

2012

HSC ASSESSMENT TASK #1

Mathematics Extension 2

General Instructions

- Reading time 5 minutes.
- Working time 90 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may **NOT** be awarded for messy or badly arranged work.
- Answers should be in simplest exact form unless specified otherwise.
- Start each **NEW** section in a separate answer booklet.
- Each section is to be returned in a separate bundle.

Total Marks - 88

- Attempt Questions 1 6
- All questions are NOT of equal value.

Examiner: A. Fuller

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, x > 0$$

Section A

Question 1 (15 marks)

(a) Find
$$\int \frac{5}{\cos^2 x} dx$$
. 1

Find the exact value of the following: (b)

- (i) $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (ii) $\tan^{-1}\left(\tan\frac{5\pi}{6}\right)$ (iii) $\sin\left(2\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)\right).$
- (c) Write the following in the form a + ib, where a and b are real:
 - (i) $\overline{3-4\iota}$

(ii)
$$\frac{1}{3-4i}$$

the two square roots of 3 - 4i. (iii)

Express the following in the form $r(\cos \theta + i \sin \theta)$, (d) (i) 4

6

4

```
where r > 0 and -\pi < \theta \le \pi.
```

- (a) $\sqrt{3}-i$
- (β) $\left(\sqrt{3}-i\right)^7$

Hence, or otherwise, write $(\sqrt{3} - i)^7$ in the form x + iy, (ii)

where *x* and *y* are real.

Question 2 (15 marks)

(a)
$$P(x) = 3x^3 - 5x^2 + 4x + 2.$$

(i) Show that $(1 + i)$ is a root of $P(x) = 0.$

- (ii) Explain why (1 i) is also a root of P(x) = 0.
- (iii) Hence, or otherwise, factorise P(x) over the Real field.

(b) Evaluate
$$\int_{1}^{4} |2 - x| dx$$
. 2

(c) (i) Show that
$$\frac{1}{4+5\sin^2 x} = \frac{2}{13-5\cos 2x}$$
. 4

- (ii) Hence, or otherwise, find $\int \frac{dx}{4+5\sin^2 x}$.
- (d) Sketch the locus of the following on separate argand diagrams:
 - (i) $|z+i| \le 1$
 - (ii) $\Re e(z+iz) < 1$
 - (iii) $2|z| = z + \bar{z} + 4$

5

Section B (Use a SEPARATE writing booklet)

Question 3 (18 marks)

(a) If α , β , γ are the roots of the polynomial equation $2x^3 - 3x + 1 = 0$.

6

- (i) Find the value of the following:
 - (a) $\alpha\beta\gamma$
 - (β) $(1-\alpha)(1-\beta)(1-\gamma)$
 - $(\gamma) \qquad \alpha^2 + \beta^2 + \gamma^2$
 - (δ) $\alpha^4 + \beta^4 + \gamma^4$

(ii) Form a polynomial equation which has roots $\frac{1}{2\alpha+\beta+\gamma}, \frac{1}{\alpha+2\beta+\gamma}, \frac{1}{\alpha+\beta+2\gamma}$.

(b) (i) Write
$$\frac{2x^2+x+5}{(x-3)(x^2+4)}$$
 in the form $\frac{A}{x-3} + \frac{Bx+C}{x^2+4}$. 5

(ii) Hence, or otherwise, find
$$\int \frac{2x^2+x+5}{(x-3)(x^2+4)} dx$$
.

(c) (i) State the domain and range of
$$y = \sin^{-1}\left(\frac{1}{x}\right), x > 0.$$
 7

- (ii) Find $\frac{dy}{dx}$.
- (iii) Show that $\int \frac{dx}{x\sqrt{x^2-1}} = \sec^{-1} x + C$ using the substitution $x = \sec \theta$.

(iv) Consider
$$y = \sec^{-1} x$$
 to be $x = \sec y$ for $0 \le y < \frac{\pi}{2}$.

Using the results from (ii) and (iii) write $\sec^{-1} x$ in terms of $\sin^{-1} \left(\frac{1}{x}\right)$.

