SYDNEYBOYS HIGH
 SCHOOL
 MOORE PARK, SURRY HILIS

2010
 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#1

Mathematics

Extension 2

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Each question is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 60

- Attempt questions 1 - 3
- All questions are of equal value.

Question 1. (Start a new page.) (20 marks)
(a) For the complex number $z=-2+2 \sqrt{3} i$ find:
(i) $|z|$
(ii) $\arg z$.
(b) Given $w=5+12 i$ express each of the following in the form $a+i b$ (for real a and b).
(i) \bar{w}
(ii) w^{-1}
(c) Find the square roots of $32-24 i$, giving your answer in the form $x+i y$.
(d) Find in modulus-argument form all complex numbers z such that $z^{3}+1=0$, and plot them on the Argand diagram.
(e) Sketch (on separate diagrams) the region in the Argand diagram containing the points z for which:
(i) $0 \leq \arg (z-i) \leq \frac{\pi}{6}$
(ii) $|z-2 i|<2$
(iii) $\quad \arg \left(\frac{z-i}{z-1}\right)=\frac{\pi}{2}$
(f) Solve the equation $z^{5}+z=0$ over the field of complex numbers.
(g) If α, β, γ are the roots of the equation $2 x^{3}+5 x^{2}-4 x+2=0$, find a cubic equation with roots $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$, and hence or otherwise state the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.

Question 2. (Start a new page.) (20 marks)
(a) In the Argand diagram at right $O A B C$ is a square. The point A represents the complex number $-3+4 i$.

Find in the form $a+i b$:
(i) the complex number represented by C
(ii) the complex number represented by B
(iii) the complex number represented by the vector $C A$

(b) Find $\frac{d}{d x}\left(x \sin ^{-1} x\right)$, and hence find $\int \sin ^{-1} x d x$.
(c) Given that $1+i$ is a root of the equation $x^{4}-x^{3}-6 x^{2}+14 x-12=0$:
(i) explain why $1-i$ is also a root
(ii) find all roots of the equation.
(d) Prove that $\cos ^{-1} x+\sin ^{-1} x$ is a constant (independent of x).
(e) Solve the quadratic equation $x^{2}-(2+2 i) x-1+2 i=0$.
(e) (i) Determine the domain of the function $y=\sin ^{-1}(2 x+1)$.
(ii) Sketch the graph of $y=\sin ^{-1}(2 x+1)$.
(iii) Solve $\sin ^{-1}(2 x+1)=\cos ^{-1} x$
(f) Which complex numbers are the squares of their conjugates? 2

Question 3. (Start a new page.) (20 marks)
(a)
(i) Find the least positive integer k such that $\cos \left(\frac{4 \pi}{7}\right)+i \sin \left(\frac{4 \pi}{7}\right)$ is a solution of $z^{k}=1$.
(ii) Show that if the complex number w is a solution of $z^{n}=1$, then so is w^{m}, where m and n are arbitrary integers.
(b) When the polynomial $P(x)=x^{3}+3 x^{2}+a x+b$ is divided by $x-1$ the remainder is 5, and when $P(x)$ is divided by $x+2$ the remainder is 8 .

Find the values of a and b.
(c) (i) Find the co-ordinates of intersection of the curves $y=\cos ^{-1} x$ and
(ii) Find the acute angle between the curves $y=\cos ^{-1} x$ and $y=\sin ^{-1} x$ at the
point of intersection. Give your answer in degrees, to the nearest minute.
(ii) Find the acute angle between the curves $y=\cos ^{-1} x$ and $y=\sin ^{-1} x$ at the
point of intersection. Give your answer in degrees, to the nearest minute.
(d) (i) Show that if $x=\alpha$ is a double root of the polynomial equation $A(x)=0$,
then $A(\alpha)=A^{\prime}(\alpha)=0$.
(ii) Given that $a x^{4}+4 b x+c=0$ has a double root, prove that $a c^{3}=27 b^{4}$.
(e) If z is a non-zero complex number such that $z+\frac{1}{z}$ is real, prove that either $\operatorname{Im}(z)=0$ or $|z|=1$.

