

2005
 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#1

Mathematics

Extension 2

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each question is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 85

- Attempt questions 1-3
- All questions are not of equal value.

Question 1. (Start a new answer sheet.) (31 marks)

Marks

(a) Given that $w=\sqrt{3}+i$, express the following in the form $a+i b$ where a and b are real.
(i) $-i w$
(ii) w^{2}
(iii) w^{-1}
(b) If $z=1-i$ find:
(i) $|z|$ and $\arg z$
(ii) z^{8} in exact form
(c) Consider the equation

$$
z^{2}+k z+(4-i)=0
$$

Find the complex number k given that $2 i$ is a root of the equation.
(d) If $z=x+i y$ prove that

$$
z+\frac{|z|^{2}}{z}=2 \operatorname{Re}(z)
$$

(e) Sketch the locus of z satisfying
(i) $|z+2 i|=2$
(ii) $\operatorname{Re}\left(z^{2}\right)=0$
(f) (i) Plot on the Argand diagram all complex numbers that are roots of $z^{5}=1$.
(ii) Express $z^{5}-1$ as a product of real linear and quadratic factors.
(g) (i) By solving the equation $z^{3}+1=0$ find the three cube roots of -1 .
(ii) Let ω be a cube root of -1 , where ω is not real. Show that $\omega^{2}+1=\omega$
(iii) Hence simplify $(1-\omega)^{12}$.
(iv) Find a quadratic equation with real coefficients whose roots are ω^{2} and $-\omega$.

Question 2. (Start a new answer sheet.) (31 marks)

Marks

(i) Evaluate $\alpha^{-1}+\beta^{-1}+\gamma^{-1}$ and $\alpha^{2}+\beta^{2}+\gamma^{2}$ in terms of A and B.
(ii) Prove that $A<0$.
(iii) Find the cubic polynomial whose roots are α^{2}, β^{2} and γ^{2}.
(c) It is given that $z=1+i$ is a zero of $P(z)=z^{3}+p z^{2}+q z+6$ where p and q are real numbers.
(i) Explain why \bar{z} is also a zero of $P(z)$. (State the theorem.)
(ii) Find the values of p and q.
(d) Find the number of ways in which six women and six men can be arranged in three sets of four for tennis if:
(i) there are no restrictions.
(ii) each man has a woman as a partner.
(e) In the Argand diagram the points O, A and B are the vertices of a triangle with $\angle A O B=90^{\circ}$ and $\frac{O B}{O A}=2$.

The vertices A and B correspond to the complex numbers z_{1} and z_{2} respectively.

Show that:
(i) $2 z_{1}+i z_{2}=0$
(ii) the equation of the circle with $A B$ as diameter and passing through O is given by

$$
\left|z-z_{1}\left(\frac{1}{2}+i\right)\right|=\frac{\sqrt{5}}{2}\left|z_{1}\right| .
$$

(f)

The two circles touch at A and a common external tangent touches them at B and C. $B A$ produced meets the larger circle at D.

Prove that $C D$ is a diameter.

Question 3. (Start a new answer sheet.) (23 marks)

Marks

(a) In how many ways can three different trophies be awarded to five golfers if a golfer may receive at most two trophies?
(b) Sketch the region in the Argand diagram consisting of all points z satisfying

$$
|\arg z|<\frac{\pi}{4} \text { and } z+\bar{z}<4 \text { and }|z|>2
$$

(c) (i) Prove that $(1+i \tan \theta)^{n}+(1-i \tan \theta)^{n}=\frac{2 \cos n \theta}{\cos ^{n} \theta}$, where n is a positive integer.
(ii) Hence or otherwise show that $(1+z)^{4}+(1-z)^{4}=0$ has roots

$$
\pm i \tan \frac{\pi}{8} \text { and } \pm i \tan \frac{3 \pi}{8}
$$

(d)

In the diagram above $P Q$ and $R S$ are two chords intersecting at H, and
$\angle K P Q=\angle K R S=90^{\circ}$.
(i) Copy the diagram onto your answer sheet, indicating the above information.
(ii) Prove that $(\alpha) \quad \angle P K H=\angle P Q S$.
(β) $K H$ produced is perpendicular to $Q S$.
(e) If α is a real root of the equation $x^{3}+u x+v=0$ prove that the other two roots are real if $4 u+3 \alpha^{2} \leq 0$.

