

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2005

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK #1

Mathematics Extension 2

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each question is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks – 85

- Attempt questions 1 3
- All questions are not of equal value.

Examiner: C. Kourtesis

Question 1. (Start a new answer sheet.) (31 marks)

(a)	Given that $w = \sqrt{3} + i$, express the following in the form $a + ib$ where a and b are real.	Marks 4
	(i) <i>-iw</i>	
	(ii) w^2	
	(iii) w^{-1}	
(b)	If $z = 1 - i$ find:	4

- (i) |z| and $\arg z$
- (ii) z^8 in exact form

$$z^{2}+kz+(4-i)=0$$

Find the complex number k given that 2i is a root of the equation.

(d) If
$$z = x + iy$$
 prove that 3

$$z + \frac{|z|^2}{z} = 2\operatorname{Re}(z)$$

(e) Sketch the locus of *z* satisfying

(i)
$$|z+2i|=2$$

(ii)
$$\operatorname{Re}(z^2) = 0$$

(f) (i) Plot on the Argand diagram all complex numbers that are roots of $z^{5}=1$.

(ii) Express $z^{5}-1$ as a product of real linear and quadratic factors.

3

- (g) (i) By solving the equation $z^{3}+1=0$ find the three cube roots of -1.
 - (ii) Let ω be a cube root of -1, where ω is not real. Show that $\omega^2 + 1 = \omega$
 - (iii) Hence simplify $(1-\omega)^{12}$.
 - (iv) Find a quadratic equation with real coefficients whose roots are ω^2 and $-\omega$.

Question 2. (Start a new answer sheet.) (31 marks)

(a) Given that $\operatorname{cis} \theta = \cos \theta + i \sin \theta$ find in exact form

$$cis \frac{\pi}{12} cis \frac{\pi}{6}$$

(b) The equation $x^3 + Ax + B = 0$ (A, B real) has three real roots α , β and γ .

- (i) Evaluate $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$ and $\alpha^2 + \beta^2 + \gamma^2$ in terms of A and B.
- (ii) Prove that A < 0.
- (iii) Find the cubic polynomial whose roots are α^2 , β^2 and γ^2 .
- (c) It is given that z=1+i is a zero of $P(z) = z^3 + pz^2 + qz + 6$ where p and q are real numbers.
 - (i) Explain why \overline{z} is also a zero of P(z). (State the theorem.)
 - (ii) Find the values of p and q.
- (d) Find the number of ways in which six women and six men can be arranged in three 5 sets of four for tennis if: 5
 - (i) there are no restrictions.
 - (ii) each man has a woman as a partner.
- (e) In the Argand diagram the points *O*, *A* and *B* are the vertices of a triangle with

$$\angle AOB = 90^\circ \text{ and } \frac{OB}{OA} = 2$$

The vertices *A* and *B* correspond to the complex numbers z_1 and z_2 respectively.

Show that:

- (i) $2z_1 + iz_2 = 0$
- (ii) the equation of the circle with AB as diameter and passing through O is given by

$$|z-z_1(\frac{1}{2}+i)| = \frac{\sqrt{5}}{2}|z_1|.$$

Marks 3

The two circles touch at A and a common external tangent touches them at B and C. BA produced meets the larger circle at D.

Prove that *CD* is a diameter.

Question 3. (Start a new answer sheet.) (23 marks)

Marks

- (a) In how many ways can three different trophies be awarded to five golfers if a golfer ³ may receive at most two trophies?
- (b) Sketch the region in the Argand diagram consisting of all points z satisfying

$$\left|\arg z\right| < \frac{\pi}{4}$$
 and $z + \overline{z} < 4$ and $|z| > 2$.

- (c) (i) Prove that $(1+i\tan\theta)^n + (1-i\tan\theta)^n = \frac{2\cos n\theta}{\cos^n\theta}$, where *n* is a positive integer. 6
 - (ii) Hence or otherwise show that $(1+z)^4 + (1-z)^4 = 0$ has roots $\pm i \tan \frac{\pi}{8}$ and $\pm i \tan \frac{3\pi}{8}$

In the diagram above PQ and RS are two chords intersecting at H, and $\angle KPQ = \angle KRS = 90^{\circ}$.

- (i) Copy the diagram onto your answer sheet, indicating the above information.
- (ii) Prove that $(\alpha) \angle PKH = \angle PQS$.
 - (β) KH produced is perpendicular to QS.
- (e) If α is a real root of the equation $x^3 + ux + v = 0$ prove that the other two roots are real if $4u + 3\alpha^2 \le 0$.

