Section A - (Start a new Booklet)

Question 1. (18 marks)

(a) If $u=4+2 i$ and $v=3-5 i$ find:
(i) $i u+\bar{v}$
(ii) $\operatorname{Re}\left(\frac{1}{v}\right)$
(b) (i) Express each of the complex numbers $z=2 i$ and $w=1+\sqrt{3} i$ in modulus - argument form.
(ii) Indicate the points representing the complex numbers $z=2 i$ and $w=1+\sqrt{3} i$ on an Argand diagram.
(iii) Find the exact values of $\arg \left(\frac{z}{w}\right)$ and $\arg (z+w)$
(c) The polynomial equation $x^{3}-3 x^{2}+x-5=0$ has roots α, β and γ. Find the value of $\alpha^{-1}+\beta^{-1}+\gamma^{-1}$
(d) Find $\int x \tan ^{-1} x d x$

End of Question 1.

(a) If α, β and γ are roots of $x^{3}-4 x-1=0$ find the polynomial equation with roots $2 \alpha, 2 \beta$ and 2γ (answer in expanded form).
(b) (i) Express $\sqrt{8-6 i}$ in the form $\mathrm{a}+\mathrm{ib}$ where a and b are real and $\mathrm{a}>0$.
(ii) Hence solve the equation

$$
\begin{equation*}
2 z^{2}+(1-3 i) z-2=0 \tag{3}
\end{equation*}
$$

expressing the answers in the form $X+i Y$ where X and Y are real.
(c) Let $A=1+2 i$ and $B=2-i$.

On an Argand diagram sketch the locus specified by:
(i) $\quad \arg (z+B)=\frac{3 \pi}{4}$
(ii) $\quad|z-A|=|z-B|$
(d) Find $\int \frac{x+5}{\sqrt{x+6}} d x$

Section B - (Start a new Booklet)

Question 3. (14 marks)
(a) Find:
(i) $\int \frac{d x}{\sqrt{3+2 x-x^{2}}}$
(ii) $\int \frac{d x}{(x+1)\left(x^{2}+4\right)}$
(iii) $\int \frac{e^{x}+e^{2 x}}{1+e^{2 x}} d x$
(b) (i) Given that

$$
u_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{\frac{n}{2}} d x
$$

prove that $u_{n}=\frac{n}{n+1} u_{n-2}$
(ii) Evaluate u_{5}

End of Question 3.

Question 4. (15 marks)
(a) If $z=1+i$ is a root of the equation

$$
z^{3}+p z^{2}+q z+6=0
$$

where p and q are real, find:
(i) the values of p and q
(ii) all the roots of the equation.
(b) Sketch the region in the Argand diagram consisting of those points
representing the complex number z which simultaneously satisfy $|\arg z|<\frac{\pi}{3}$ and $z+\bar{z}<4$ and $|z|>2$
(c) The complex number z represents a variable point P in the Argand plane. If $|z|=|z-\alpha|$ where α is real evaluate $\arg \left(z^{2}-z \alpha\right)$
(d) Given that w is the non-real root of $z^{5}-1=0$ with smallest positive argument find a real quadratic equation with roots w^{2} and w^{3}.

End of Question 4.

END OF SECTION B.

Section C - (Start a new Booklet)

Question 5. (12 marks)
Marks
(a) Four medical tests A, B, C and D are carried out within 14 days on a patient. A must precede B and B must precede C and D. On the days when A and B are carried out the patient must not undergo any other test, but C and D can be carried out on the same day or on different days in any order.

In how many ways can the days for the test be chosen?
(b) $\quad K$ is a positive real number and u, v are complex numbers. Show that the points on the Argand diagram which represent respectively the numbers:

$$
u, v, \frac{u-i K v}{1-i K}
$$

form the vertices of a right-angled triangle.
(c) The quardatic equation

$$
x^{2}-(2 \cos \theta) x+1=0
$$

has roots α and β.
(i) Find expressions for α and β in terms of θ
(ii) Show that $\alpha^{10}+\beta^{10}=2 \cos (10 \theta)$
(a) When a cubic polynomial $\mathrm{A}(\mathrm{x})$ is divided by $x^{2}+x+1$ the remainder is $2 x+3$. When $A(x)$ is divided by $x(x+3)$ the remainder is $5(x+1)$. Find the polynomial $A(x)$
(b)