End of paper.

SYDNEYBOYS HIGHSCHOOL MOORE PARK, SURRY HILIS

2005
HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#1

Mathematics Extension 2 Sample Solutions

Question	Marker
1	PSP
2	DH
3	PRB

Question 1

(a) $w=\sqrt{3}+i$
(i) $-i w=-i(\sqrt{3}+i)=1-i \sqrt{3}$
(ii) $w^{2}=(\sqrt{3}+i)^{2}=2+i 2 \sqrt{3}$
(iii) $\quad w^{-1}=\frac{\bar{w}}{|w|^{2}}=\frac{\sqrt{3}-i}{4}=\frac{\sqrt{3}}{4}-i\left(\frac{1}{4}\right)$
(b) $z=1-i$
(i) $|z|=\sqrt{2}, \arg (z)=-\frac{\pi}{4}$
(ii) $z^{8}=\left(\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)\right)^{8}=16 \operatorname{cis}\left(-\frac{8 \pi}{4}\right)=16 \operatorname{cis}(-2 \pi)=16$
(c) $p(z)=z^{2}+k z+(4-i)$

$$
\begin{aligned}
& p(2 i)=0 \Rightarrow(2 i)^{2}+k(2 i)+4-i=0 \\
& \therefore-4+2 k i+4-i=0 \\
& \therefore 2 k i=i \\
& \therefore k=\frac{1}{2}
\end{aligned}
$$

(d) $z=x+i y$
$\because \frac{1}{z}=\frac{\bar{z}}{|z|^{2}}$
$\therefore z+\frac{|z|^{2}}{z}=z+\bar{z}=2 \operatorname{Re} z$
(e) (i) $x^{2}+(y+2)^{2}=4$

A circle with centre $(0,-2)$ ie $-2 i$ and radius 2

(ii) $\operatorname{Re}\left(z^{2}\right)=x^{2}-y^{2}=0$
$\therefore x^{2}=y^{2}$
$\therefore y= \pm x$

(f) (i) $z^{5}=1 \times \operatorname{cis}(0)$

$$
\begin{aligned}
& =\operatorname{cis}(0+2 k \pi), k \in \mathbb{Z} \\
& =\operatorname{cis}(2 k \pi) \\
z & =[\operatorname{cis}(2 k \pi)]^{1 / 5} \\
& =\operatorname{cis}\left(\frac{2 k \pi}{5}\right) \quad(\text { deMoivre's Theorem })
\end{aligned}
$$

$$
k=0: \quad z_{0}=\operatorname{cis}(0)=1
$$

$$
k=1: \quad z_{1}=\operatorname{cis}\left(\frac{2 \pi}{5}\right)
$$

$$
k=2: \quad z_{2}=\operatorname{cis}\left(\frac{4 \pi}{5}\right) \quad\left|z_{k}\right|=1
$$

$$
k=-1: \quad z_{3}=\operatorname{cis}\left(-\frac{2 \pi}{5}\right)
$$

$$
k=-2: \quad z_{4}=\operatorname{cis}\left(-\frac{4 \pi}{5}\right)
$$

The 5 roots must form a regular pentagon inscribed in a unit circle.
As well:
z_{1} and z_{4} are conjugates
z_{2} and z_{3} are conjugates
(ii) $(z-\alpha)(z-\bar{\alpha})=z^{2}-2 \operatorname{Re}(\alpha) z+|\alpha|^{2}$

$$
\begin{aligned}
z^{5}-1 & =\left(z-z_{0}\right)\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right) \\
& =(z-1)\left(z-z_{1}\right)\left(z-\bar{z}_{1}\right)\left(z-z_{2}\right)\left(z-\bar{z}_{2}\right) \\
& =(z-1)\left(z^{2}-\left(2 \operatorname{Re} z_{1}\right) z+\left|z_{1}\right|^{2}\right)\left(z^{2}-\left(2 \operatorname{Re} z_{2}\right) z+\left|z_{2}\right|^{2}\right) z \\
& =(z-1)\left(z^{2}-2 z \cos \frac{2 \pi}{5}+1\right)\left(z^{2}-2 z \cos \frac{4 \pi}{5}+1\right)
\end{aligned}
$$

