

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2006

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK #1

Mathematics Extension 2

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Each question is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 60

- Attempt questions 1 3
- All questions are of equal value.

Examiner: A.M.Gainford

Question 1. (Start a new page.) (19 marks)

(a)	For the c	complex number $z = \sqrt{3} - i$ find:	Marks
()	For the c	somplex number $z = \sqrt{3-i}$ find.	
	(i)	z	2
	(ii)	arg z.	
(b)	Given w	y = 3 - 4i express each of the following in the form $a + ib$ (for real a and b).	
	(i)	\overline{w}	4
	(ii)	w^{-1}	
	(iii)	the square roots of w	
(c)	For the r Express	For the real number θ consider $(\cos \theta + i \sin \theta)^4$. Express $\cos 4\theta$ as a real polynomial in $\cos \theta$.	
(d)	Sketch the region in the Argand diagram containing the points z for which:		4
	(i)	$\left \arg z \right \leq \frac{\pi}{6}$	
	(ii)	$z + \overline{z} < 4$	
	(iii)	2 < z < 4	
(c)	Solve the	e equation $z^2 - 4iz - 3 = 0$.	2

(d)	Prove by mathematical induction that	
	$sin(n\pi + x) = (-1)^n sin x$ for all positive integral <i>n</i> .	

Question 2. (Start a new page.) (20 marks)

(a) In the Argand diagram below OACB is a parallelogram. The point A represents the complex number $1+i\sqrt{3}$, and

$$\angle AOB = \frac{\pi}{4}.$$

Given that OB: OA = 2:1, find in the form a+ib (using exact values):

- (i) the complex number represented by *B*
- (ii) the complex number represented by *C*
- (iii) the complex number represented by the vector *AB*

(b) Given that z = 1 - 2i is a zero of the real polynomial $P(z) = z^3 - az^2 + bz - 20$: 4

(i) State why \overline{z} is also a zero of P(z) (Quote the theorem.)

- (ii) Find the values of *a* and *b*.
- (c) If 2-i is a root of the equation $x^4 5x^3 + 3x^2 + 19x 30 = 0$, find the other three roots. **3**
- (d) If α, β, γ are the roots of the equation $x^3 + 4x^2 4 = 0$, find the monic cubic equation with roots $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$, and hence or otherwise state the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.

(e) *TP* is a tangent to the circle, centre *O*, and *TQ* bisects $\angle OTP$.

Suppose that $\angle QTP = x$. Give reasons why:

(i)
$$\angle TOP = \frac{\pi}{2} - 2x$$

(ii)
$$\angle TBP = \frac{\pi}{4} - x$$
, and

(iii) Find the size of $\angle TQP$.

Question 3. (Start a new page.) (21 marks)

(a)

(b)

(i)	Using De Moivre's Theorem, find the six solutions to the equation $z^6 + 1 = 0$. Express your answers exactly in $a + i b$ form, and plot them on an Argand diagram.	Marks 4
(ii)	Hence or otherwise factorise $z^6 + 1$ completely:	3
	(α) over the complex field, and	
	(β) over the real number field (linear and/or irreducible quadratic factors.)	
Note tha	t 1 = 1	4
1	-4 = -(1+2)	

$$1-4 = -(1+2)$$

$$1-4+9 = 1+2+3$$

$$1-4+9-16 = -(1+2+3+4)$$

Propose a general hypothesis, and prove it by induction.

You may assume the result $\sum_{r=1}^{n} r = \frac{n}{2}(n+1)$.

- (c) (i) Show that if $x = \alpha$ is a double root (of multiplicity 2 only) of the polynomial equation A(x) = 0, then $A(\alpha) = A'(\alpha) = 0$, and $A''(\alpha) \neq 0$.
 - (ii) Find the value of k so that the equation $5x^5 3x^3 + k = 0$ has two equal **3** positive roots.

(d) *AB* is a diameter of the circle centre Q, $CQ \perp AB$ at Q, and *AC* and *BC* intersect the circle at *D* and *F* respectively.

(i)	Prove that $\angle QDB = \angle QCA$.	3
(ii)	Hence or otherwise show that quadrilateral CDQB is cyclic.	2

This is the end of the paper.

Blank Page

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, x > 0$$

QUESTION 1.

 $(dr (n) \frac{\eta}{\eta}) = \frac{1}{\eta} \frac{\eta}{\eta} \frac$ $3^{2} - 4i3 - 3 = 0$ $3^{2} - 4i3 - 3 = 0$ $3^{2} = 4i \pm \sqrt{-16 + 12}$ $2 = 4i \pm \sqrt{-4} = 4i \pm 2i$ $2 = 4i \pm \sqrt{-4} = 4i \pm 2i$ $2 = 4i \pm \sqrt{-4} = 4i \pm 2i$ $2 = 4i \pm \sqrt{-4} = 4i \pm 2i$ $2 = 4i \pm \sqrt{-4} = 4i \pm 2i$ (f) <u>Step.I.</u> uther net LAS = in (T+2) = - since RHS - 1 in 2. =-min " -: Matement is tame when n=1. (ie Scisis une Schristene. time). Step I assume Ski istene. ie. Rin (kit+x)=(=) Ainx. Step II arouning Schi is tame, for S (kri) is tane. i. i. (k+1) T+ z) = (-1) in z. $h H S = \min \left[\pi + (k \pi + k) \right] = - \min \left(k \pi + k \right)$ = - (-) in x. = (1) ~ ~ ~ = R # 5. Slep IN Having around statement to be take for nick we trend it take for n=k+1. Als since it is true for n=1 it must be take for n=r ete & hence take for all pas