XY is a fixed chord of a circle. Z is a point on major arc XY . The perpendicular from X to the chord $Y Z$ meets $Y Z$ at A. The perpendicular from Y to the chord $X Z$ meets $X Z$ at B.
Let $\angle X Z Y=\theta$.
(i) Copy the diagram into your booklet
(ii) Prove that ABXY is a cyclic quadrilateral.
(iii) Show that $\mathrm{AB}=X Y \cos \theta$.
(iv) Deduce that as Z moves on the major arc $X Y$ the length of $A B$ is constant.
(c)
(i) Suppose that k is a double root of the polynomial equation $P(x)=0$. Show that $P^{\prime}(k)=0$
(ii) If $x^{3}+3 p x^{2}+3 q x+r=0$ has a double root prove that $(p q-r)^{2}=4\left(p^{2}-q\right)\left(q^{2}-p r\right)$

End of Question 6.

END OF SECTION C.

ExT 2 Task 12009
Question 1
(a) (i)

$$
\begin{aligned}
i u+\bar{v} & =2(4+2 i)+(3+5 i) \\
& =-2+4 i+3+5 i \\
& =1+9 i
\end{aligned}
$$

(ii)

$$
\begin{align*}
\operatorname{Re}\left(\frac{1}{v}\right) & =\operatorname{Re}\left[\frac{\bar{v}}{v \nabla}\right] \\
& =\operatorname{Re}\left[\frac{1}{|v|^{2}} \cdot \bar{v}\right] \\
& =\frac{1}{|v|^{2}} \cdot \operatorname{Re}(\bar{v}) \\
& =\frac{1}{34} \times 3 \\
& =\frac{3}{34} \tag{2}
\end{align*}
$$

b) $z=2 i, w=17 \sqrt{3} i$
(i)

$$
\begin{aligned}
& z=2 \cos \pi / 2 \\
& w=2 \operatorname{cis} \pi / 3
\end{aligned}
$$

(iv)

(VI)

$$
\begin{aligned}
\arg (z) & =\arg z-\arg \omega \\
& =\frac{\pi}{2}-\frac{\pi}{3} \\
& =\frac{\pi}{6} \quad[2] \\
\arg (2+w) & =\frac{1}{2}\left(\frac{\pi}{2}+\frac{\pi}{3}\right) \\
& =\frac{5 \pi}{17} \quad[2
\end{aligned}
$$

(c) $x^{3}-3 x^{2}+x-5=0$

$$
\begin{align*}
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\beta \gamma \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma} \\
& =\frac{1}{5} \tag{3}
\end{align*}
$$

(d) $\int x \tan ^{-1} x d x$

$$
=\int \frac{d}{d x}\left(\frac{x^{2}}{2}\right) \cdot \tan ^{-1} x d x
$$

$$
=\frac{x^{2}}{2} \cdot \tan ^{-1} x-\int \frac{x^{2}}{2} \cdot \frac{d}{d x} \tan ^{-1} x d x
$$

$$
=\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2} \int x^{2} \cdot \frac{1}{1+x^{2}} d x
$$

$$
=\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2} \int\left(1-\frac{1}{1+x^{2}}\right) d x
$$

$$
=\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2} x+\frac{1}{2} \tan ^{-1} x+c
$$

$$
=\frac{1}{2}\left(x^{2}+1\right) \tan ^{-1} x-\frac{1}{2} x+c
$$

Question 2
(a) $x^{3}-4 x-1=0$

We seek eq'n w. roots 20 ate
Let $y=2 x$; So $x=\frac{y}{2}$
Substitutes:

$$
\begin{aligned}
& \left(\frac{y}{2}\right)^{3}-4\left(\frac{y}{2}\right)-1=0 \\
& \frac{y^{3}}{8}-2 y-1=0 \\
& y^{3}-16 y-8=0
\end{aligned}
$$

Replace y with x.