(i) Copy the diagram to your answer booklet.
(ii) Prove that $\angle R Q D=\angle R B D$.

This is the end of the paper.

Blank Page

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Qugstion 1
(a)
(i)

$$
\begin{aligned}
|-2+2 \sqrt{3} i| & =\sqrt{4+12} \\
& =4
\end{aligned}
$$

(ii)

$$
\arg (-2+2 \sqrt{3} i)=\frac{2 \pi}{3}
$$

$\left.(b)_{i}\right) 5-12 i$
$\left.\$(i)^{\circ}\right)$

$$
\begin{aligned}
\frac{1}{5+12 i} \times \frac{5-12 i}{5-12 i} & =\frac{5-12 i}{25+144} \\
& =\frac{5}{164}-\frac{12}{169} i
\end{aligned}
$$

(c)

$$
\begin{aligned}
& 32-24 i=x^{2}-y^{2}+2 x y i \\
& 32=x^{2}-y^{2} . \\
& -24=2 x y \Rightarrow y=-\frac{12}{x} . \\
& 32=x^{2}-\frac{144}{x^{2}} \\
& x^{4}-32 x^{2}-144=0 . \\
& x= \pm 6 \text {. } \\
& \begin{array}{l}
x^{2}=\frac{32 \pm \sqrt{1024-4 x-1444}}{2}
\end{array} \\
& =\frac{32 \pm 40}{2} \\
& =36,-4 \text {. }
\end{aligned}
$$

d)

$$
\text { cis } \pm \frac{\pi}{3} \text {, cis } \pi=-1 \text {. }
$$

(e) (i)

(ii)

(iii)

(f) $z=0$, cis $=\frac{\pi}{4}$, cis $\pm \frac{3 \pi}{4}$.
(g)

$$
\begin{aligned}
& x=\frac{1}{x} \\
& 2\left(\frac{1}{x}\right)^{3}+3\left(\frac{1}{x}\right)^{2}-4\left(\frac{1}{x}\right)+2=0 . \\
& 2 x^{3}-4 x^{2}+5 x+2=0 . \\
& \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{r}=2
\end{aligned}
$$

QUESTION 2

(a) (I) $(-3+4 i) \div i=\quad 4+3 i$
(ii) $-3+4 i+4+3 i=1+7 i$
(iii) $-3+4 i-(4+3 i)=-7+i$
(e) $x=\frac{2+2 i \pm \sqrt{(-2-2 i)^{2}-4 \times 1 \times(-1-2 i)}}{2}$

$$
=\frac{2+2 i \pm \sqrt{4+8 i-4+4-8 i}}{2}
$$

(b) $\frac{d}{d x}\left(x \sin ^{-1} x\right)=x \times \frac{1}{\sqrt{1-x^{2}}}+\sin ^{-1} x$

$$
=\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}
$$

$\int\left(\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}\right) d x=x \sin ^{-1} x$
$\int\left(\sin ^{-1} x\right) d x=x \sin ^{-1} x-\int \frac{x}{\sqrt{1-x^{2}}} \mathrm{dx}$
(c) (i) If a comlex number is a factor of a polynomial with real coefficients, its conjugate is also a factor.
(ii) $(x-1+i)(x-1-i)$ is a factor.

$$
\left(x^{2}-2 x+2\right) \text { is a factor }
$$

$$
\begin{aligned}
& x ^ { 2 } - 2 x + 2 \longdiv { x ^ { 2 } + x - 6 } \longdiv { x ^ { 4 } - x ^ { 3 } - 6 x ^ { 2 } + 1 4 x - 1 2 } x ^ { 4 } - 2 x ^ { 3 } + 2 x ^ { 2 } . \\
& x^{3}-8 x^{2}+14 x \\
& x^{3}-2 x^{2}+2 x \\
& -6 \mathrm{x}^{2}+12 x-12 \\
& -6 x^{2}+12 x-12
\end{aligned}
$$

