Use a SEPARATE writing booklet)

Question 6 (7	Marks	
	Given $P(x) = x^4 - 2x^3 + 6x^2 - 2x + 5$	
(i)	Find the zeros of $P(x)$ given that $1+2i$ is a zero.	3
(ii)	Express $P(x)$ in factored form:	
	(α) over the complex field;	2
	(β) over the real field.	2

Question 7 (9 marks)

If α, β and γ are the roots of the equation $x^3 - 2x + 5 = 0$, find the equation which has roots:

- (i) $2/\alpha, 2/\beta, 2/\gamma$; 3
- (ii) $\alpha^2, \beta^2, \gamma^2;$ 3

(iii)
$$\alpha + \beta, \beta + \gamma, \gamma + \alpha$$
 3

SECTION B (continued)

Question 8 (6 marks)		Marks
(a)	Show that $f(x) = x^n - 1$ has no multiple roots, where <i>n</i> is an integer with $n > 1$.	3
(b)	If the roots of $x^n - 1 = 0$ are $1, \alpha_1, \alpha_2, \alpha_3, \dots, \alpha_{n-1}$ show that	3
	$(1-\alpha_1)(1-\alpha_2)(1-\alpha_3)\cdots(1-\alpha_{n-1}) = n$	

Question 9 (9 marks)

Consider
$$\omega = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$$

(i) Prove that $\omega^5 = 1$ and $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$ 3

(ii) Prove that
$$z = \omega + 1/\omega$$
 is a root of $z^2 + z - 1 = 0$ 3

(iii) Hence prove that
$$\cos\frac{2\pi}{5} = \frac{\sqrt{5}-1}{4}$$
 3

SECTION C (Use a SEPARATE writing booklet)

Question 10 (6 marks)

Given that $y = x^3 - 3px + q$ where $p, q \in \mathbb{R}$

- (i) Find the coordinates of the stationary points (in terms of p and q) 3 of y = f(x).
- (ii) Hence, find the relationship between p and q for $f(x) = x^3 3px + q$ to have 3 distinct real roots.

Question 11 (6 marks)

AB and *CD* are two chords of a circle intersecting at a point *X*. *P*, *Q* and *R* are the midpoints of *AX*, *XB* and *CX* respectively.

Prove that the circle *PQR* also bisects *DX*.

Marks

6

SECTION C (continued)

Question 12 (11 marks)

A and B are two points in an Argand diagram presenting the complex numbers $z_1 = -1$ and $z_2 = \cos\theta + i\sin\theta$ respectively,

where
$$\frac{\pi}{2} < \theta < \pi$$
.

C is the point representing the complex number $z_3 = z_1 + z_2$.

3

4

4

(i) Sketch the quadrilateral *OACB* in an Argand diagram, where *O* is the point representing the complex number 0.

Mark an angle in the diagram which is equal to θ .

(ii) Let
$$z_4 = z_2 - z_1$$

(
$$\alpha$$
) Show that $\frac{z_4}{z_3} = i \left(\frac{\sin \theta}{\cos \theta - 1} \right)$. Hence find $\arg \left(\frac{z_4}{z_3} \right)$.

(β) Using (α) show that the diagonals of the quadrilateral *OACB* are perpendicular to each other.

Question 13 (6 marks)

How many ways are there to place nine different rings on the four fingers of your right hand (excluding the thumb) if:

- (i) the order of the rings on a finger does not matter? 3
- (ii) the order of the rings on a finger is considered? 3

THIS IS THE END OF THE PAPER

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, x > 0$$

2004 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK # 1

Mathematics Extension 2

Sample Solutions

 $1(a) \xrightarrow{3+4i} \times \underbrace{1-i}_{1-i} \xrightarrow{7} 3-3i+4i+4$ 7 + i 2 (b) Method 1: (x + in)(2+3i) = 2x + 3ix + 2iy - 3y Equating real & imaginary parts 2x + - 3y = 5 -0 Ē 3x + 25 = 6 $0 \times 2: 4x - 6 = 10$ 3) @x3: 9* + 6 = 18 (3+A): 13x = 28 $\frac{28/13}{2 + 28/13}$ $\frac{24}{2 + 6} = \frac{28}{13}$ $\frac{2}{13} = \frac{6}{13} - \frac{3}{13}$ Method 2: x F $iy = \frac{5+6i}{2+3i} \times \frac{2-3i}{2-3i}$ = 10-15i+12i+18 4+9 $= \frac{28 - 31}{13}$ $\therefore x = \frac{28}{13}, y = -\frac{3}{13}$