$$
x^{3}-16 x-8=0[3]
$$

Q2 (cont id)
(b) (i) $\sqrt{8-6 i}=3-i$ (colculloted) OR

$$
\begin{aligned}
\sqrt{8-6 i} & =a+i b \\
8-6 i & =(a+i b)^{2} \\
& =a^{2}-b^{2}+2 i a l
\end{aligned}
$$

$$
\therefore a^{2}-b^{2}=8 ; 2 a b z-6
$$

$$
a b=-3
$$

$$
a^{2}-\left(\frac{-3}{a}\right)^{2}=8
$$

$$
a^{4}-a=8 a^{2}
$$

$$
a^{4}-8 a^{2}-9=0
$$

$$
\left(a^{2}-9\right)\left(a^{2}+1\right)=0
$$

$$
\therefore \quad a= \pm 3
$$

$$
b=71
$$

$$
[3]
$$

$$
\therefore \sqrt{8-6 i}=3-i\binom{\text { Principal }}{\operatorname{Rov} t)}
$$

(ii)

$$
\text { ii) } \left.\begin{array}{rl}
2 z^{2}+(1-3 i) z-2=0 \\
z & =\frac{-(1-3 i) \pm \sqrt{(1-3 i)^{2}-4(2)(-2)}}{4} \\
& =\frac{-1+3 i \pm \sqrt{-8-6 i+16}}{4} \\
& =\frac{-1+3 i \pm \sqrt{8-6 i}}{4} \\
& =\frac{-1+3 i \pm(3-i)}{4} \\
& =\frac{1}{4}(2+2 i), \frac{1}{4}(-4+4 i) \\
& =\frac{1}{2}+\frac{1}{2} i,-1+i
\end{array}\right]
$$

(c) $A=1+2 i ; B=2-i$
(i) $\arg (z+B)=\frac{3 \pi}{4}$
ie $\arg (z-(-B))=\frac{3 \pi}{4}$

(ii) $|z-A|=|z-B|$

$$
\text { (d) } \begin{align*}
& \int \frac{x+5}{\sqrt{x+6}} d x \quad \begin{aligned}
\text { Let } u=x+6 \\
d u=d x
\end{aligned} \\
= & \int \frac{u-1}{\sqrt{u}} d u \tag{2}\\
= & \int\left(u^{1 / 2}-u^{-1 / 2}\right) d u \\
= & \frac{u^{3 / 2}}{3 / 2}-\frac{u^{1 / 2}}{1 / 2}+c \\
= & \frac{2}{3}(x+6)^{3 / 2}-2(x+6)^{1 / 2}+C \\
= & \frac{2 x}{3} \sqrt{x+6}\left(\frac{x}{3}+1\right)+C[3]
\end{align*}
$$

Solutions to section (B)
Ext (II) Assessment Task (1)

Quest -10in(3). (14 mks)

(ii) let

$$
\frac{1}{(x+1)\left(x^{2}+4\right)}=\frac{a}{x+1}+\frac{b x+c}{x^{2}+4}
$$

$$
1=a\left(x^{2}+4\right)+(b x+c)(x+1)
$$

put $x=-1,1=5 a$

$$
\therefore a=\frac{1}{5}
$$

equate coefficients
of $x^{2} a+b=0$

$$
\stackrel{x^{2}}{\Rightarrow}\left|\frac{a+b}{} b=-a=-1 / 5\right|
$$

3 (b) (i) (cont.)

$4 \int_{0}+\int_{0}^{1}\left(1-x^{2}\right)^{n / 2-1} d x$

$$
\begin{aligned}
\mu_{n}= & -n \int_{0}^{1}\left(1-x^{2}\right)^{n / 2} d x \\
& +n_{0}^{1}\left(1-x^{2}\right)^{\frac{n-2}{2} \lambda x}
\end{aligned}
$$

$$
\therefore e . \mu_{n}=-n u_{n}+n u_{n-2}
$$

$$
\therefore(n+1) u_{n}=\mu u_{n-2}
$$

lie $\mu_{n}=\left(\frac{n}{n+1}\right) \mu_{n-2}$
(b) (ii) NoW, $\mu_{5}=\frac{5}{6} \mu_{3}$

$=\pi / 4$ (from diagram)
i).

