

SYDNEY BOYS HIGH
 MOORE PARK, SURRY HILLS

2007

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#1

Mathematics
 Extension 2

General Instructions

- Reading Time - 5 Minutes
- Working time - 1.5 Hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Question is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 76

- Attempt questions 1 - 3

Examiner: P.Bigelow

QUESTION 1 (23 marks)

(a) Find
(i) $\int x \sec ^{2}\left(1+x^{2}\right) d x$
(ii) $\int x^{2} e^{2 x} d x$
(b) Evaluate
(i) $\quad \int_{0}^{1} \frac{d x}{(1+x) \sqrt{1+x}}$
(ii) $\quad \int_{0}^{1} \frac{3 x+7}{(x+1)(x+2)(x+3)} d x$
[3]
(c)
(i) Show that $\frac{x^{m}+x^{m+2}}{1+x^{2}}=x^{m}$
(ii) An integral is defined by

$$
\mathrm{I}_{m}=\int_{0}^{1} \frac{x^{m}}{1+x^{2}} d x
$$

where m is a non-negative integer.
(α) Evaluate I_{0}.
(β) Show that $\mathrm{I}_{m}+\mathrm{I}_{m+2}=\frac{1}{m+1}$.
(γ) Hence or otherwise evaluate I_{2}.
(d) Five couples sit at a round table. How many seating arrangements are possible if
(i) there are no restrictions?
(ii) each person sits next to their partner?
(e) Let $z=\frac{1-i}{2+i}$. Find
(i) $z+\frac{1}{z}$
(ii) \bar{z}
(f) ABCD is a rhombus, where diagonals meet at O . If A represents the complex number $3+4 i$ and $\mathrm{OD}=2$ units find the complex number represented by
(i) C
(ii) D

[Not to scale]

End of Question 1

QUESTION 2 (26 marks)

(a) Sketch the following on separate Argand Diagrams.
(i) $|z+1|=3$
(ii) $\quad \arg (z-1)=\frac{\pi}{4}$
(iii) $|z-1|=\operatorname{Re} z$
[2]
(iv) $\operatorname{Re}(z(\bar{z}+2))=3$
(b) Find the greatest and least values of $\arg z$ for which $|z-4 i|=2$.
(c)
(i) Express $1-\sqrt{3} i$ in mod-arg form.
(ii) Hence find $(1-\sqrt{3} i)^{6}$ in the form $a+b i$.
(d) PT is a common tangent to the circles which touch at T. PA is a tangent to the smaller circle at Q .
(i) Prove that $\triangle \mathrm{BTP}$ is similar to $\triangle \mathrm{TAP}$.
(ii) Hence show that $\mathrm{TP}^{2}=\mathrm{PA} . \mathrm{PB}$
(iii) If $\mathrm{PT}=t, \mathrm{QA}=a$ and $\mathrm{QB}=b$ prove that $t=\frac{a b}{a-b}$.

(e) $\quad \omega$ is a complex cube root of unity. Evaluate $\left(1-3 \omega+\omega^{2}\right)\left(1+\omega-8 \omega^{2}\right)$.
(f) If α, β and γ are roots of $2 x^{3}-7 x^{2}+5 x-3=0$
(i) show that the equation with roots α^{2}, β^{2} and γ^{2} is $4 x^{3}-29 x^{2}-17 x-9=0$.
(ii) Hence or otherwise evaluate $\alpha^{3}+\beta^{3}+\gamma^{3}$.
(g) The equation $x^{3}-3 p x+q=0$ (where $p>0, q \neq 0$ are both real) has three distinct non-zero real roots.
(i) Show that the graph $y=x^{3}-3 p x+q$ has a relative maximum of $q+2 p \sqrt{p}$ and a relative minimum of $q-2 p \sqrt{p}$.
(ii) Hence show that $q^{2}<4 p^{3}$.