Roots 1+i, 1-i, $-3,2$
(d)

$$
\begin{aligned}
& a=\cos ^{-1} x, b=\sin ^{-1} x \\
& \cos a=x, \sin b=x \\
& \cos a=\sin b \\
& a+b=\frac{\pi}{2} \\
& \cos ^{-1} x+\sin ^{-1} x=\frac{\pi}{2} \text { - constant }
\end{aligned}
$$

(f) (ii) From graph $x=0$
(g)

$$
\begin{aligned}
x+i y & =(x-i y)^{2} \\
& =x^{2}-2 x y i-y^{2} \\
\text { (1) } x & =x^{2}-y^{2} \\
y & =-2 x y \\
1 & =-2 x \\
x & =-\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2+2 i \pm 2}{2} \\
& x=2+i \text { or } i
\end{aligned}
$$

(f) (i)

From (1) $-\frac{1}{2}=\frac{1}{4}-y^{2}$

$$
y= \pm \frac{\sqrt{3}}{2}
$$

nos. are: $0,1,-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$

Question (3)
(a)
(i) $z^{k}=1$

Let $z=\operatorname{cis} \theta$

$$
z^{k}=\psi \operatorname{k} \theta+i \sin k \theta
$$

Equate real part

$$
\omega k \theta=1
$$

$$
\Rightarrow k \theta=2 n \pi
$$

$$
\therefore \theta=\frac{2 n \pi}{k}
$$

1.e $\theta=0, \frac{2 \pi}{k}, \frac{4 \pi}{k} \ldots$

$$
\Rightarrow k=7
$$

is the least
positive integer.
(ii) W is a solution to $z^{n}=1$

$$
\therefore \quad W^{n}=1
$$

Now $w^{m}=\left(w^{n}\right)^{m}$

$$
\begin{aligned}
& =1^{m} \\
& =1 \quad \square
\end{aligned}
$$

$\Longrightarrow W^{m}$ is also a solution

$$
\begin{align*}
& \text { (b) } P(x)=x^{3}+3 x^{2}+a x+b \\
& P(1)=5 \\
& P(-2)=8 \\
& 5=1+3+a+b \cdot 2 \tag{21}\\
& 8=-8+12-2 a+b \\
& \therefore a+b=1 \\
& -2 a+b=4
\end{align*}
$$

(1) -(2) $3 a=-3$

$$
\begin{equation*}
\therefore \quad a=-1 \tag{3}
\end{equation*}
$$

Subst (3) into (1)

$$
\therefore b=2-4
$$

(c) (i) $\cos ^{-1} x=\sin ^{-1} x$.
lie $\sin ^{-1} x-\cos ^{-1} x=0$.
Let $\alpha=\sin ^{-1} x,-\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2}$

$$
\beta=\cos ^{-1} n, 0 \leqslant \beta \leqslant \pi
$$

$$
\begin{aligned}
& \Rightarrow \sin \alpha=x . \\
& \cos \alpha=\sqrt{1-x^{2}} \\
& \cos \beta=x \\
& \sin \beta=\sqrt{1-x^{2}} \\
& \alpha-\beta=0
\end{aligned}
$$

Take $\sin (\alpha-\beta)=0^{2}$
$\sin ^{2} \alpha \cos \beta-\cos \alpha \sin \beta=0$

$$
\begin{gathered}
x^{2}-\left(\sqrt{1-x^{2}}\right)^{2}=0 \\
2 x^{2}=1, \quad x^{2}=\frac{1}{2} \\
x= \pm \frac{1}{\sqrt{2}} \quad \therefore x=\frac{1}{\sqrt{2}} \\
\therefore\left(\frac{1}{\sqrt{2}}, \pi / 4\right) \quad y=\pi / 4
\end{gathered}
$$