End of paper.

(d)

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2005 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK #1

Mathematics Extension 2 Sample Solutions

Question	Marker
1	PSP
2	DH
3	PRB

Question 1

(a)
$$w = \sqrt{3} + i$$

(i) $-iw = -i(\sqrt{3} + i) = 1 - i\sqrt{3}$
(ii) $w^2 = (\sqrt{3} + i)^2 = 2 + i2\sqrt{3}$
(iii) $w^{-1} = \frac{\overline{w}}{|w|^2} = \frac{\sqrt{3} - i}{4} = \frac{\sqrt{3}}{4} - i(\frac{1}{4})$

(b)
$$z = 1 - i$$

(i) $|z| = \sqrt{2}, \arg(z) = -\frac{\pi}{4}$
(ii) $z^8 = \left(\sqrt{2}\operatorname{cis}\left(-\frac{\pi}{4}\right)\right)^8 = 16\operatorname{cis}\left(-\frac{8\pi}{4}\right) = 16\operatorname{cis}\left(-2\pi\right) = 16$

(c)
$$p(z) = z^{2} + kz + (4 - i)$$
$$p(2i) = 0 \Longrightarrow (2i)^{2} + k(2i) + 4 - i = 0$$
$$\therefore -4 + 2ki + 4 - i = 0$$
$$\therefore 2ki = i$$
$$\therefore k = \frac{1}{2}$$

(d)
$$z = x + iy$$

 $\therefore \frac{1}{z} = \frac{\overline{z}}{|z|^2}$
 $\therefore z + \frac{|z|^2}{z} = z + \overline{z} = 2 \operatorname{Re} z$

(e) (i)
$$x^{2} + (y+2)^{2} = 4$$

A circle with centre (0,-2) ie -2i and radius 2

(f) (i)
$$z^5 = 1 \times \operatorname{cis}(0)$$

 $= \operatorname{cis}(0 + 2k\pi), k \in \mathbb{Z}$
 $= \operatorname{cis}(2k\pi)$
 $z = \left[\operatorname{cis}(2k\pi)\right]^{1/5}$
 $= \operatorname{cis}\left(\frac{2k\pi}{5}\right)$ (deMoivre's Theorem)
 $k = 0:$ $z_0 = \operatorname{cis}(0) = 1$
 $k = 1:$ $z_1 = \operatorname{cis}\left(\frac{2\pi}{5}\right)$
 $k = 2:$ $z_2 = \operatorname{cis}\left(\frac{4\pi}{5}\right)$ $|z_k| = 1$
 $k = -1:$ $z_3 = \operatorname{cis}\left(-\frac{2\pi}{5}\right)$
 $k = -2:$ $z_4 = \operatorname{cis}\left(-\frac{4\pi}{5}\right)$

The 5 roots must form a regular pentagon				
inscribed in a unit circle.				
As well:				
z_1 and z_4 are conjugates				
z_2 and z_3 are conjugates				

(ii)
$$(z-\alpha)(z-\overline{\alpha}) = z^2 - 2\operatorname{Re}(\alpha)z + |\alpha|^2$$

 $z^5 - 1 = (z - z_0)(z - z_1)(z - z_2)(z - z_3)(z - z_4)$
 $= (z-1)(z - z_1)(z - \overline{z_1})(z - z_2)(z - \overline{z_2})$
 $= (z-1)(z^2 - (2\operatorname{Re} z_1)z + |z_1|^2)(z^2 - (2\operatorname{Re} z_2)z + |z_2|^2)z$
 $= (z-1)(z^2 - 2z\cos\frac{2\pi}{5} + 1)(z^2 - 2z\cos\frac{4\pi}{5} + 1)$