End of Question 2

(a) The letters of KAYAK are arranged at random in a line.
(i) How many different letter sequences are possible?
(ii) What is the probability that the sequence is the same from right to left as left to right?
(b)
(i) Show that $z^{5}+1=(z+1)\left(1-z+z^{2}-z^{3}+z^{4}\right)$.
(ii) Find in the form $\operatorname{cis} \theta$, the five complex solutions to $z^{5}+1=0$.
(iii) If z is a solution to $z^{5}+1=0$ and $z \neq-1$, prove that $1+z^{2}+z^{4}=z+z^{3}$.
(iv) Hence show that $\cos \frac{\pi}{5}+\cos \frac{3 \pi}{5}-\frac{1}{2}=0$.
(c)
(i) find the values of the constants A and B such that

$$
\begin{equation*}
4 x^{4}+1 \equiv\left(2 x^{2}+\mathrm{A} x+1\right)\left(2 x^{2}+\mathrm{B} x+1\right) \tag{2}
\end{equation*}
$$

(ii) Hence express the integer $2^{14}+1$ as a product of prime factors.
(d) Solve $2 x^{4}+9 x^{3}+6 x^{2}-20 x-24=0$ if it has a root of multiplicity 3 .
(e)
(i) Prove $\int_{0}^{c} f(x) d x=\int_{0}^{c} f(c-x) d x$.
(ii) Hence or otherwise find $\int_{0}^{1} x(1-x)^{2007} d x$.
(f) The diagram shows an isosceles triangle PAB. PM is the perpendicular bisector of $\angle \mathrm{APB}$, which is β. PM bisects AB. A and B represent the complex numbers z_{1} and z_{2} respectively.
(i) Find the complex number represented by

$$
(\alpha) \overrightarrow{\mathrm{AM}}
$$

(β) $\overrightarrow{\mathrm{MP}}$
[2]
(ii) Hence show that P represents the complex number

$$
\begin{equation*}
\frac{1}{2}\left(1-i \cot \frac{\beta}{2}\right) z_{1}+\frac{1}{2}\left(1+i \cot \frac{\beta}{2}\right) z_{2} \tag{3}
\end{equation*}
$$

End of Exam

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Solutions to question (1)
(a)

$$
\begin{aligned}
& \text { (i) } \int x \sec ^{2}\left(1+x^{2}\right) d x \\
& =\frac{1}{2} \tan \left(1+x^{2}\right)+c
\end{aligned}
$$

$$
\text { (ii) } \int x^{2} \frac{d}{d x}\left(\frac{1}{2} e^{2 x}\right) d x
$$

$$
=\frac{x^{2} e^{2 x}}{2}-\int x e^{2 x} d x
$$

$$
\begin{equation*}
362880 \tag{i}
\end{equation*}
$$

(d)
(ii) Fix a couple

- for reference on a circle, the other couples can be arranged 4! Ways

- each partner of lack couple. can swap without altering the atrangmet
$\therefore T_{\theta} t_{a l}$ arrangemat $=4!\times 2^{5} \cdot(768)$
(e)

$$
\begin{aligned}
& \frac{1-i}{2+i}+\frac{2+i}{1-i} \\
= & \frac{(1-i)^{2}+(2+i)^{2}}{(2+i)(1-i)}
\end{aligned}
$$

$$
\begin{align*}
& \text { Now } \\
& \int x e^{2 x} d x=\int x \frac{d}{d x}\left(\frac{1}{2} e^{2 x}\right) d x \\
& =\frac{x e^{2 x}}{2}-\frac{1}{4} \int 2 e^{2 x} d x \\
& =\frac{x e^{2 x}}{2}-\frac{e^{2 x}}{4} \\
& \therefore \int x^{2} e^{2 x} d x \tag{2}\\
& =\frac{x^{2} e^{2 x}}{2}-\frac{x e^{2 x}}{2}+\frac{1}{4} e^{2 x}+c \\
& =\frac{e^{2 x}}{4}\left(2 x^{2}-2 x+1\right)+c \text {. } \\
& \frac{1}{2} x e^{2 x}(x-1)+\frac{1}{4} e^{2 x}+c \\
& \text { (ii) } \frac{3 x+7}{(x+1)(x+2)(x+3)} \\
& =\frac{a}{x+1}+\frac{b}{x+2}+\frac{c}{x+3} \\
& \therefore \quad 3 x+7=a(x+2)(x+3) \\
& +b(x+1)(x+3) \\
& \begin{array}{l}
+b(x+1)(x+3) \\
+c(x+1)(x+2)
\end{array} \\
& p u+x=-1, \quad a=2 \\
& 1 x=-2, b=-1 \\
& x=-3, c=-1 \\
& \left.\therefore \int_{0}^{1} \frac{(3 x+7) d x}{(x+1)(x+2)(x+3)} \right\rvert\, \\
& =\left[\begin{array}{c}
2 \ln (x+1)-\ln (x+2) \\
\ln (x+3
\end{array}\right]_{0}^{1} \\
& =\ln 2 . \ln (x+31(0.693)
\end{align*}
$$