2006 Mathematics Extension 2 Assessment 1: Solutions

- 2. (a) In the Argand diagram OACBis a parallelogram. The point Arepresents the complex number $1 + i\sqrt{3}$, and $\angle AOB = \frac{\pi}{4}$. Given that OB : OA = 2 : 1, find in the form a + ib (using exact values):
 - i. the complex number represented by B.

Solution: Method 1: Rotation through $\frac{\pi}{4} \Longrightarrow$ multiplication by $\operatorname{cis} \frac{\pi}{4}$. $2(1+i\sqrt{3}) \times \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right) = \sqrt{2}(1+i+i\sqrt{3}-\sqrt{3},$ $= \sqrt{2}\left((1-\sqrt{3})+i(1+\sqrt{3})\right).$ $\therefore B \text{ is } (\sqrt{2}-\sqrt{6})+i(\sqrt{2}+\sqrt{6}).$

Solution: Method 2:

$$1 + i\sqrt{3} = 2\operatorname{cis} \frac{\pi}{3}$$

 $2 \times \operatorname{cis} \frac{\pi}{4} \times 2\operatorname{cis} \frac{\pi}{3} = 4\operatorname{cis} \frac{7\pi}{12}$
 $\cos \frac{7\pi}{12} = \cos \frac{\pi}{4} \cos \frac{\pi}{3} - \sin \frac{\pi}{4} \sin \frac{\pi}{3},$
 $= \frac{1}{\sqrt{2}} \times \frac{1}{2} - \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2},$
 $= \frac{1}{4}(\sqrt{2} - \sqrt{6}).$
 $\sin \frac{7\pi}{12} = \sin \frac{\pi}{4} \cos \frac{\pi}{3} + \cos \frac{\pi}{4} \sin \frac{\pi}{3},$
 $= \frac{1}{\sqrt{2}} \times \frac{1}{2} + \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2},$
 $= \frac{1}{4}(\sqrt{2} + \sqrt{6}).$
 $\therefore B \text{ is } (\sqrt{2} - \sqrt{6}) + i(\sqrt{2} + \sqrt{6}).$

ii. the complex number represented by ${\cal C}$

Solution: C is
$$(1 + \sqrt{2} - \sqrt{6}) + i(\sqrt{2} + \sqrt{3} + \sqrt{6})$$

iii. the complex number represented by the vector AB

Solution: AB is $(\sqrt{2} - \sqrt{6} - 1) + i(\sqrt{2} - \sqrt{3} + \sqrt{6})$.

- (b) Given that z = 1 2i is a zero of the real polynomial $P(z) = z^3 az^2 + bz 20$:
 - i. State why \overline{z} is also a zero of P(z) (quote the theorem).

Solution: Complex zeroes of polynomials with real coefficients occur in conjugate pairs.

ii. Find the values of a and b.

Solution: Method 1: Two roots are 1 - 2i and 1 + 2i. If the third root is γ , then the product of the roots $5 \times \gamma = 20$. The roots are 1 - 2i, 1 + 2i, and 4. Sum of roots: 1 - 2i + 1 + 21 + 4 = a, so a = 6. Roots two at a time $(\alpha\beta + \beta\gamma + \gamma\alpha)$: $5 + 4 \times 2 = b$, so b = 13.

Solution: Method 2: Roots by inspection are 1 - 2i, 1 + 2i, 4. P(4) = 64 - 16a + 4b - 20 = 0, *i.e.* b = 4a - 21. Now 1 - 2i + 1 + 2i + 4 = a, a = 6, b = 13. 3

1

1

Solution: Method 3:

$$P(1-2i) = (1-2i)^{3} - a(1-2i)^{2} + b(1-2i) - 20,$$

$$= 1^{3} + 3 \times 1^{2}(-2i) + 3 \times 1(-2i)^{2} + (-2i)^{3}$$

$$- a(1-4i-4) + b(1-2i) - 20,$$

$$= 1 - 6i - 12 + 8i + 3a + 4ai + b - 2bi - 20,$$

$$= -31 + 3a + b + i(2 + 4a - 2b) = 0.$$
Now, equating coefficients,

$$3a + b = 31 \dots \boxed{1}$$

$$2a - b = -1 \dots \boxed{2}$$

$$\boxed{1+2}: 5a = 30,$$

$$a = 6,$$

$$b = 31 - 18,$$

$$= 13.$$

(c) If 2 - i is a root of the equation $x^4 - 5x^3 + 3x^2 + 19x - 30 = 0$, find the other three roots.