$$
\left\lvert\, \begin{aligned}
& \mu_{3}=\frac{3 \pi}{16} \Rightarrow \mu_{5}=\frac{5 \times 3 \pi}{6 \times 16} \\
& \mu_{-}=\frac{15 \pi}{2}=5 \pi
\end{aligned}\right.
$$

$$
\left.=\frac{1}{5} \ln |x+1|-\frac{1}{10} \ln \left(x^{2}+4\right) \right\rvert\,
$$

$$
+\frac{1}{10} \tan ^{-1}\left(\frac{x}{2}\right)+c(3)
$$

(iii) $\int \frac{e^{x}+e^{2 x}}{1+e^{2 x}} d p / 1++\operatorname{tin} g^{\prime \prime}$

$$
\begin{aligned}
=\begin{array}{|c}
\int \frac{e^{x} d x}{1+\left(e^{x}\right)^{2}} \\
V \text { Let } \mu
\end{array}+e^{x} d \mu^{\prime}=e^{2 x} d x \\
1+e^{2 x}
\end{aligned}
$$

(b) (i) $\mu_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{n / 2} d x$ From integration by parts:

$$
1 \cdot\left|\int \frac{d \mu}{1+\mu^{2}}=\tan ^{-1}\left(e^{x}\right) \cdot\right|
$$

$$
\begin{aligned}
& \mu_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{n / 2} \frac{d}{d x}(x) d x \\
= & {\left[x\left(1-x^{2}\right)^{n / 2}\right]_{0}^{1}-\int_{0}^{1} x \cdot \frac{n}{2}\left(1-x^{2}\right)^{n / 2-1}(-2 n) d } \\
= & n \int_{0}^{1} x^{2}\left(1-x^{2}\right)^{4 / 2-1} d x \\
= & -u_{0}^{1}-x^{2}\left(1-x^{2}\right)^{n / 2-1} d x .
\end{aligned}
$$

question (4) (15 MKs)
(a) If $1+i$ is a root, then

$$
(1+i)^{3}+p(1+i)^{2}+q(1+i)+6=0
$$

$(1+i)^{2}=2 i,(1+i)^{3}=-2+2 i$

$$
\therefore \begin{aligned}
& 1 \\
&(q+4)+(2+2 p+q) i=0 \\
& q+4=0
\end{aligned}
$$

le $q=-4 \quad q+4=0$
or $2+2 p+q=0$

$$
\begin{aligned}
\Rightarrow 2 p & =-2-q \\
& =-2+4
\end{aligned}
$$

$$
=-2+4
$$

$$
\therefore p=1, q=-4
$$

$$
\begin{equation*}
\therefore z^{3}+z^{2}-4 z+6=0 \tag{1}
\end{equation*}
$$

is the equation.

$$
\left.\begin{array}{c}
\sum \alpha_{i}=-1 \\
(1+i)+(1-i+\beta=-1
\end{array}\right]
$$

\therefore roots are $1 \pm i,-3$
(b) $\cdot|\arg z|<\frac{\pi}{3}$ $1-\frac{\pi}{3}<\arg z<\frac{\pi}{3}$

- $z+\bar{z}<4 \Rightarrow 2 x<4$

(c.)

$$
\begin{equation*}
|z|=|z-\alpha| \tag{3}
\end{equation*}
$$

\therefore locus is the pert. bisector joining (0,0) and (α, ∞).
$\arg \left(z^{2}-\alpha z\right)=\arg [z(z-\alpha)]$

$$
\begin{aligned}
& \begin{array}{c}
p u+x=0 \\
1=4 a+c
\end{array} \Rightarrow c=1-4 / 5 \\
& =1 / 5 \\
& \therefore \frac{1}{(x+1)\left(x^{2}+4\right)}=\frac{1}{5(x+1)}-\frac{x}{5\left(x^{2}+4\right)} \\
& +\frac{1}{5\left(x^{2}+4\right)} \text {. } \\
& \left.\therefore \int \frac{d x}{(x+1)\left(x^{2}+4\right)} \right\rvert\, \\
& =\frac{1}{5} \int\left(\frac{1}{x+1}-\frac{x}{x^{2}+4}+\frac{1}{x^{2}+4}\right) d x=\frac{1+e^{2 x}}{\tan ^{-1}\left(e^{x}\right)+\frac{1}{2} \ln \left(1+e^{2 k}\right)}+c
\end{aligned}
$$

Question 4(c) (bunt.).