(b) $\int_{0}^{1}(1+x)^{-3 / 2}$

$$
\begin{equation*}
\text { (c) (i) } \frac{x^{m}\left(1+A x^{2}\right)}{1+x^{2}}=x^{m} \tag{1}
\end{equation*}
$$

$$
\text { (i) } \begin{align*}
& 0 \\
= & \left.-2(1+x)^{1 / 2}\right]_{0}^{1} \tag{1}\\
= & 2-2 \cdot \frac{1}{\sqrt{2}}+2 \\
= & 2-\sqrt{2} \cdot(0.586)
\end{align*}
$$

$$
(i i) J_{0}=\int_{0}^{1} \frac{1}{1+x^{2}} d x
$$

$$
=\left[\tan ^{-1} x\right]_{0}^{1}=\frac{\pi}{4}
$$

(B) $I_{m+} I_{m+2}=\int_{0}^{1} \frac{x^{m}}{1+x^{2}} d x$

$$
\begin{equation*}
I_{m}+I_{m+2}=\int_{0}^{1} \frac{x^{m}}{1+x^{2}} d x \tag{3}
\end{equation*}
$$

(8)

$$
\begin{aligned}
&+ \int_{0}^{1} \frac{x^{m+2}}{1+x^{2}} d x \\
&=\int_{0}^{1}\left(\frac{x^{m}+x^{m+2}}{1+x^{2}}\right) d V^{2} \\
&=\int_{0}^{1} x^{m} d x=\left[\frac{x^{m+1}}{m+1}\right]_{0}^{1} \\
&= \frac{1}{m+1} \\
& I_{0}+I_{2}=1 \\
& \frac{\pi}{4}+I_{2}=1 \\
& \therefore I_{2}=1-\frac{\pi}{4} \\
&=\frac{4-\pi}{4}(0.215)
\end{aligned}
$$

(

2007 ExT 2 Asst 2
Question 2
(a)

(in)

(iii)

$$
[2]
$$

$$
\begin{aligned}
& |z-1|=\operatorname{Re} z \\
& |(x-1)+i y|=x \\
& x^{2}-2 x+1+y^{2}=x^{2} \\
& y^{2}=2 x-1 \\
& y= \pm \sqrt{2 x-1}
\end{aligned}
$$

$$
\operatorname{Re}(z \bar{z}+2 z)=3
$$

$$
\operatorname{Re}\left(x^{2}+y^{2}+2 x+2 i y\right)=3
$$

$$
x^{2}+y^{2}+2 x=3
$$

$$
(x+i)^{2}+y^{m}=4
$$

2007 Ext 2 Assit2
(b) $|z-4 i|=2$
$\ln \triangle O A C \quad \sin \theta=\frac{1}{2}$

$$
\theta=\frac{\pi}{6}
$$

Henver

$$
\begin{equation*}
\pi / 3 \leqslant \arg z \leqslant \frac{2 \pi}{3} \tag{2}
\end{equation*}
$$

is Ciratest value $=\frac{2 \pi}{3}$, locest value $=\frac{\pi}{3}$
(c)
(i)

$$
\text { (i) } \begin{aligned}
z & =1-\sqrt{3} i \\
|z| & =\sqrt{1+3} \quad \arg z \\
& =2 \\
& =\tan ^{-1} \frac{y}{x} \\
& =\tan ^{-1} \frac{-\sqrt{3}}{1} \\
& =-\frac{\pi}{3} \\
\therefore z & =2 \operatorname{cis}\left(-\frac{\pi}{3}\right)
\end{aligned}
$$