Question 4 (15 marks)

- Given that $|z_1| = 15$ and $z_2 = -3 + 4i$. (a)
 - Find the maximum value of $|z_1 + z_2|$. (i)
 - Hence, find z_1 if $|z_1 + z_2|$ takes its maximum value. (ii)

(b) (i) Show that
$$\int_0^{\pi} \frac{\sin x}{\sqrt{1 + \cos^2 x}} dx = 2 \ln(1 + \sqrt{2})$$
 5

using the substitution $u = \cos x$.

- Hence, or otherwise, evaluate $\int_0^{\pi} \frac{x \sin x}{\sqrt{1 + \cos^2 x}} dx$. (ii)
- (c) In the diagram below, the points *X*, *Y* and *Z* correspond to the complex numbers x, y and z respectively. Y

Find the complex numbers represented by:

- (i) the vector OX (where O is the origin)
- the vector XZ (ii)
- (iii) the point A such that XYAZ is a parallelogram
- (iv) the point *C*, the centroid of ΔXYZ .
- The centroid of a triangle is the point of intersection of the three medians. Note:

You may assume that the centroid lies two-thirds along a median from the vertex.

4

6

Section C (Use a SEPARATE writing booklet)

Question 5 (13 marks)

(a) Let α be the complex root of the polynomial equation $z^7 = 1$ with the smallest positive argument.

Let
$$\theta = \alpha + \alpha^2 + \alpha^4$$
 and $\phi = \alpha^3 + \alpha^5 + \alpha^6$.

(i) Explain why $\alpha^7 = 1$ and $\alpha^6 + \alpha^5 + \alpha^4 + \alpha^3 + \alpha^2 + \alpha + 1 = 0$.

7

6

- (ii) Show that $\theta + \phi = -1$ and $\theta \phi = 2$.
- (iii) Show that $\theta = -\frac{1}{2} + i\frac{\sqrt{7}}{2}$ and $\phi = -\frac{1}{2} i\frac{\sqrt{7}}{2}$.
- (iv) Show that $-\cos\frac{\pi}{7} + \cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} = -\frac{1}{2}$.

(b) 4 students have yet to be placed in a sport.

There are 6 different sports to choose from. How many ways can this be done if:

- (i) there are no restrictions
- (ii) they must each be placed in different sports
- (iii) no more than 2 can be placed in the same sport
- (iv) 2 particular students can't play the same sport?

Question 6 (12 marks)

(a)
$$I_n = \int_0^1 x^n \sqrt{1-x} \, dx$$

(i) Show that $I_n = \frac{2n}{2n+3} I_{n-1}$.
(ii) Use mathematical induction to prove that $I_n = \frac{n!(n+1)!}{(2n+3)!} 4^{n+1}$
for positive integers *n*.
(iii) Hence, find I_3 .

4

(b) Prove that $ax^3 + 3bx^2 + 3cx + d$ has a triple zero if *a*, *b*, *c*, *d* are successive terms of a geometric series.

End of paper

EXT2 - Section A 2012 Half-learly 5 dos _l._(a) (c) (iii) cont $a = \pm 2$ or $a = \pm -1 \rightarrow reject$ since a, b ER = 5 Acc × dol When a = 2, b = -1 a=-2, b= = 5 tan x + C. -: J3-42 = 2-2 01 2+2 $-(i) cos^{-1/\sqrt{5}} = \frac{1}{6}$ 1d J3 -1 a. tan (tan 5T) = II - -N) (- T 5 tan x 5 1-Then T= 3+1 =2 sin 2 sin 13 (M) $O = tan \left(\frac{-1}{\sqrt{5}} \right) = -\frac{1}{6}$ where d = sin (15) = sim (2d And = 1 $\sqrt{3-1} = 2(\cos 6) + i \sin 6$ 5 = 2 sind cood -5 (3-1) trcis0) _ =2.1.5 $12cis(-5)^{7}$ = 22 by De M Th $=2^{7} cis(7 \times -11)$ $(i) \overline{3} - 4i = 3 + 4i$ = 128 cis(-71) $\frac{3+4i}{3+4i} = \frac{3+4i}{25}$ = 128 cio 517 (ii) <u>3-4i</u> = 3-41 = 128 (cos 5 + 1 mg) AFrom @ b==== <u>m) /3-4i = a+bi v</u> Subs M (1) $\frac{3-4i}{3-4i} = \frac{(a+bi)^2}{(a+bi)^2}$ 3-4i = a^2-b^2 + 2abi $=) 3 = a^2 - \frac{4}{7^2}$ 3a==a+=+ $= 3 = a^2 = b^2 (0)$ 94-32-4=0 $(a^2 - 4)(a^2 + 1) = 0$ -4 = 2ab(2)