Solution: Method 1:

$$(x-2+i)(x-2-i) = x^{2}-4x+4+1,$$

$$= x^{2}-4x+5.$$

$$x^{2}-4x+5) \overline{x^{4}-5x^{3}+3x^{2}+19x-30}$$

$$-x^{4}+4x^{3}-5x^{2}$$

$$-x^{3}-2x^{2}+19x$$

$$x^{3}-4x^{2}+5x$$

$$-6x^{2}+24x-30$$

$$6x^{2}-24x+30$$

$$0$$

$$\therefore \text{ Other 3 roots are } 2+i, 3, -2.$$

Solution: Method 2: 2 + i is also a root, so let the other two be α , β . Sum of roots: $2 + i + 2 - i + \alpha + \beta = 5$, $\alpha + \beta = 1 \dots \boxed{1}$. Product of roots: $(2 + i)(2 - i)\alpha\beta = -30$, $5\alpha\beta = -30$, $\vdots \beta = -\frac{6}{\alpha} \dots \boxed{2}$. Sub. $\boxed{2}$ into $\boxed{1}$: $\alpha - \frac{6}{\alpha} - 1 = 0$, $\alpha^2 - \alpha - 6 = 0$, $(\alpha - 3)(\alpha + 2) = 0$, $\therefore \alpha = 3, \beta = -2$, or $\alpha = -2, \beta = 3$. \therefore Other 3 roots are 2 + i, 3, -2.

(d) If α , β , γ are the roots of the equation $x^3 + 4x^2 - 4 = 0$, find the monic cubic equation with roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$, and hence or otherwise state the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.

Solution: Put
$$x = \frac{1}{y}$$
,
then $\frac{1}{y^3} + \frac{4}{y^2} - 4 = 0$,
 $4y^3 - 4y - 1 = 0$.
 \therefore Monic cubic is $x^3 - x - \frac{1}{4} = 0$.
And so $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 0$ (using sum of roots of $x^3 - x - \frac{1}{4} = 0$).
Alternative method:
 $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma}$ from $x^3 + 4x^2 - 4 = 0$,
 $= \frac{0}{4}$,
 $= 0$.

(e) TP is a tangent to the cirle, centre O, and TQ bisects $\angle OTP$.

Suppose that $\angle QTP = x$. Give reasons why:

i.
$$\angle TOP = \frac{\pi}{2} - 2x$$
,

Solution:	$\angle QTO = x$ (QT bisects $\angle QTP$).
	$\angle OPT = \frac{\pi}{2}$ (radius \perp tangent at
	point of contact).
	$\therefore \ \angle TOP = \pi - \frac{\pi}{2} - 2x, \ (\angle \text{ sum of } \triangle)$
	$= \frac{\pi}{2} - \frac{2}{2}x.$

ii.
$$\angle TBP = \frac{\pi}{4} - x$$
, and

Solution: The angle at the centre of a circle is twice the angle at the circumference standing on the same arc.

iii. find the size of $\angle TQP$.

Solution:
$$\angle TQP = \angle TBP + \angle BTQ$$
 (Ext. \angle of a \triangle),
= $\left(\frac{\pi}{4} - x\right) + x$,
= $\frac{\pi}{4}$.

3

1

Question 3 $A\left(\frac{3}{5}\right)^{2} = 5\left(\frac{3}{5}\right)^{5} - 3\left(\frac{3}{5}\right)^{3} + k = 0$ (c) (i) let $A(x) = (x - x) \cdot Q(x)$ K= #0.2592 $A'(x) = (x - \alpha) \cdot Q'(x) + 2(x - \alpha)Q(x)$ 1 = 16/25 Atos A 0 $\Rightarrow A(\alpha) = (\alpha - \alpha) Q(\alpha) = 0$ $A'(\alpha) = (\alpha - \alpha)^2 a'(x) + 2(\alpha - \alpha) Q(\alpha)$ 0.3888 pr 0.6480 A''(x) = (x - x)Q''(x) + 2(x - x)Q(x)+ 2(x-x)Q'(x) + 2Q(x)0.38881 A"(A)= 0 + 0 + 0 + 2Q(A) and Q(x) = 0 [Since double] ⇒ A"(A) +0 (=) $(ii) A(x) = 5x^{5} - 3x^{3} + k$ $A'(x) = 25x^4 - 9x^7 = 0$ when sc=0 or sc= ±3 A'(0)=0 but A(0)=k .: x=0 not double root (unless k=0) $A'\left(\frac{3}{5}\right) = 0$ x=3= $A''(x) = 100x^3 - 18x$ double A"(3)=10.8 root

(d) AB is a diameter of the circle centre Q, $CQ \perp AB$ at Q, and AC and BC intersect the circle at D and F respectively.

(i) Prove that $\angle QDB = \angle QCA$.

(ii) Hence or otherwise show that quadrilateral *CDQB* is cyclic.

This is the end of the paper.

(ii) cDE = 90°
(ADE + cDE = 180°) and ADE = 90°
cAB = 90° (adj to cAA on str. line)
cDE = cAB = 90°
Both angles are subtended at cir. of circle through C, D, Q, B by some chord BC.
(BC is the diameter of circle)

3