$$
\begin{aligned}
& \text { Let argZ }=\theta \\
& \because \triangle o A B \text { is } \\
& \left.\frac{\text { |sosceles. }}{\therefore \angle B A O=\theta} \right\rvert\, \\
& \text { |:e } \angle C A B=\pi-\theta .
\end{aligned}
$$

$$
\therefore \arg z+\arg (z-\alpha)
$$

$$
=\theta+\pi-\theta
$$

$$
=\pi .
$$

$$
\text { 1.e } \sqrt{\arg \left(z^{2}-\alpha z\right)}=\pi
$$

(d)

$$
\begin{gathered}
\therefore z^{5}=1=\cos (2 k \pi)+i \sin (2 k \pi) \\
\therefore z=\cos \left(\frac{2 k \pi}{5}\right)+i \sin \left(\frac{2 k \pi}{5}\right) \\
k=0,1,2,3,4 .
\end{gathered}
$$

$$
z_{1}=\operatorname{cis}(0)=1
$$

$$
\omega_{2}=z_{2}=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}
$$

$$
\omega^{2}=z_{3}=\cos \frac{4 \pi}{5}+i \sin \frac{4 \pi}{5}
$$

$$
\omega^{3}=z_{4}=\cos \frac{6 \pi}{5}+i \sin \frac{6 \pi}{5}
$$

z. $\quad=\operatorname{cis}\left(2 \pi-\frac{4 \pi}{5}\right)$

$$
=\operatorname{cis}\left(-\frac{4 \pi}{5}\right)
$$

$$
=\cos \frac{4 \pi}{5}-i \sin \frac{4 \pi}{5} 8
$$

$$
\begin{aligned}
\omega^{4} & =z_{5}=\cos \frac{5 \pi}{5}+i \sin \frac{8 \pi}{5} \\
& =\operatorname{cis}\left(2 \pi-\frac{2 \pi}{5}\right) \\
& =\cos \frac{2 \pi}{5}-i \sin \frac{2 \pi}{5} .
\end{aligned}
$$

$$
\omega^{2}+\omega^{3}=2 \omega^{2} \frac{4 \pi}{5}
$$

$$
\omega^{2} \cdot \omega^{3}=\omega^{2+3}=\omega^{5}=1
$$

$z^{2}-\left(\omega^{2}+\omega^{3}\right) z+\left(\omega^{2} \cdot \omega^{3}\right)=0$
\therefore feal quad equat toin whose roots are w, wh is
$z^{2}-\left(26-\frac{4 \pi}{5}\right) z+1=0$

2009 Mathematics Extension 2 Assessment 1: Section C solutions

5. (a) Four medical tests A, B, C, and D are carried out within fourteen days on a patient. A must precede B and B must precede C and D. On the days when A and B are carried out the patient must not undergo any other tests, but C and D can be carried out on the same day or on different days in any order.
In how many ways can the days for the tests be chosen?

Solution: Method 1:

Case 1- consider when C and D are on different days. Ways of choosing the days is $\binom{14}{4}$. Then we know that the first day is A and the second is B so we have to order C and D, i.e. 2 ! ways. So the number of ways if 4 different days is $\binom{14}{4} \times 2$!.
Case 2- consider when C and D are on the same day. Ways of choosing the days is $\binom{14}{3}$.

$$
\begin{aligned}
\therefore \text { Total ways } & =\binom{14}{4} \times 2!+\binom{14}{3}, \\
& =2366 .
\end{aligned}
$$

Method 2:

If A and B are on the first 2 days, C can be in any of 12 places AND
D can be in any of 12 places \Longrightarrow Ways $=12^{2}$.

If A and B are on the second 2 days, C can be in any of 11 places AND D can be in any of 11 places \Longrightarrow Ways $=11^{2} \ldots$
Hence the total number of ways with A and B together is $12^{2}+11^{2}+$ $10^{2}+\cdots+2^{2}+1=650$.

If A and B are over the first 3 days, C can be in any of 11 places AND D can be in any of 11 places \Longrightarrow Ways $=11^{2}$.

If A and B are over the second 3 days, C can be in any of 10 places AND D can be in any of 10 places \Longrightarrow Ways $=10^{2} \ldots$
Hence the total number of ways with A and B over three days is $11^{2}+10^{2}+9^{2} \cdots+2^{2}+1=506$.