(d) (ii) (J3-2) = 128 (00 5/ + i Bin S/ 2(b) -12-21/ dot $= 128(-\frac{\sqrt{3}}{2}+i.\frac{1}{2})$ 1/2-1/ht _____ á $(\pi - 2) do()$ 12.4 = 64/-J3+i 22-22 = - 643 + 6421 + 2-221 = $P(x) = 3x^{3} - 5x^{2} + 4x + 2$ Ω + 18-8 -(2=2) 2 (4 - 2)Let x = 1+1. $\frac{x^2 = (1+i)^2 = 1 - 1 + 2i = 2i}{x^3 = 2i(1+i)} = 2i - 2$ $= \frac{1}{2}$ = $2\frac{1}{2}$ or $\frac{5}{2}$ P(1+i) = 3(2i-2) - 5(2i) + 4(1+i) + 2Show 4+50m 2 13-500-200 = 6i - 6 - 10i + 4 + 4i + 2 $RHS = \frac{2}{13-50022}$ By the conjugate root theorem if (a+ib) is (a complex root of P(sc) where P(x) has real coefficients then / (1) (\dot{u}) 13-5/20032-1 (a-ib) is also a root 13-10003-50+5)(x - (1+i)) is a factor of P/a $\left(\pi - (1 - i) \right)$ Then 2 18-10 cos²>1 = $=) x^{2} - i(1+i) - i(1-i) + 2 is a factor$ $=) x^{2} - 2x + 2 is a factor.$ 9-5/1-0m22 $3x^{3}-5x^{2}+4x+2 = (x^{2}-2x+2)(3x+1)$ by observation 9-5+50m2x $P(x) = (x^2 - 2x + 2)(3x + 1)$ - LHS 丰

<u>dol</u> 4+50m²2 (c)(ū) (i) = id \leq Myx doc =2 -13-5-69-22 3-24 =2 -500-2-1-13 Let $t = \tan 2c$ $dt = \beta ec^2 x = 1 + \tan^2 3$ $dx = 1 + t^2$ dx = - dt $f = 1 + t^2$ 21-Ü) Re(Z+1Z) < Let z = x+yi 1-22 =) Re(x+yi + i(x+yi)) 5x 1=+2 · --1+2-2 $= Re\left(x - y + \frac{1}{2x + y}\right)i$. clt = x - y $-5(1-t^2)+13(1+t^2)$: shetch x-y <) 10A -5+5+2+13+13+2 = 2 = : 2 $= \int \frac{dt}{4+9t^2} =$ 4+(3t)2 0171 $= \frac{1}{3} \cdot \frac{1}{2} \tan(\frac{3}{2})$ + C= - tan (3=tanz) - C: $\frac{2|z| = z + \overline{z} + 4}{4t - z = z + y - i}$ ü) 0 A $2\sqrt{x^{2}y^{2}} = x + yi + x - y + y + 4$ $2\sqrt{x^2+y^2} = 2x + 4$ $\sqrt{x^2 + y^2} = x + 2$ $\chi^{2} + \chi^{2} = \chi^{2} + 4\chi + 4$ $\Rightarrow \frac{y^2}{y^2} = \frac{4(x+1)}{2}$

SECTIONB $(a)(b)(x) \forall \beta r = -\frac{d}{a}$ (p)(1-2)(1-p)(1-r) $= (1-d)(1-\gamma-\beta+\beta\gamma)$ = $(1-\gamma-\beta+\beta\gamma-d+d\gamma+d\beta-d\beta\gamma)$. = $1 - (\alpha + \beta + \gamma) + (\alpha \beta + \beta + \alpha + \gamma) - \alpha \beta \gamma$ = 1-0- 3+1 0 $(r) (\mu^2 + \beta + r)^2 = (\lambda^2 + \beta^2 + r^2) + 2(\lambda \beta + \beta r + \lambda r).$ $\mathcal{L}^{2}t\beta^{3}t\gamma^{3}=\left(\mathcal{L}t\beta+\Gamma\right)^{2}-2\left(\mathcal{L}\beta+\beta\right)+\mathcal{L}\gamma\right)$ $= -2(-\frac{3}{2})$ = +3 (S) $2x^{4} - 3x^{2} + x = 0$ $2(x^{4}+\beta^{4}+\gamma^{4})-3(x^{2}+\beta^{2}+\gamma^{2})+(x+\beta+\gamma)=0$ $Z(d^{4}+B^{4}+r^{4}) = 3(d^{2}+B^{2}+r^{2}) + (d+B+r)$ = 3(+3) - 0 $\chi^{4} + \beta^{4} - \gamma^{4} = + 9$