(c)
(ii)
then

$$
m_{1}=\frac{d v_{1}}{d x_{1}}=-\frac{1}{\sqrt{1-x^{2}}}
$$

$$
m_{2}=\frac{d y_{2}}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

$$
\left.\frac{d y_{1}}{d x}\right|_{x=\frac{1}{\sqrt{2}}}=\frac{-1}{\sqrt[1]{\sqrt{2}}}=-\sqrt{2} .
$$

$$
\left.\frac{d y_{2}}{d x}\right|_{x}=\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{y / 2}}=\sqrt{2}
$$

$$
\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|^{2}
$$

$$
=\left|\frac{-\sqrt{2}-\sqrt{2}}{1+(-2)}\right|
$$

$$
=2 \sqrt{2}
$$

$$
\therefore \theta=\tan ^{-1} 2 \sqrt{2}=7032
$$

(d) If $x=\alpha$
(i) is a double root of $A^{\prime}(x)$

$$
\begin{aligned}
& \text { Then } \\
& A(x)=(x-\alpha)^{2} Q(x) \\
& \therefore A(\alpha)=(\alpha-\alpha)^{2} Q(\alpha) \\
&= 0 \\
& A^{\prime}(x)= 2 Q(x)(x-\alpha) \\
&+(x-\alpha)^{2} Q^{\prime}(x) \\
& \therefore A^{\prime}(\alpha)= 2 Q(\alpha)(\alpha-\alpha) \\
&+(\alpha-\alpha)^{2} Q^{\prime}(\alpha)=0 \\
& \therefore A(\alpha)=A^{\prime}(\alpha)=0 \\
&\text { Cii }) P(x)=a x^{4}+4 b x+c \\
& P(\alpha)=0 \text { and } p^{\prime}(\alpha)=0 \\
& a \alpha^{4}+4 b \alpha+c=0
\end{aligned}
$$

and $4 a \alpha^{3}+4 b=0$
From (2) $\alpha^{3}=\frac{-b}{a}$

From (1)

$$
\begin{align*}
& a\left(\alpha^{3}\right)(\alpha)+4 b(\alpha)+c=0 \\
& -b \alpha+4 \alpha=-c \\
& \therefore \quad \alpha=-\frac{c}{3 b} \tag{4}
\end{align*}
$$

fubst (4) into (1)

$$
\begin{aligned}
& a\left(\frac{c^{4}}{8 i b^{4}}\right)-4 b\left(\frac{c}{3 b}\right)+c=0 \\
& \Rightarrow a c^{3}=27 b^{4}
\end{aligned}
$$

(e) Let $z=x+i y$.

$$
\begin{equation*}
\frac{1}{z}=\frac{x-i y}{x^{2}+y^{2}} \tag{3}
\end{equation*}
$$

$$
\therefore z+\frac{1}{z}=x+i y+\frac{x-i y}{x^{2}+y^{2}}
$$

If $z+\frac{1}{z}$ is real

$$
\begin{aligned}
& \Rightarrow \operatorname{Im}\left(z+\frac{1}{2}\right)=0 \\
& i y\left(1-\frac{1}{x^{2}+y^{2}}\right)=0 \\
& \Rightarrow y=0 \text { or } x^{2}+y^{2}=1 \\
& \Rightarrow 1-e 12=1
\end{aligned}
$$

(i) Copy the diagram to your answer booklet.
(ii) Prove that $\angle R Q D=\angle R B D$.

Let. $\angle P Q B=\alpha \therefore \angle \angle A B=\alpha$.
(exterior angle of cyclic quad $A B Q P$,

$$
\text { Similarly, } \angle B D R=\alpha \text {. }
$$

3 In quad. $B D R Q$

$$
\angle B D R=\angle P Q B=\alpha .
$$

$\therefore B D R Q$ is a cyclic quad
$2 \therefore \angle R Q D=\angle R B D$
(Converse of angles in the same sag kent 1 .