(g) (i)
$$z^{3} = -1$$

 $= 1 \times \operatorname{cis}(\pi)$
 $= \operatorname{cis}(\pi + 2k\pi), k \in \mathbb{Z}$
 $= \operatorname{cis}(2k+1)\pi$
 $z = [\operatorname{cis}(2k+1)\pi]^{1/3}$
 $= \operatorname{cis}(2k+1)\frac{\pi}{3}$ (deMoivre's Theorem)
 $k = 0:$ $z = \operatorname{cis}\frac{\pi}{3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$
 $k = 0:$ $z = \operatorname{cis}\frac{3\pi}{3} = -1$
 $k = -1:$ $\operatorname{cis}\left(-\frac{\pi}{3}\right) = \frac{1}{2} - \frac{\sqrt{3}}{2}i$
(ii) $z^{3} + 1 = (z+1)(z^{2} - z + 1)$
 $\omega^{3} = -1, \omega \neq -1$
 $\therefore \omega^{3} + 1 = (\omega + 1)(\omega^{2} - \omega + 1) = 0$
 $\therefore \omega^{2} - \omega + 1 = 0$ $(\because \omega \neq -1)$
 $\therefore \omega^{2} + 1 = \omega$
(iii) $(1 - \omega)^{12} = (-\omega^{2})^{12}$ (from (ii))
 $= (\omega^{3})^{8}$
 $= (-1)^{8}$
 $= 1$
(iv) $(z - \omega^{2})(z + \omega) = 0$
 $z^{2} + (\omega - \omega^{2})z - \omega^{3} = 0$
 $\therefore z^{2} + (1)z - (-1) = 0$ (from (ii))
 $\therefore z^{2} + z + 1 = 0$

OR more simply since $z^3 + 1 = (z+1)(z^2 - z + 1)$ and the three roots of -1 are so that $z^2 - z + 1 = 0$ must have roots $\omega, -\omega^2$. So let y = -z and $y^2 + y + 1 = 0$ MUST have roots $-\omega, \omega^2$.

Question 2

(a) Method 1: $\operatorname{cis} \frac{\pi}{12} \operatorname{cis} \frac{\pi}{6} = \operatorname{cis} \left(\frac{\pi}{12} + \frac{\pi}{6} \right), \text{ by de Moivre's theorem}$ $= \operatorname{cis} \frac{\pi}{4},$ $= \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}.$ Method 2: $\operatorname{cis}\frac{\pi}{12}\operatorname{cis}\frac{\pi}{6} = \left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right),$ $= \cos \frac{\pi}{12} \cos \frac{\pi}{6} - \sin \frac{\pi}{12} \sin \frac{\pi}{6} + i \left(\sin \frac{\pi}{12} \cos \frac{\pi}{6} + \cos \frac{\pi}{12} \sin \frac{\pi}{6} \right),$ $= \cos \frac{\pi}{4} + i \sin \frac{\pi}{4},$ $= \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}.$ $\alpha+\beta+\gamma=~0,$ 3 (b) i. $\alpha\beta + \alpha\gamma + \beta\gamma = A,$ $\alpha\beta\gamma = -B.$ Now, $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{\beta\gamma + \alpha\gamma + \alpha\beta}{2}.$

$$\begin{aligned} &= -\frac{A}{B} \\ \text{Also, } (\alpha + \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \alpha\gamma + \beta\gamma). \\ &\therefore \quad \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma), \\ &= 0 - 2A, \\ &= -2A. \end{aligned}$$

ii. Method 1: $A = -\frac{1}{2}(\alpha^2 + \beta^2 + \gamma^2).$ But $\alpha^2 + \beta^2 + \gamma^2 > 0$ if $\alpha \neq \beta \neq \gamma$. $\therefore A < 0.$

Method 2: $P'(x) = 3x^2 + A.$ If A > 0 then P(x) is monotonic increasing so there can be only one real root. But there are 3 real roots so A < 0.

iii. Put
$$X = x^2$$
.
 $\therefore x = \sqrt{X}$.
 $X\sqrt{X} + A\sqrt{X} + B = 0$,
 $\sqrt{X}(X + A) = -B$,
 $X(X^2 + 2XA + A^2) = B^2$.
New equation is $x^3 + 2Ax^2 + A^2x - B^2 = 0$.
(4)

3

- (c) i. If a + ib is a complex zero of the polynomial P(x) of degree $n \ge 1$ with real coefficients, then a ib is also a zero of P(x).
 - ii. Let the roots be α , 1 + i, 1 i, then $z^3 + pz^2 + qz + 6 = (z - \alpha)(z - 1 - i)(z - 1 + i)$, $= (z - \alpha)(z^2 - 2z + 2)$, $= z^3 - (\alpha + 2)z^2 + (2\alpha + 2)z - 2\alpha$. Equating coefficients gives $\alpha = -3$. p = -(-3 + 2), = 1. q = -6 + 2, = -4.
- (d) i. There are ¹²C₄ ways of getting the first group and ⁸C₄ ways of getting the second group leaving the third group. As the group order does not matter, we have $\frac{{}^{12}C_4 \times {}^{8}C_4}{3!} = 5775.$
 - ii. There are ${}^{6}C_{2} \times {}^{6}C_{2}$ ways of getting the first and ${}^{4}C_{2} \times {}^{4}C_{2}$ ways of getting 3 the second group, leaving the third group. As before, the group order does not matter, so we have $\frac{\left({}^{6}C_{2} \times {}^{4}C_{2}\right)^{2}}{3!} = 1350$. Note that we are not asked to arrange the people within the groups, only to form the groups.
- (e) i. Method 1:

 $z_2 = 2iz_1$ (Twice the length and rotated anti-clockwise by 90°), $iz_2 = -2z_1$, $\therefore 2z_1 + 2iz_2 = 0$. Method 2: Let $z_1 = a + ib$, $z_2 = 2i(a + ib)$,

= 2ai - 2b. $\therefore 2z_1 = 2a + 2bi,$ $iz_2 = -2a - 2bi.$ So $2z_1 + iz_2 = 0.$

ii. Method 1:

Centre =
$$\frac{z_1 + z_2}{2}$$
,
= $\frac{z_1}{2} - \frac{2z_1}{2i} \times \frac{i}{i}$,
= $z_1(\frac{1}{2} + i)$.

4

3

2

2

Radius = $\frac{1}{2}|z_1 - z_2|$, = $\frac{1}{2}|z_1 - 2z_1i|$, = $\frac{1}{2}|z_1||1 - 2i|$, = $\frac{1}{2}|z_1|\sqrt{1^2 + 2^2}$, = $\frac{\sqrt{5}}{2}|z_1|$. ∴ $|z - z_1(\frac{1}{2} + i)| = \frac{\sqrt{5}}{2}|z_1|$.

Method 2:

$$Centre = \frac{a-2b}{2} + \frac{i}{2}(b+2a),$$

$$= \frac{a+ib}{2} + \frac{2ai-2b}{2},$$

$$= \frac{z_1}{2} + \frac{z_2}{2},$$

$$= \frac{z_1}{2} - \frac{2z_1}{2i} \times \frac{i}{i},$$

$$= z_1(\frac{1}{2}+i).$$

Radius² = $\left(\frac{a-2b}{2}\right)^2 + \left(\frac{b+2a}{2}\right)^2,$

$$= \frac{a^2 - 4ab + 4b^2 + b^2 + 4ab + 4a^2}{4},$$

$$= \frac{5a^2 + 5b^2}{4}.$$

Radius = $\frac{\sqrt{5}}{2}\sqrt{a^2 + b^2},$

$$= \frac{\sqrt{5}}{2}|z_1|$$

 $\therefore |z - z_1(\frac{1}{2}+i)| = \frac{\sqrt{5}}{2}|z_1|.$

(f) Method 1:

Construct the common tangent at A cutting BC at E. Join AC. Let $A\widehat{C}E = x$, $E\widehat{B}A = y$. EC = EA = EB (equal tangents from external point),

 $E\widehat{C}A = E\widehat{A}C = x$ (equal angles of isosceles \triangle), $E\widehat{B}A = B\widehat{A}E = y$ (equal angles of isosceles \triangle), $2x + 2y = 180^{\circ}$ (angle sum of $\triangle ABC$), $x + y = 90^{\circ} = B\widehat{A}E$, $\therefore C\widehat{A}D = 90^{\circ}$ (supplementary to $B\widehat{A}E$), $\therefore CD$ is a diameter (angle in a semi-circle is a right angle).

D Construct the common tangent at A cutting BC at E. Join AC. Let $A\widehat{D}C = x$, $C\widehat{A}D = y$. $A\widehat{C}D = 180^{\circ} - x - y$ (angle sum of \triangle), $E\widehat{C}A = x$ (angle in alternate segment), $D\widehat{B}C = y - x$ (angle sum of \triangle). EC = EA = EB (equal tangents from external point),

 $E\widehat{C}A = E\widehat{A}C = x$ (equal angles of isosceles \triangle),

 $E\widehat{B}A = B\widehat{A}E = y - x$ (equal angles of isosceles \triangle),

 $B\widehat{A}D = 2y = 180^{\circ}$ (supplementary angles),

 $\therefore y = 90^{\circ}$

$$BCD = 180^{\circ} - y = 90^{\circ}$$

 \therefore CD is a diameter (radius \perp tangent at the point of tangency).

Question 3

(a) **Method 1:**

Case 1: 3 different golfers receive prizes

$$\binom{5}{3}$$
 picks the golfers and then the prizes can be awarded in 3! ways
ie $\binom{5}{3} \times 3! = 60$ ways.

Case 2: 1 golfer receives two prizes

Pick the golfer to receive the prize in $\begin{pmatrix} 5 \\ 1 \end{pmatrix}$ ways and his prizes in $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ ways.