Therefore, the total number of ways with A and B in all possible positions is $650+506+385+\cdots+5+1=2366$.
(b) K is a positive real number and u, v are complex numbers. Show that the points on the Argand diagram which represent respectively the numbers:

$$
u, v, \frac{u-i K v}{1-i K}
$$

form the vertices of a right-angled triangle.
Solution: Let A, B, C be the points $u, v, \frac{u-i K v}{1-i K}$ respectively on an Argand diagram.

$$
\begin{aligned}
& \overrightarrow{A B}=v-u . \\
& \overrightarrow{B C}=\frac{u-i K v}{1-i K}-v \\
&=\frac{u-i K v-v+i K v}{1-i K} \\
&=\frac{u-v}{1-i K} \\
& \overrightarrow{A C}=\frac{u-i K v}{1-i K}-u \\
&=\frac{u-i K v-u+i K u}{1-i K} \\
&=\frac{i K(u-v)}{1-i K} \\
& \therefore \overrightarrow{A C}=i K \overrightarrow{B C} \\
& \text { i.e., } \overrightarrow{A C} \text { is rotated } 90^{\circ} \text { from } \overrightarrow{B C} .
\end{aligned}
$$

(c) The quadratic equation

$$
x^{2}-(2 \cos \theta) x+1=0
$$

has roots α and β.
(i) Find expressions for α and β in terms of θ.

Solution: Using the quadratic equation to find x,

$$
\begin{aligned}
x & =\frac{2 \cos \theta \pm \sqrt{4 \cos ^{2} \theta-4}}{2} \\
& =\cos \theta \pm \sqrt{-\left(1-\cos ^{2} \theta\right)} \\
& =\cos \theta \pm i \sqrt{\sin ^{2} \theta} \\
& =\cos \theta \pm i \sin \theta \\
\text { So } \alpha & =\cos \theta+i \sin \theta \\
\text { and } \beta & =\cos \theta-i \sin \theta \\
& =\cos (-\theta)+i \sin (-\theta)
\end{aligned}
$$

(ii) Show that $\alpha^{10}+\beta^{10}=2 \cos (10 \theta)$.

Solution: $\quad \alpha^{10}=(\cos \theta+i \sin \theta)^{10}$,

$$
=\cos 10 \theta+i \sin 10 \theta \text { by deMoivre's theorem }
$$

$$
\beta^{10}=(\cos (-\theta)+i \sin (-\theta))^{10}
$$

$$
=\cos (-10 \theta)+i \sin (-10 \theta) \text { by deMoivre's theorem, }
$$

$$
\therefore \alpha^{10}+\beta^{10}=\cos 10 \theta+i \sin 10 \theta+\cos (-10 \theta)+i \sin (-10 \theta)
$$

$$
=\cos 10 \theta+i \sin 10 \theta+\cos 10 \theta-i \sin 10 \theta
$$

$$
=2 \cos (10 \theta)
$$

6. (a) When a cubic polynomial $A(x)$ is divided by $x^{2}+x+1$ the remainder is $2 x+3$. When $A(x)$ is divided by $x(x+3)$ the remainder is $5(x+1)$. Find the polynomial $A(x)$.
```
Solution: \(\quad A(x)=\left(x^{2}+x+1\right)(a x+b)+2 x+3\),
                \(=x(x+3)(c x+d)+5(x+1)\),
    Put \(x=0\),
        \(b+3=5\),
            \(b=2\).
```

Equating coefficients of $x^{3}, a=c$.
Equating coefficients of $x^{2}, a+2=3 c+d$ or $2 a=2-d$.
Equating coefficients of $x, \quad 2+a+2=3 d+5$,

$$
a=3 d+1
$$

$$
\begin{aligned}
\text { Now } 2 a & =2-\frac{a-1}{3} \\
6 a & =6-a+1 \\
7 a & =7 \\
a=c & =1 \\
\therefore A(x) & =\left(x^{2}+x+1\right)(x+2)+2 x+3 \\
& =x^{3}+x^{2}+x+2 x^{2}+2 x+2+2 x+3 \\
& =x^{3}+3 x^{2}+5 x+5
\end{aligned}
$$

(b)

$X Y$ is a fixed chord of a circle. Z is a point on the major arc $X Y$.
The perpendicular from X to the chord $Y Z$ meets $Y Z$ at A.
The perpendicular from Y to the chord $X Z$ meets $X Z$ at B.
Let $\angle X Z Y=\theta$.
(i) Copy the diagram into your booklet.