(V)

$$
\text { 1) } \begin{aligned}
& z^{6}=\left(2 \operatorname{cis}\left(-\frac{\pi}{3}\right)\right)^{6} \\
&=64 \operatorname{cis}\left(-6 \times \frac{\pi}{3}\right) \\
&=64 \operatorname{cis}(-2 \pi) \\
&=64 \operatorname{cis} 0 \\
& \therefore(1-\sqrt{3} i)^{6}=64+0 . i \quad[1]
\end{aligned}
$$

(d) (i) In the \triangle 's BTP, TAP
$\angle B T P=\angle T A P$ (alternate segment theorem)
$\angle P$ is common
$\therefore \triangle B T P \| \triangle T A P$ (equiangular) $\quad[2]$

2007 Ext 2 Asst 2
(d)(ii) $\frac{P B}{P T}=\frac{P T}{P A}$ (corresponding sides of similar triangles)

$$
\therefore P A-P B=P T^{2}
$$

(iii) $P T=P Q$ (tangents from an external point are equal.)

$$
\therefore P B=t-b, \quad P A=t+a
$$

Thus $(t-b)(t+a)=t^{2}$ (from clove)

$$
\begin{aligned}
t^{2}+t a-t b-a b & =t^{2} \\
t(a-b) & =a b \\
t & =\frac{a b}{a-b} \quad \text { QED }
\end{aligned}
$$

(e) Since $1, w, w^{2}$ are roots of $z^{3}-1=0$, $1+w+w^{2}=0$ (sum of roots)

$$
\therefore 1+w=-w^{2}
$$

Thus Exp $=\left(1-3 w+w^{2}\right)\left(1+w-8 w^{2}\right)$

$$
\begin{align*}
& =(1-3 w-1-w)\left(-w^{2}-8 w^{2}\right) \\
& =(-4 w)\left(-9 w^{2}\right) \\
& =36 w^{3} \quad\left(w^{3}=1\right) \\
& =36 \quad
\end{align*}
$$

$2007 E_{x}+2$ Asst 2

$$
\text { (f)(i) } 2 x^{3}-7 x^{2}+5 x-3=0
$$

Transformation: Let $y=x^{2}$

$$
\begin{aligned}
& 2 y \sqrt{y}-7 y+5 \sqrt{y}-3=0 \\
& \sqrt{y}(2 y+5)=7 y+3
\end{aligned}
$$

Square Both Sides

$$
\begin{aligned}
& y\left(4 y^{2}+20 y+25\right)=49 y^{2}+42 y+9 \\
\therefore & 4 y^{3}-29 y^{2}-17 y-9=0 \\
\therefore & \text { quire } 1 n \text { in } x \text { with roots } \alpha^{2}, \beta^{2}, \gamma^{2} \\
& 4 x^{3}-29 x^{2}-17 x-9=0
\end{aligned}
$$

(ii) Amie α, β, γ are zeroes

$$
\begin{aligned}
& 2 \alpha^{3}-7 \alpha^{2}+5 \alpha-3=0 \\
& 2 \beta^{3}-7 \beta^{2}+5 \beta-3=0 \\
& 2 \gamma^{3}-7 \gamma^{2}+5 \gamma-3=0
\end{aligned}
$$

By addition

$$
\begin{align*}
& 2\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)-7\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+5(\alpha+\beta+\gamma)-9=0 \\
& \therefore \alpha^{3}+\beta^{3}+\gamma^{3}=\frac{1}{2}\left[7\left(\frac{29}{4}\right)-5\left(\frac{7}{2}\right)+97\right. \\
& =\frac{169}{8} \quad[2] \tag{2}
\end{align*}
$$

$$
x^{3}-3 p x+q=0
$$

p70, $9 \neq 0$, real
-chitrat nom-2ero real roots
(1)

$$
\begin{aligned}
& y=x^{3}-3 p x+q \\
& y^{\prime}=3 x^{2}-3 p
\end{aligned}
$$

$y^{\prime}=0$ when $x^{2}-p=0$

$$
y^{\prime \prime}=6 x
$$

A+ $x=\sqrt{p} \quad y^{u}>0$
\therefore Relatire mimm

$$
\begin{aligned}
y(\sqrt{p}) & =p \sqrt{p}-3 p \sqrt{p}+q \\
& =q-2 p \sqrt{p}
\end{aligned}
$$

