

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2010 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK #1

Mathematics Extension 2

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Each question is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 60

- Attempt questions 1 3
- All questions are of equal value.

Examiner:

A.M.Gainford

Question 1. (Start a new page.) (20 marks)

(a)	For the co	Somplex number $z = -2 + 2\sqrt{3}i$ find:	Marks 2
	(i)	z	
	(ii)	arg z.	
(b)	Given $w = 5 + 12i$ express each of the following in the form $a + ib$ (for real <i>a</i> and <i>b</i>).		
	(i)	\overline{w}	
	(ii)	w^{-1}	
(c)	Find the s	square roots of $32 - 24i$, giving your answer in the form $x + iy$.	2
(d)	Find in n plot then	nodulus-argument form all complex numbers z such that $z^3 + 1 = 0$, and n on the Argand diagram.	3
(e)	Sketch (o	n separate diagrams) the region in the Argand diagram containing the points <i>z</i> for which:	6
	(i)	$0 \le \arg(z-i) \le \frac{\pi}{6}$	

(ii)
$$|z-2i| < 2$$

(iii)
$$\arg\left(\frac{z-i}{z-1}\right) = \frac{\pi}{2}$$

(f) Solve the equation $z^5 + z = 0$ over the field of complex numbers.

2

(g) If α, β, γ are the roots of the equation $2x^3 + 5x^2 - 4x + 2 = 0$, find a cubic equation **3** with roots $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$, and hence or otherwise state the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.

Question 2. (Start a new page.) (20 marks)

(b) Find
$$\frac{d}{dx}(x\sin^{-1}x)$$
, and hence find $\int \sin^{-1}x \, dx$.

(c) Given that 1+i is a root of the equation $x^4 - x^3 - 6x^2 + 14x - 12 = 0$:

4

- (i) explain why 1 i is also a root
- (ii) find all roots of the equation.

(d) Prove that
$$\cos^{-1} x + \sin^{-1} x$$
 is a constant (independent of x). 2

(e) Solve the quadratic equation $x^2 - (2+2i)x - 1 + 2i = 0$. 2

(e) (i) Determine the domain of the function $y = \sin^{-1}(2x+1)$.

- (ii) Sketch the graph of $y = \sin^{-1}(2x+1)$.
- (iii) Solve $\sin^{-1}(2x+1) = \cos^{-1} x$
- (f) Which complex numbers are the squares of their conjugates?

2

4

Question 3. (Start a new page.) (20 marks)

(a)	(i)	Find the least positive integer k such that $\cos\left(\frac{4\pi}{7}\right) + i\sin\left(\frac{4\pi}{7}\right)$ is a solution of $z^k = 1$.	Marks 2
	(ii)	Show that if the complex number w is a solution of $z^n = 1$, then so is w^m , where m and n are arbitrary integers.	1
(b)	When the and when	polynomial $P(x) = x^3 + 3x^2 + ax + b$ is divided by $x - 1$ the remainder is 5, $P(x)$ is divided by $x + 2$ the remainder is 8.	2
	Find the v	values of <i>a</i> and <i>b</i> .	
(c)	(i)	Find the co-ordinates of intersection of the curves $y = \cos^{-1} x$ and $y = \sin^{-1} x$.	4
	(ii)	Find the acute angle between the curves $y = \cos^{-1} x$ and $y = \sin^{-1} x$ at the point of intersection. Give your answer in degrees, to the nearest minute.	
(d)	(i)	Show that if $x = \alpha$ is a double root of the polynomial equation $A(x) = 0$, then $A(\alpha) = A'(\alpha) = 0$.	1
	(ii)	Given that $ax^4 + 4bx + c = 0$ has a double root, prove that $ac^3 = 27b^4$.	2

(e) If z is a non-zero complex number such that $z + \frac{1}{z}$ is real, prove that either Im(z) = 0 or |z| = 1.

- (i) Copy the diagram to your answer booklet.
- (ii) Prove that $\angle RQD = \angle RBD$.

This is the end of the paper.

Blank Page

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int 1 \ln x = \log_e x, x > 0$$

 $Q_{V \ge 5710N} 1$ (a) (i) $|-2+2\sqrt{3}i| = \sqrt{4+12}$ 1 =4.

$$\begin{aligned} &(b)_{i} 5^{-1} 2_{i} \\ &+(i^{*}) \quad \frac{1}{5^{+1} 2_{i}} \times \frac{5^{-1} 2_{i}'}{5^{-1} 2_{i}} = \frac{5^{-1} 2_{i}'}{25^{+1} 4^{4} 4} \\ &= \frac{5}{169} - \frac{12}{169} i \\ \end{aligned} \\ &(c) \quad 32^{-2} 4_{i} = x^{2} - y^{2} + 2xy_{i}' \\ &32^{-2} + 2xy_{i} = \frac{7}{2} y^{2} - \frac{14}{2} \\ &-24^{-2} 2xy_{i} = \frac{7}{2} - \frac{144}{2} \\ &32^{-2} + \frac{144}{2} \\ &32^{-2} + \frac{144}{2} \\ &32^{-2} + \frac{144}{2} \\ &x^{2} - \frac{32 \pm \sqrt{1024 - 4} \times -444}{2} \\ &x^{2} - \frac{32 \pm \sqrt{1024 - 4} \times -444}{2} \\ &x^{2} - \frac{31 \pm 40}{2} \\ &= \frac{31 \pm 40}{2} \end{aligned}$$

J) cis 5], cis T=-1.