(g) (i) $\quad z^{3}=-1$

$$
\begin{aligned}
& =1 \times \operatorname{cis}(\pi) \\
& =\operatorname{cis}(\pi+2 k \pi), k \in \mathbb{Z} \\
& =\operatorname{cis}(2 k+1) \pi \\
z & =[\operatorname{cis}(2 k+1) \pi]^{1 / 3}
\end{aligned}
$$

$$
=\operatorname{cis}(2 k+1) \frac{\pi}{3} \quad(\text { deMoivre's Theorem })
$$

$$
k=0: \quad z=\operatorname{cis} \frac{\pi}{3}=\frac{1}{2}+\frac{\sqrt{3}}{2} i
$$

$$
k=1: \quad z=\operatorname{cis} \frac{3 \pi}{3}=-1
$$

$$
k=-1: \quad \operatorname{cis}\left(-\frac{\pi}{3}\right)=\frac{1}{2}-\frac{\sqrt{3}}{2} i
$$

(ii) $z^{3}+1=(z+1)\left(z^{2}-z+1\right)$

$$
\omega^{3}=-1, \omega \neq-1
$$

$$
\therefore \omega^{3}+1=(\omega+1)\left(\omega^{2}-\omega+1\right)=0
$$

$$
\therefore \omega^{2}-\omega+1=0 \quad(\because \omega \neq-1)
$$

$$
\therefore \omega^{2}+1=\omega
$$

(iii) $\quad(1-\omega)^{12}=\left(-\omega^{2}\right)^{12} \quad($ from $($ ii $))$

$$
=\left(\omega^{3}\right)^{8}
$$

$$
=(-1)^{8}
$$

$$
=1
$$

(iv) $\left(z-\omega^{2}\right)(z+\omega)=0$
$z^{2}+\left(\omega-\omega^{2}\right) z-\omega^{3}=0$
$\therefore z^{2}+(1) z-(-1)=0$
$($ from (ii))
$\therefore z^{2}+z+1=0$
OR more simply since $z^{3}+1=(z+1)\left(z^{2}-z+1\right)$
and the three roots of -1 are so that $z^{2}-z+1=0$ must have roots $\omega,-\omega^{2}$.
So let $y=-z$ and $y^{2}+y+1=0$ MUST have roots $-\omega, \omega^{2}$.

Question 2

(a) Method 1:

$$
\begin{aligned}
\operatorname{cis} \frac{\pi}{12} \operatorname{cis} \frac{\pi}{6} & =\operatorname{cis}\left(\frac{\pi}{12}+\frac{\pi}{6}\right), \text { by de Moivre's theorem } \\
& =\operatorname{cis} \frac{\pi}{4}, \\
& =\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}} .
\end{aligned}
$$

Method 2:

$$
\begin{aligned}
\operatorname{cis} \frac{\pi}{12} \operatorname{cis} \frac{\pi}{6} & =\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) \\
& =\cos \frac{\pi}{12} \cos \frac{\pi}{6}-\sin \frac{\pi}{12} \sin \frac{\pi}{6}+i\left(\sin \frac{\pi}{12} \cos \frac{\pi}{6}+\cos \frac{\pi}{12} \sin \frac{\pi}{6}\right) \\
& =\cos \frac{\pi}{4}+i \sin \frac{\pi}{4} \\
& =\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}} .
\end{aligned}
$$

(b) i. $\alpha+\beta+\gamma=0$,

$$
\begin{align*}
\alpha \beta+\alpha \gamma+\beta \gamma & =A, \tag{3}\\
\alpha \beta \gamma & =-B . \\
\text { Now, } \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma}, \\
& =-\frac{A}{B} . \\
\text { Also, }(\alpha+\beta+\gamma)^{2} & =\alpha^{2}+\beta^{2}+\gamma^{2}+2(\alpha \beta+\alpha \gamma+\beta \gamma) . \\
\therefore \alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma), \\
& =0-2 A, \\
& =-2 A .
\end{align*}
$$

ii. Method 1:
$A=-\frac{1}{2}\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)$.
But $\alpha^{2}+\beta^{2}+\gamma^{2}>0$ if $\alpha \neq \beta \neq \gamma$.
$\therefore \quad A<0$.
Method 2:
$P^{\prime}(x)=3 x^{2}+A$.
If $A>0$ then $P(x)$ is monotonic increasing so there can be only one real root. But there are 3 real roots so $A<0$.
iii. Put $\quad X=x^{2}$.