$$\begin{array}{l} 1 \\ 1 \\ 1 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ = \frac{1}{6^{+}(6^{+}6^{+}r^{+})} & \frac{1}{6^{+}(2^{+}r^{+})} & \frac{1}{7^{+}(6^{+}r^{+})} \\ = \frac{1}{6^{+}} & \frac{1}{7^{+}} \\ = \frac{1}{6^{+}} & \frac{1}{7^{+}} \\ \hline \end{array} \\ \hline \\ Let X = \frac{1}{7^{-}} \\ \hline \\ 2 \\ \chi^{3} - \frac{3}{7^{+}} + 1 = 0 \\ \chi^{3} - 3\chi^{2} + \chi^{3} = 0 \\ \chi^{3} - \chi^{3} + \chi^{3}$$

 $\frac{2}{2^{r}-3} + \frac{1}{2^{r}+4}$ (ii) 5 2 + 22+4 ch $= 2\ln(x-3) + \frac{1}{2}\tan^{-1}(\frac{x}{2}) + C.$ (OCi) Domain: DARET MARTIN 15×20 15×271 Range: ANDE. OSY ST (ri) $dy = \frac{1}{\sqrt{1-(z)^2}} \times -\frac{1}{z^2}$ $= - \frac{1}{\sqrt{2L^4 - \chi^2}}$ $= - \frac{1}{2} \sqrt{\frac{1}{2} - 1}$

(iii) $\int \frac{dx}{\pi \sqrt{\pi^2 - 1}}$

>1=geco dr. To= sec0 Land.

dre seco Land. do

= S secotuo do Seco/secio-1 = S tano do $= \Theta + C$

= sec' 7+($\chi = SecO$ $\Theta = Sec' > c$ (v) $y = sin^{-1}(2)$ $dy = -\frac{1}{x\sqrt{x^2}}$ y=- J = -1 $y = -\sec^2 x + C$ $s_{1n}(\frac{1}{2}) = C - sec' \chi$. when x=1 $\sin^{-1}(1) = C - \sec^{-1}(1)$ $T_2 = C$. $\operatorname{Sec}' x = \frac{\pi}{2} - \operatorname{Sih}'(\frac{1}{2}).$ So

. . .

QUESTION 4 $(a_1) |3_1 + 3_2| \le |3_1| + |3_2|$ = 20. (ii) Max when $arg(3_1) = arg(3_2)$ 15 12 3,=-9+121 (bi) STT SINZ da U= COSZ -du= since clar. = J' du Jituz when x=0 y=1 $x = tt \quad u = -1$ = Z J Au $= 2 \left[\ln \left(u + \sqrt{1 + u^2} \right) \right]$ $= 2\ln\left(1+\sqrt{2}\right)$ (ii) I= Strat che $= \int_{0}^{TT} (T-z) \sin(T-z) dz$

 $I = + T \int_{0}^{T} \frac{\sin \pi}{\sqrt{1 + \cos^2 \pi}} d\pi - \int_{0}^{T} \frac{2\pi \sin \pi}{\sqrt{1 + \cos^2 \pi}} d\pi$ $2I = 2TT l_{n}(1+vz)$ $J = T ln(1+\sqrt{2})$ (Ci) x (ii) z-r (iii)Y+2-2 $(i \vee)$ 9tu 4= 3+7L $P=\frac{1}{3}(y-u)+u$ $= \frac{3}{3} - \frac{3}{3} + \frac{3}{3}$ y 3+2

x+y+3

$$\begin{aligned}
\varphi_{1}^{r} & (\mathbb{R} \setminus \{1\} \quad \mathbb{Z}^{7} = 1 \\
& \vdots \mathbb{Z}^{7} - 1 = 0
\end{aligned}$$

$$\begin{aligned}
& \vdots (\mathbb{Z}^{-1})(\mathbb{Z}^{+}}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{+}\mathbb{Z}^{$$

• •

.