Then the remaining prize can go to one of the 4 others

ie
$$\binom{5}{1} \times \binom{3}{2} \times \binom{4}{1} = 60$$
 ways
Total = 60 + 60 = 120

Method 2:

There are $5^3 = 125$ ways of dividing up the prizes with no restrictions. There are 5 ways in which a golfer can get all the prizes. So there are 125 - 5 = 120 ways in dividing up the prizes so that a golfer gets no more than 2 prizes.

(b) $|\arg z| < \frac{\pi}{4} \implies -\frac{\pi}{4} < \arg z < \frac{\pi}{4}$ $z + \overline{z} < 4 \implies x < 2$

(c) (i) LHS =
$$(1 + i \tan \theta)^n + (1 - i \tan \theta)^n$$

= $\left(1 + i \frac{\sin \theta}{\cos \theta}\right)^n + \left(1 - i \frac{\sin \theta}{\cos \theta}\right)^n$
= $\left(\frac{\cos \theta + i \sin \theta}{\cos \theta}\right)^n + \left(\frac{\cos \theta - i \sin \theta}{\cos \theta}\right)^n$
= $\frac{\left[\cos \theta\right]^n + \left[\cos(-\theta)\right]^n}{\cos^n \theta}$
= $\frac{\cos \theta + \cos(-\theta)}{\cos^n \theta}$ (deMoivre's Theorem)
= $\frac{2\cos \theta}{\cos^n \theta}$ ($z + \overline{z} = 2 \operatorname{Re} z$)
= RHS

(ii)
$$(1+z)^4 + (1-z)^4 = \frac{2\cos 4\theta}{\cos^4 \theta}$$
 where $z = i \tan \theta$ from (i)
 $(1+z)^4 + (1-z)^4 = 0 \Leftrightarrow \frac{2\cos 4\theta}{\cos^4 \theta} = 0$
 $\therefore \cos 4\theta = 0$
 $\therefore 4\theta = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}$
 $\therefore \theta = \pm \frac{\pi}{8}, \pm \frac{3\pi}{8}$
 $\because z = i \tan \theta \Rightarrow z = i \tan \left(\pm \frac{\pi}{8}\right), i \tan \left(\pm \frac{3\pi}{8}\right)$
 $\therefore z = \pm i \tan \left(\frac{\pi}{8}\right), \pm i \tan \left(\frac{3\pi}{8}\right)$ [$\because \tan(-x) = -\tan(x)$]

(d) (i)

Join *QS* and produce *KH* to intersect with *QS* at *X*. Join *RP*

- (ii) (α) *PKRH* is a cyclic quadrilateral $\angle PKH = \angle PRH$ $\angle PRH = \angle PQS$ $\therefore \angle PKH = \angle PQS$
 - $(\beta) \qquad \angle PHK + \angle PKH = 90^{\circ} \\ \angle QHX = \angle PHK \\ \therefore \angle QHX + \angle PQS = 90^{\circ} \\ \therefore \angle QXH = 90^{\circ} \\ \therefore KH (produced) \perp QS$

(opposite angles are supplementary)
(angles in the same segment)
(angles in the same segment)

 $(\because \angle KPH = 90^{\circ})$ (vertically opposite angles) $(\because \angle PKH = \angle PQS)$ (angle sum of Δ) (e) If α is a real root of the equation $x^3 + ux + v = 0$ then $\alpha^3 + u\alpha + v = 0$

Now
$$x^3 + ux + v = (x - \alpha)(x^2 + Ax + B)$$

$$x^2 + \alpha x + (u + \alpha^2)$$

$$(x - \alpha)\overline{)x^3 + 0x^2 + ux + v}$$

$$x^2 - \alpha x^2$$

$$(x - \alpha)\overline{)0 + \alpha x^2 + ux}$$

$$\alpha x^2 - \alpha^2 x$$

$$(x - \alpha)\overline{)0 + (u + \alpha^2)x + v}$$

$$\underline{(u + \alpha^2)x - (u + \alpha^2)\alpha}$$

$$0$$

$$\therefore v + (u + \alpha^2)\alpha = 0$$

$$\therefore x^{3} + ux + v = (x - \alpha) \Big[x^{2} + \alpha x + (u + \alpha^{2}) \Big]$$

With $x^{2} + \alpha x + (u + \alpha^{2}) = 0$ to have real roots then
$$\Delta = \alpha^{2} - 4 (u + \alpha^{2}) = -3\alpha^{2} - 4u \ge 0$$

$$\therefore 3\alpha^{2} + 4u \le 0$$