$$
\begin{aligned}
& \therefore x=\sqrt{X} \\
& X \sqrt{X}+A \sqrt{X}+B=0 \\
& \sqrt{X}(X+A)=-B \\
& X\left(X^{2}+2 X A+A^{2}\right)=B^{2} .
\end{aligned}
$$

New equation is $x^{3}+2 A x^{2}+A^{2} x-B^{2}=0$.
(c) i. If $a+i b$ is a complex zero of the polynomial $P(x)$ of degree $n \geq 1$ with real coefficients, then $a-i b$ is also a zero of $P(x)$.
ii. Let the roots be $\alpha, 1+i, 1-i$, then

$$
\begin{aligned}
z^{3}+p z^{2}+q z+6 & =(z-\alpha)(z-1-i)(z-1+i), \\
& =(z-\alpha)\left(z^{2}-2 z+2\right), \\
& =z^{3}-(\alpha+2) z^{2}+(2 \alpha+2) z-2 \alpha .
\end{aligned}
$$

Equating coefficients gives $\alpha=-3$.

$$
\begin{aligned}
p & =-(-3+2), \\
& =1 . \\
q & =-6+2, \\
& =-4 .
\end{aligned}
$$

(d) i. There are ${ }^{12} \mathrm{C}_{4}$ ways of getting the first group and ${ }^{8} \mathrm{C}_{4}$ ways of getting the second group leaving the third group. As the group order does not matter, we have $\frac{{ }^{12} \mathrm{C}_{4} \times{ }^{8} \mathrm{C}_{4}}{3!}=5775$.
ii. There are ${ }^{6} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{2}$ ways of getting the first and ${ }^{4} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2}$ ways of getting the second group, leaving the third group. As before, the group order does not matter, so we have $\frac{\left({ }^{6} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2}\right)^{2}}{3!}=1350$.
Note that we are not asked to arrange the people within the groups, only to form the groups.
(e) i. Method 1:

$$
\begin{aligned}
z_{2} & =2 i z_{1}\left(\text { Twice the length and rotated anti-clockwise by } 90^{\circ}\right), \\
i z_{2} & =-2 z_{1}, \\
\therefore \quad 2 z_{1}+2 i z_{2} & =0 .
\end{aligned}
$$

Method 2:
Let $z_{1}=a+i b$,
$z_{2}=2 i(a+i b)$,
$=2 a i-2 b$.
$\therefore 2 z_{1}=2 a+2 b i$,
$i z_{2}=-2 a-2 b i$.
So $2 z_{1}+i z_{2}=0$.
ii. Method 1:

$$
\begin{aligned}
\text { Centre } & =\frac{z_{1}+z_{2}}{2} \\
& =\frac{z_{1}}{2}-\frac{2 z_{1}}{2 i} \times \frac{i}{i}, \\
& =z_{1}\left(\frac{1}{2}+i\right) .
\end{aligned}
$$

$$
\begin{aligned}
\text { Radius } & =\frac{1}{2}\left|z_{1}-z_{2}\right| \\
& =\frac{1}{2}\left|z_{1}-2 z_{1} i\right| \\
& =\frac{1}{2}\left|z_{1}\right||1-2 i|, \\
& =\frac{1}{2}\left|z_{1}\right| \sqrt{1^{2}+2^{2}} \\
& =\frac{\sqrt{5}}{2}\left|z_{1}\right| . \\
\therefore \quad \mid z- & \left.z_{1}\left(\frac{1}{2}+i\right)\left|=\frac{\sqrt{5}}{2}\right| z_{1} \right\rvert\, .
\end{aligned}
$$