5

(1) 6 t = 1296 (") $6 \times 5 \times 4 \times 3 = 1170.$ (''') $b^{4} - (b + 4c_3 \times b \times r) = 1170.$ OR 6x5x4x3 + 4C2x6x5x4 + 4C2x6x5=1170 (11) $6^{4}-6^{3}=1080$ [0R 6x5x6x6=1080]

(6)

Pb. a

$$\begin{split} \overline{L}_{n} &= \int_{0}^{1} x^{n} \sqrt{1-x} dn \\ &= \int_{0}^{2} x^{n} \frac{d}{dn} \left(\frac{2}{3}\right) \left(1-x\right)^{3} dn \\ &= \left[-\frac{2}{3} x^{n} \left(1-x\right)^{3} r\right]^{1} + \frac{2}{3} \int_{0}^{1} n x^{n-1} \left(1-x\right) dn \\ &= \left[0-0\right] + \frac{2}{3} n \int_{0}^{1} x^{n-1} \left(1-x\right) \left(1-x\right)^{\frac{1}{2}} dn \\ &= \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn = \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn \\ &= \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn = \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn \\ &= \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn = \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn \\ &= \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn = \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn \\ &= \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn = \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn \\ &= \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn = \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn \\ &= \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn = \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn \\ &= \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn = \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn \\ &= \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn = \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn \\ &= \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn = \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn \\ &= \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn = \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn \\ &= \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn = \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} dn \\ &= \frac{2n}{3} \int_{0}^{1$$

$$\frac{1}{n} = \frac{2n}{3} \frac{1}{n-1} - \frac{2n}{3} \frac{1}{n}$$

Frence
$$I_n = n!(n+r)! + n+r$$

 $Mlen n = r$
 $LHS = I_r = \frac{2}{5} I_o$
 $= \frac{2}{5} \cdot \left[-\frac{2}{3}(r-n)\frac{3r}{6}\right]'$
 $= \frac{2}{5} \times \frac{2}{3}$
 $RHS = \frac{1! \times 2!}{5!} \times 4$
 $= \frac{32}{5 \times 3} \times 4$
 $= \frac{32}{5 \times 3} \times 4$

(p)

S

$$ie \cdot I_{k} = \frac{k! (k+i)! \cdot 4^{k+1}}{(2k+3)!}$$

R.T.P. statement is take when
$$n = k+1$$
.
(using the assumption)
 $\dot{R} \cdot I_{k+1} = (k+1)! (k+1)! + k+1$
 $(2k+1)!$

$$\begin{aligned} \mathcal{M} & \mathcal{M} = \frac{2(k+1)}{(2k+5)} \cdot \frac{1}{k}, \\ &= \frac{2(k+1)}{2k+5} \times \frac{k!}{(2k+3)!} \times \frac{k!}{(2k+3)!} \times \frac{k+1}{(2k+3)!} \\ &= \frac{2(k+1)}{2k+5} \times \frac{k!}{(2k+3)!} \times \frac{2k+4}{2k+4} \times \frac{k+1}{(2k+3)!} \\ &= \frac{4(k+1)k!}{(2k+5)!} \times \frac{k}{(2k+5)!} \times \frac{k+1}{(2k+5)!} \\ &= \frac{(k+1)!}{(2k+5)!} \times \frac{k+7}{(2k+5)!} \\ &= \frac{(k+1)!}{(2k+5)!} \times \frac{k+7}{(2k+5)!} \\ \end{aligned}$$

= RHS.

... By the Principle of mathematical induction the statement is true for all positive integers. $I_3 = 3! (3+i)! 4^4$ (" 9.' 4 = <u>3! × 4! × 4</u> 9! $= \frac{3\lambda}{315}$

(5) yun P(x) = a x + 36 x + 3c x + d.

let
$$a = a$$

 $b = a - r$
 $c = a - r^{3}$
 $d = a - r^{3}$
 $\therefore f(x) = ax^{3} + 3a - x^{7} + 3a - r^{3} + ar^{3}$
 $= a(x^{3} + 3rx^{7} + 3r^{7}x + r^{3})$
 $= a(x + r)^{3}$ which has
 a traple rost of $-r$.
(There are may ather mays of
 $Ming$ this question).