 $1(c)(a) - 1 - i\sqrt{3} = 2 cis(-2\pi/3)$ $1 - i = \sqrt{2} cis(-\pi/4)$ $\frac{-1 - i\sqrt{3}}{1 - i} = \sqrt{2} cis(-5\pi/12)$ $\frac{-2}{3} + \frac{1}{4} - \frac{-9+3}{12}$ $\frac{-1+\sqrt{3}}{2} - i\left(\frac{1+\sqrt{3}}{2}\right)$ $\left(\frac{-1-i\sqrt{3}}{1-i}\right)^{6} =$ (ii) $8 - \frac{30\pi}{12}$ = 8 cis (-5 T/2) = - 8 i V 5m Im 2(1) (ii) Cantre (1,0), radius 4 (iii) (w) Re ·1Va as z. 1/2 is real, b (1 - $^{2} + b^{2} = 1$ so h=0 or a \checkmark $\frac{i \int g_{14}(z) = 0 \text{ or } [z] = 1 \text{ v}}{(b) - 2 - 2i} = \sqrt{8} \cos\left(-3T/4 + 2nT\right) \text{ v}}$ $\frac{i \int -2 - 2i}{(-2 - 2i)} = 8^{1/4} \cos\left(-3T/8 + nT\right)$ $= 8^{1/4} \cos\left(-3T/8\right), 8^{1/4} \cos\left(-5T/8\right)$.

C(3,+3) OACB is a should be 4 7 B(3- $\frac{a_1(3_1) = (3_2)}{a_2 g c} = \frac{\alpha_1 + \beta_2}{2} = \frac{a_1 g (3_1 + 3_2)}{2}$ A(3,) $\arg\left(3+3z\right)^{2}=2\left(2+\beta\right)$ \bar{o} Now, 9m 0A = 3+41 he B $\overline{OB} = \overline{OA} \times \overline{cin} \left(-\frac{1}{7_3}\right)$ $= (3+4i)^{1/3} \left(\frac{1}{2} - \frac{1}{2}\sqrt{3}\right)^{1/3}$ $= \frac{1}{2} \left(3 - 3 \pm \sqrt{3} + 4 \pm + 4 \sqrt{3} \right)$ $= \underbrace{\frac{3+4\sqrt{5}}{2}}_{2} + \frac{1}{2} \left(4 - 3\sqrt{3} \right) \checkmark$ 2 4.9641 - \$ 0.5981~

Question 6

 $P(x) = x^4 - 2x^3 + 6x^2 - 2x + 5$

(i) Since x = 1 + 2i is a zero **AND** the coefficients are real then x = 1 - 2i is also a zero (*conjugate root theorem*). So $x - (1 + 2i) \quad x - (1 - 2i) = x^2 - 2x + 5$ is a factor of P(x).

So
$$P(x) = x^4 - 2x^3 + 6x^2 - 2x + 5 = (x^2 - 2x + 5)(x^2 + bx + 1)$$

Collecting terms of degree 1 and comparing coefficients we get -2 + 5b = -2 b = 0

[Or by applying long division methods ie

$$(x^4 - 2x^3 + 6x^2 - 2x + 5) \div (x^2 - 2x + 5)$$
 etc....]

Thus $P(x) = x^4 - 2x^3 + 6x^2 - 2x + 5 = (x^2 - 2x + 5)(x^2 + 1)$, so the zeros of P(x) are $x = 1 + 2i, 1 - 2i, \pm i$

(ii) ()

$$P(x) = x^{4} - 2x^{3} + 6x^{2} - 2x + 5 = (x - (1 + 2i))(x - (1 - 2i))(x - i)(x + i)$$
()

$$P(x) = x^{4} - 2x^{3} + 6x^{2} - 2x + 5 = (x^{2} - 2x + 5)(x^{2} + 1)$$

Question 7

 $x^3 - 2x + 5 = 0$

(i) Apply the transformation
$$y = \frac{2}{x}$$
 $x = \frac{2}{y}$
So $\frac{2}{y}^{3} - 2\frac{2}{y} + 5 = 0$ $\frac{8}{y^{3}} - \frac{4}{y} + 5 = 0$ $5y^{3} - 4y^{2} + 8 = 0$
So the equation with roots $2/$, $2/$, $2/$ is $5x^{3} - 4x^{2} + 8 = 0$