Solution: See above.
(ii) Prove $A B X Y$ is a cyclic quadrilateral.

Solution: $\quad \angle X A Y=90^{\circ}(X A \perp Y Z)$,

$$
\angle Y B X=90^{\circ}(Y B \perp X Z)
$$

$\therefore \angle X A Y=\angle Y B X$.
$\therefore A B X Y$ is a cyclic quadrilateral (angles on arc $X Y$ are equal).
(iii) Show that $A B=X Y \cos \theta$.

Solution: $\quad \angle A B Z=\angle X Y Z$ (exterior \angle theorem for cyclic quad.)

$$
\angle B Z A=\angle Y Z X \text { (common) }
$$

$\therefore \triangle A B Z / / / \triangle X Y Z$ (equiangular),
$\therefore \frac{A B}{X Y}=\frac{Z A}{Z X}$ (corresp. sides of similar $\triangle \mathrm{s}$),
but $\frac{Z A}{Z X}=\cos \theta$,
$\therefore \frac{A B}{X Y}=\cos \theta$,
so $A B=X Y \cos \theta$.
(iv) Deduce that as Z moves on the major arc $X Y$ the length of $A B$ is constant.

Solution: $X Y$ is constant (given),
θ is constant ($\angle \mathrm{s}$ at circumf. on same arc).
$\therefore \cos \theta$ is constant,
$\therefore A B=$ constant \times constant , $=$ constant.
(c) (i) Suppose that k is a double root of the polynomial equation $P(x)=0$. Show that $P^{\prime}(k)=0$.

Solution: Put $P(x)=(x-k)^{2} Q(x)=0$, where $Q(x)$ is a polynomial.

$$
\begin{aligned}
P^{\prime}(x) & =2(x-k) Q x+(x-k)^{2} Q^{\prime}(x), \\
& =(x-k)\left\{2 Q(x)+(x-k) Q^{\prime}(x)\right\} . \\
\therefore P^{\prime}(k) & =(k-k)\left\{2 Q(k)+(k-k) Q^{\prime}(k)\right\}, \\
& =0 .
\end{aligned}
$$

(ii) If $x^{3}+3 p x^{2}+3 q x+r=0$ has a double root, prove that $(p q-r)^{2}=4\left(p^{2}-q\right)\left(q^{2}-p r\right)$.

Solution:

$$
\begin{equation*}
\text { Let } P(x)=x^{3}+3 p x^{2}+3 q x+r=0 \tag{1}
\end{equation*}
$$

\qquad

$$
P^{\prime}(x)=3 x^{2}+6 p x+3 q=0
$$

$$
\begin{equation*}
\text { i.e., } x^{2}+2 p x+q=0 \tag{2}
\end{equation*}
$$

$x \times 2: \quad x^{3}+2 p x^{2}+q x=0 \ldots \ldots$
(1)-3):

$$
\begin{equation*}
p x^{2}+2 q x+r=0 \tag{3}
\end{equation*}
$$

$p \times 2$:

$$
\begin{equation*}
p x^{2}+2 p^{2} x+q p=0 \tag{5}
\end{equation*}
$$

(5)-4):

$$
\begin{aligned}
2\left(p^{2}-q\right) x+q p-r & =0 \\
x & =\frac{r-p q}{2\left(p^{2}-q\right)}
\end{aligned}
$$

Sub. in 22: $\frac{(r-p q)^{2}}{4\left(p^{2}-q\right)^{2}}+\frac{2 p(r-p q)}{2\left(p^{2}-q\right)}+q=0$,

$$
\begin{aligned}
\frac{(p q-r)^{2}}{4\left(p^{2}-q\right)^{2}} & =\frac{p(p q-r)}{p^{2}-q}-q, \\
(p q-r)^{2} & =4\left(p^{2}-q\right)(p q-r) p-4 q\left(p^{2}-q\right)^{2}, \\
& =4\left(p^{2}-q\right)\left(p^{2} q-p r-p^{2} q+q^{2}\right), \\
& =4\left(p^{2}-q\right)\left(q^{2}-p r\right) .
\end{aligned}
$$