(f) $3 = 0_1 \operatorname{cis} = \overline{\mathbb{I}}_{4,1} \operatorname{cis} = \frac{3}{4,1}$ (g) $x = \frac{1}{x}$ $2(\frac{1}{x})^3 + S(\frac{1}{x})^2 - 4(\frac{1}{x}) + 2 = 0.$

 $2x^{3} + 4x^{2} + 5x + 2 = 0$

え、方·下=乙

(a) (I)
$$(-3+4i) \div i = 4+3i$$

(ii) $-3+4i+4+3i = 1+7i$
(iii) $-3+4i-(4+3i) = -7+i$

(b)
$$\frac{d}{dx}(x\sin^{-1}x) = x \times \frac{1}{\sqrt{1-x^2}} + \sin^{-1}x$$

= $\sin^{-1}x + \frac{x}{\sqrt{1-x^2}}$
 $\int \left(\sin^{-1}x + \frac{x}{\sqrt{1-x^2}}\right) dx = x\sin^{-1}x$

(e)
$$x = \frac{2+2i \pm \sqrt{(-2-2i)^2 - 4 \times 1 \times (-1-2i)}}{2}$$

$$=\frac{2+2i\pm\sqrt{4+8i-4+4-8i}}{2}$$
2+2i±2

$$= \frac{2}{2}$$
$$x = 2 + i \text{ or } i$$

(f) (i)

(f) (ii) From graph
$$x = 0$$

(g)

$$x + iy = (x - iy)^{2}$$

$$= x^{2} - 2xyi - y^{2}$$

$$(1) x = x^{2} - y^{2}$$

$$y = -2xy$$

$$1 = -2x$$

$$x = -\frac{1}{2}$$

From (1)
$$-\frac{1}{2} = \frac{1}{4} - y^2$$

 $y = \pm \frac{\sqrt{3}}{2}$

nos. are: 0, 1,
$$-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

 $\int \left(\sin^{-1}x\right) dx = x \sin^{-1}x - \int \frac{x}{\sqrt{1 - x^2}} dx$

(ii)
$$(x-1+i)(x-1-i)$$
 is a factor.
 (x^2-2x+2) is a factor

$$x^{2}-2x+2)\overline{x^{4}-x^{3}-6x^{2}+14x-12}$$

$$x^{4}-2x^{3}+2x^{2}$$

$$x^{3}-8x^{2}+14x$$

$$x^{3}-2x^{2}+2x$$

$$-6x^{2}+12x-12$$

$$-6x^{2}+12x-12$$

$$-6x^{2}+12x-12$$

Roots 1+i, 1-i, -3,2

(d)

-

$$a = \cos^{-1} x, b = \sin^{-1} x$$

$$\cos a = x, \quad \sin b = x$$

$$\cos a = \sin b$$

$$a + b = \frac{\pi}{2}$$

$$\cos^{-1} x + \sin^{-1} x = \frac{\pi}{2} - \text{constant}$$

(C)

$$\begin{array}{c} \underbrace{\begin{array}{c} \underbrace{\varphi} u est + i rin(3)}{(a)} \\ (a) \\ (c) \\ (c)$$

•

,

$$\begin{array}{c} (c) \\ (ii) \\ (ii) \\ u_{1} = 4u_{1} \\ \hline M_{1} = \frac{du_{1}}{\Delta x} = \frac{1}{\sqrt{1-x^{2}}} \\ m_{2} = \frac{du_{2}}{\Delta x} = \frac{1}{\sqrt{1-x^{2}}} \\ m_{2} = \frac{du_{2}}{\Delta x} = \frac{1}{\sqrt{1-x^{2}}} \\ \hline M_{2} = \frac{1}{\sqrt{1-x^{2}}} = \frac{-1}{\sqrt{1-x^{2}}} \\ \hline M_{1} = \frac{1}{\sqrt{1-x^{2}}} = \frac{-1}{\sqrt{1-x^{2}}} \\ \hline M_{2} = \frac{1}{\sqrt{1-x^{2}}} = \frac{-1}{\sqrt{1-x^{2}}} \\ \hline M_{1} = \frac{1}{\sqrt{1-x^{2}}} \\ \hline M_{2} = \frac{1}{\sqrt{1-x^{2}}} \\ \hline M_{2$$

(ii) Prove that $\angle RQD = \angle RBD$.

SHS Maths Ext2 Task 1 April 10

Page 6