(ii) Apply the transformation $y = x^2$ NB $x^3 - 2x + 5 = 0$ $x(x^2 - 2) = -5$ So square both sides and we get $x^2(x^2 - 2)^2 = 25$ $y(y - 2)^2 = 25$ So the equation with roots x^2 , x^2 , x^2 is given by $x(x - 2)^2 = 25$ OR $x^3 - 4x^2 + 4x - 25 = 0$ (iii) We have to use the fact that + + = 0 + = - and so on. So use the transformation y = -x x = -ySo we get $(-y)^3 - 2(-y) + 5 = 0$ $-y^3 + 2y + 5 = 0$. So the equation with roots + , + , + is $x^3 - 2x - 5 = 0$

Question 8

(a) $f(x) = x^n - 1$ $f(x) = nx^{n-1}$ Suppose is a multiple root then f() = f() = 0 $n^{n-1} = 0 = 0$ BUT f(0) = 0, so f(x) cannot have any multiple roots.

(b)
$$x^n - 1 = (x - 1)(x - 1)$$

By long division; series; or other means $x^n - 1 = (x - 1)(1 + x + x^2 + ... + x^{n-1})$ So $x^n - 1 = (x - 1)(x - 1)(x - 2)...(x - 1)(1 + x + x^2 + ... + x^{n-1})$ So $(x - 1)(x - 2)...(x - 1)(x - 1)(1 + x + x^2 + ... + x^{n-1})$, sub x = 1 into both

sides

$$(1 - 1)(1 - 2)...(1 - 1) = (1 + 1 + 1^{2} + ... + 1^{n-1}) = n$$
 QED

Question 9

$$= \operatorname{cis} \frac{2}{5} \quad 1$$
(i) ${}^{5} = \operatorname{cis} 5 \times \frac{2}{5} = \operatorname{cis} 2 = 1. [\text{de Moivre's Theorem - DMT}]$
 ${}^{5} - 1 = (-1)(1 + + {}^{2} + {}^{3} + {}^{4}) = 0$
 $\because \quad 1 \quad 1 + + {}^{2} + {}^{3} + {}^{4} = 0$
OR $1 + + {}^{2} + {}^{3} + {}^{4} = \frac{{}^{5} - 1}{-1} = \frac{1 - 1}{-1} = 0 \text{ [using geometric series]}$
(ii) $1 + {}^{2} + {}^{3} + {}^{4} = 0 \quad \frac{1}{2} + \frac{1}{-1} + 1 + {}^{2} = 0 \text{ [}^{\pm} {}^{2} \text{]}$
Let $z = {}^{2} + \frac{1}{-1} (z^{2} - 2) + 1 + z = 0 \quad z^{2} + z - 1 = 0$
 $[\because \frac{1}{2} + {}^{2} = {}^{2} + \frac{1}{-} {}^{2} - 2]$

(ii) Alternative solution

Examine $z^{2} + z - 1$ when $z = +\frac{1}{2}$ $z^{2} + z - 1$ $= +\frac{1}{2}^{2} + +\frac{1}{2} - 1$ $= \frac{2}{2} + 2 + \frac{1}{2} + +\frac{1}{2} - 1$ $= \frac{4}{2} + \frac{3}{2} + \frac{2}{2} + +\frac{1}{2}$ $= \frac{0}{2}$ = 0So $z = +\frac{1}{2}$ is a solution of $z^{2} + z - 1 = 0$

(iii)
$$\left| \begin{array}{c} 1 = 1 & \frac{1}{2} = - \\ z^2 + z - 1 = 0 & z = \frac{-1 \pm \sqrt{5}}{2} \\ \vdots \cos \frac{2}{5} > 0 & 2\cos \frac{2}{5} = \frac{-1 + \sqrt{5}}{2} \\ \cos \frac{2}{5} = \frac{-1 + \sqrt{5}}{4} \end{array} \right|$$

[NB the other solution of the quadratic is $2\cos\frac{4}{5}$]

SECTION C

$$\begin{aligned} & (i) \quad g = 3x^{2} - 3px + q \\
(i) \quad g = 3x^{2} - 3pz + q \\
(i) \quad g = 3x^{2} - 3pz + q \\
(i) \quad g = 3x^{2} - 3pz + q \\
(i) \quad han \quad x = 4\sqrt{p} \\
(i) \quad han \quad x = \sqrt{p} \\
(i)$$