Method 2:

$$
\begin{aligned}
\text { Centre } & =\frac{a-2 b}{2}+\frac{i}{2}(b+2 a) \\
& =\frac{a+i b}{2}+\frac{2 a i-2 b}{2}, \\
& =\frac{z_{1}}{2}+\frac{z_{2}}{2}, \\
& =\frac{z_{1}}{2}-\frac{2 z_{1}}{2 i} \times \frac{i}{i}, \\
& =z_{1}\left(\frac{1}{2}+i\right) . \\
& \begin{aligned}
& \text { Radius }^{2}=\left(\frac{a-2 b}{2}\right)^{2}+\left(\frac{b+2 a}{2}\right)^{2}, \\
&=\frac{a^{2}-4 a b+4 b^{2}+b^{2}+4 a b+4 a^{2}}{4}, \\
&=\frac{5 a^{2}+5 b^{2}}{4} . \\
& \text { Radius }=\frac{\sqrt{5}}{2} \sqrt{a^{2}+b^{2}}, \\
&=\frac{\sqrt{5}}{2}\left|z_{1}\right| \\
& \therefore \quad\left|z-z_{1}\left(\frac{1}{2}+i\right)\right|=\frac{\sqrt{5}}{2}\left|z_{1}\right| .
\end{aligned}
\end{aligned}
$$

(f) Method 1:

Construct the common tangent at A cutting $B C$ at E.
Join $A C$.
Let $A \widehat{C} E=x, E \widehat{B} A=y$.
$E C=E A=E B$ (equal tangents from external point),
$E \widehat{C} A=E \widehat{A} C=x$ (equal angles of isosceles \triangle),
$E \widehat{B} A=B \widehat{A} E=y$ (equal angles of isosceles \triangle),
$2 x+2 y=180^{\circ}$ (angle sum of $\triangle A B C$),
$x+y=90^{\circ}=B \widehat{A} E$,
$\therefore C \widehat{A D}=90^{\circ}$ (supplementary to $B \widehat{A} E$),
$\therefore C D$ is a diameter (angle in a semi-circle is a right angle).
Method 2:

Construct the common tangent at A cutting $B C$ at E.
Join $A C$.
Let $A \widehat{D} C=x, C \widehat{A} D=y$.
$A \widehat{C} D=180^{\circ}-x-y($ angle sum of $\triangle)$,
$E \widehat{C} A=x$ (angle in alternate segment),
$D \widehat{B} C=y-x$ (angle sum of \triangle).
$E C=E A=E B$ (equal tangents from external point),
$E \widehat{C} A=E \widehat{A} C=x$ (equal angles of isosceles \triangle),
$E \widehat{B} A=B \widehat{A} E=y-x$ (equal angles of isosceles \triangle),
$B \widehat{A} D=2 y=180^{\circ}$ (supplementary angles),
$\therefore y=90^{\circ}$
$B \widehat{C D}=180^{\circ}-y=90^{\circ}$.
$\therefore C D$ is a diameter (radius \perp tangent at the point of tangency).

Question 3

(a) Method 1:

Case 1: 3 different golfers receive prizes
$\binom{5}{3}$ picks the golfers and then the prizes can be awarded in 3! ways ie $\binom{5}{3} \times 3!=60$ ways.
Case 2: 1 golfer receives two prizes
Pick the golfer to receive the prize in $\binom{5}{1}$ ways and his prizes in $\binom{3}{2}$ ways.
Then the remaining prize can go to one of the 4 others

$$
\text { ie }\binom{5}{1} \times\binom{ 3}{2} \times\binom{ 4}{1}=60 \text { ways }
$$

Total $=60+60=120$

Method 2:

There are $5^{3}=125$ ways of dividing up the prizes with no restrictions.
There are 5 ways in which a golfer can get all the prizes.
So there are $125-5=120$ ways in dividing up the prizes so that a golfer gets no more than 2 prizes.
(b) $|\arg z|<\frac{\pi}{4} \Rightarrow-\frac{\pi}{4}<\arg z<\frac{\pi}{4}$
$z+\bar{z}<4 \Rightarrow x<2$