$A+x=-\sqrt{p} \quad y^{n}<0$
\therefore Relative maxinum

$$
\begin{aligned}
& \text { Relative maximun } \\
& \begin{aligned}
y(-\sqrt{p}) & =-p \sqrt{p}+3 p \sqrt{p}+q \\
& =q+2 p \sqrt{p}
\end{aligned}
\end{aligned}
$$

(1i) Aice cubic has 3 won-zour real roots, the tumig pouts li'e on opposte sorles of $y=0$.
\therefore They are of deffract sogns.
\therefore Their poudwet's <0.

$$
\begin{aligned}
& \therefore(q+2 p \sqrt{p})(q-2 p \sqrt{p})<0 \\
& \therefore q^{2}<4 p^{3} \quad Q \equiv D
\end{aligned}
$$

3(a)(i) $\frac{5!}{2!2!}=30$
(ii) $\frac{2}{30}=\frac{1}{15}$
(2)
(b)
(1)

$$
\begin{align*}
& (z+1)\left(1-z+z^{2}-z^{3}+z^{4}\right) \\
= & z-z^{2}+z^{3}-z^{4}+z^{5}+1-z+z^{2}-z^{3}+z^{4} \\
= & z^{5}+1 \tag{1}
\end{align*}
$$

(ii)

$$
\text { (ii) } \begin{aligned}
&(\operatorname{cis} \theta)^{5}+1=0 \\
& \operatorname{cis} 5 \theta=-1 \\
& \cos 5 \theta=-1 \sin 5 \theta=0 \\
&-\pi<\theta \leqslant \pi \\
&-5 \pi<50 \leqslant 5 \pi \\
& \therefore 5 \theta=-3 \pi,-\pi, \pi, 3 \pi, 5 \pi \\
& \therefore \theta=-\frac{3 \pi}{5},-\frac{\pi}{5}, \frac{\pi}{5}, \frac{3 \pi}{5}, \pi
\end{aligned}
$$

\therefore Solutions are

$$
\operatorname{cis}\left(-\frac{3 \pi}{5}\right), \operatorname{cis}\left(-\frac{\pi}{5}\right), \operatorname{cis} \frac{\pi}{5} \operatorname{cis} \frac{3 \pi}{5}, \operatorname{cis} \pi
$$

(iii)

$$
\begin{align*}
& z^{5}+1=0 \\
& (z+1)\left(1-z+z^{2}-z^{3}+z^{4}\right)=0 \\
& \therefore 1-z+z^{2}-z^{3}+z^{4}=0 \quad(\operatorname{as} z \neq-1) \tag{1}\\
& \text { (iv) Consider } z=\operatorname{cis} \frac{\pi}{5} \\
& 1+z^{2}+z^{4}=z+z^{3} \\
& 1+\operatorname{cis} \frac{2 \pi}{5}+\operatorname{cis} \frac{4 \pi}{5}=\operatorname{cis} \frac{\pi}{5}+\operatorname{cis}^{5} \frac{3 \pi}{5}
\end{align*}
$$

Equating real parts

$$
\begin{aligned}
& 1+\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=\cos \frac{\pi}{5}+\cos \frac{3 \pi}{5} \\
& \therefore 1+\cos \left(\pi-\frac{3 \pi}{5}\right)+\cos \left(\pi-\frac{\pi}{3}\right)=\cos \frac{\pi}{5}+\cos \frac{3 \pi}{5} \\
& \therefore 1-\cos \frac{3 \pi}{5}-\cos \frac{\pi}{5}=\cos \frac{\pi}{5}+\cos \frac{3 \pi}{5} \\
& \therefore \quad 2 \cos \frac{\pi}{5}+2 \cos \frac{3 \pi}{5}=1=0 \\
& \therefore \cos \frac{\pi}{5}+\cos \frac{3 \pi}{3}-\frac{1}{2}=0
\end{aligned}
$$