(c) (i) \quad LHS $=(1+i \tan \theta)^{n}+(1-i \tan \theta)^{n}$

$$
\begin{aligned}
& =\left(1+i \frac{\sin \theta}{\cos \theta}\right)^{n}+\left(1-i \frac{\sin \theta}{\cos \theta}\right)^{n} \\
& =\left(\frac{\cos \theta+i \sin \theta}{\cos \theta}\right)^{n}+\left(\frac{\cos \theta-i \sin \theta}{\cos \theta}\right)^{n} \\
& =\frac{[\operatorname{cis} \theta]^{n}+[\operatorname{cis}(-\theta)]^{n}}{\cos ^{n} \theta} \\
& =\frac{\operatorname{cis} n \theta+\operatorname{cis}^{n}(-n \theta)}{\cos ^{n} \theta} \quad(\text { deMoivre's Theorem }) \\
& =\frac{2 \cos n \theta}{\cos ^{n} \theta} \quad(z+\bar{z}=2 \operatorname{Re} z) \\
& =\text { RHS }
\end{aligned}
$$

(ii) $(1+z)^{4}+(1-z)^{4}=\frac{2 \cos 4 \theta}{\cos ^{4} \theta}$ where $z=i \tan \theta$ from (i)

$$
(1+z)^{4}+(1-z)^{4}=0 \Leftrightarrow \frac{2 \cos 4 \theta}{\cos ^{4} \theta}=0
$$

$\therefore \cos 4 \theta=0$
$\therefore 4 \theta= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}$
$\therefore \theta= \pm \frac{\pi}{8}, \pm \frac{3 \pi}{8}$
$\because z=i \tan \theta \Rightarrow z=i \tan \left(\pm \frac{\pi}{8}\right), i \tan \left(\pm \frac{3 \pi}{8}\right)$
$\therefore z= \pm i \tan \left(\frac{\pi}{8}\right), \pm i \tan \left(\frac{3 \pi}{8}\right) \quad[\because \tan (-x)=-\tan (x)]$
(d) (i)

Join $Q S$ and produce $K H$ to intersect with $Q S$ at X. Join $R P$
(ii) $\quad(\alpha$
(α)

$$
P K R H \text { is a cyclic quadrilateral }
$$

$\angle P K H=\angle P R H$
$\angle P R H=\angle P Q S$
(opposite angles are supplementary)
(angles in the same segment)
(angles in the same segment)
$\therefore \angle P K H=\angle P Q S$
(β)

$$
\begin{array}{ll}
\angle P H K+\angle P K H=90^{\circ} & \left(\because \angle K P H=90^{\circ}\right) \\
\angle Q H X=\angle P H K & (\text { vertically opposite a } \\
\therefore \angle Q H X+\angle P Q S=90^{\circ} & (\because \angle P K H=\angle P Q S) \\
\therefore \angle Q X H=90^{\circ} & (\text { angle sum of } \Delta) \\
\therefore K H(\text { produced }) \perp Q S &
\end{array}
$$

(e) If α is a real root of the equation $x^{3}+u x+v=0$ then $\alpha^{3}+u \alpha+v=0$

$$
\begin{gathered}
\text { Now } x^{3}+u x+v=(x-\alpha)\left(x^{2}+A x+B\right) \\
x^{2}+\alpha x+\left(u+\alpha^{2}\right) \\
(x - \alpha) \longdiv { x ^ { 3 } + 0 x ^ { 2 } + u x + v } \\
x^{2}-\alpha x^{2} \\
(x - \alpha) \longdiv { 0 + \alpha x ^ { 2 } + u x } \\
\alpha x^{2}-\alpha^{2} x
\end{gathered} \sum_{(x - \alpha) \longdiv { 0 + (u + \alpha ^ { 2 }) x + v }}^{\frac{\left(u+\alpha^{2}\right) x-\left(u+\alpha^{2}\right) \alpha}{0}} \begin{aligned}
& \because v+\left(u+\alpha^{2}\right) \alpha=0
\end{aligned}
$$

$$
\therefore x^{3}+u x+v=(x-\alpha)\left[x^{2}+\alpha x+\left(u+\alpha^{2}\right)\right]
$$

With $x^{2}+\alpha x+\left(u+\alpha^{2}\right)=0$ to have real roots then
$\Delta=\alpha^{2}-4\left(u+\alpha^{2}\right)=-3 \alpha^{2}-4 u \geq 0$
$\therefore 3 \alpha^{2}+4 u \leq 0$