(c)

$$
\text { (i) } \begin{aligned}
& \left(2 x^{2}+A x+1\right)\left(2 x^{2}+4 x+1\right) \\
= & 4 x^{4}+2 B x^{3}+2 x^{2}+2 A x^{3}+A B x^{2} \\
& +A x+2 x^{2}+B x+1 \\
= & 4 x^{4}+(2 B+2 A) x^{3}+(A B+4) x^{2} \\
& +(A+B) x+1
\end{aligned}
$$

$$
\therefore A+B=0 \quad \Rightarrow \quad B=-A
$$

$$
A B+4=0
$$

$$
\therefore-A^{2}+4=0
$$

$$
\begin{equation*}
\therefore \quad A^{2}=4 \tag{2}
\end{equation*}
$$

$$
\therefore A= \pm 2 \quad B= \pm 2
$$

(ii) $2^{14}+1$

$$
\begin{align*}
& =4.2^{12}+1 \Rightarrow x=2^{3}=8 \\
& =(128+16+1)(128-16+1) \\
& =145 \times 113 \\
& =5 \times 29 \times 113 \tag{2}
\end{align*}
$$

(d)

$$
\begin{aligned}
& 2 x^{4}+9 x^{3}+6 x^{2}-20 x-24=0 \\
& P^{\prime}(x)=8 x^{3}+27 x^{2}+12 x-20 \\
& p^{\prime \prime}(x)=24 x^{2}+54 x+12
\end{aligned}
$$

Comrider $24 x^{2}+54 x+12=0$

$$
\begin{aligned}
& \therefore 4 x^{2}+9 x+2=0 \\
& \therefore(4 x+1)(x+2)=0 \\
& \therefore x=-2+x=-\frac{1}{4} \\
& P(-2)=32-72+24+40-24 \\
&=0
\end{aligned}
$$

$\therefore-2$ rithe triple rost.
Sum of roots: $-6+\beta=-\frac{9}{2}$

$$
\therefore \beta=1 \frac{1}{2}
$$

\therefore Solutians ae -2 ard $1 \frac{1}{2}$ tripleroot.

$$
\begin{array}{ll}
\text { (e)(i) } \int_{0}^{c} f(c-x) d x & \text { Letu }=c-x \\
=\int_{c}^{0} f(u)(-d x) & \therefore d u=-d x \\
=\int_{0}^{c} f(u) d u \quad \text { if } x=0 \quad u=c \\
=\int_{0}^{c} f(x) d x & \text { If } x=c u=0
\end{array}
$$

$$
\text { i) } \begin{align*}
& \int_{0}^{1} x(1-x)^{2007} d x \\
= & \int_{0}^{1}(1-x) x^{2007} d x \\
= & \int_{0}^{1}\left(x^{2007}-x^{2008}\right) d x \\
= & {\left[\frac{1}{2008} x^{2008}-\frac{1}{2009} x^{2004}\right]_{0}^{1} } \\
= & {\left[\frac{1}{2004}-\frac{1}{2004}\right]-[0-0] } \\
= & \frac{1}{2008.2009} \\
= & \frac{1}{4034072} \tag{2}
\end{align*}
$$

(f) (i)

$A B$ rapresents $z_{2}-z_{1}$
$\therefore \overrightarrow{A M}$ reprecents $\frac{1}{2}\left(z_{2}-z_{1}\right)$.
(ii)

$$
\begin{align*}
i v & \frac{A m}{p m}=\tan \frac{\beta}{2} \\
\therefore & p m=A m \cot \frac{\beta}{2} \\
\therefore & \overrightarrow{m P} \text { represents } \\
& \frac{1}{2}\left(z_{2}-z_{1}\right)+\cot \frac{\beta}{2} \cdot i \tag{1}\\
= & \frac{i}{2}\left(z_{2}-z_{1}\right) \cot \frac{\beta}{2}
\end{align*}
$$

(iii) $\therefore P$ rapresents

$$
\begin{align*}
& z_{1}+\frac{1}{2}\left(z_{2}-z_{1}\right)+\frac{i}{2}\left(z_{2}-z_{1}\right) \cos \frac{\beta}{2} \\
= & z_{1}+\frac{1}{2} z_{2}-\frac{1}{2} z_{1}+\frac{i}{2} \cot \frac{\rho}{2} z_{2} \\
& -\frac{i}{2} \cot -\frac{\rho}{2} z_{1} \\
= & \left(\frac{1}{2}-i \cot \frac{\beta}{2}\right) z_{1}+\left(\frac{1}{2}+i \cot -\frac{\rho}{2}\right) z_{2} \tag{3}
\end{align*}
$$

