

SYDNEYBOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2012

HSC ASSESSMENT TASK \#1

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes.
- Working time - 90 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Answers should be in simplest exact form unless specified otherwise.
- Start each NEW section in a separate answer booklet.
- Each section is to be returned in a separate bundle.

Total Marks - 88

- Attempt Questions 1-6
- All questions are NOT of equal value.

Examiner: A. Fuller

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: ln } x=\log _{e} x, x>0
\end{aligned}
$$

Section A

Question 1 (15 marks)
(a) Find $\int \frac{5}{\cos ^{2} x} d x$.
(b) Find the exact value of the following:
(i) $\quad \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
(ii) $\tan ^{-1}\left(\tan \frac{5 \pi}{6}\right)$
(iii) $\quad \sin \left(2 \sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)\right)$.
(c) Write the following in the form $a+i b$, where a and b are real:
(i) $\overline{3-4 \imath}$
(ii) $\frac{1}{3-4 i}$
(iii) the two square roots of $3-4 i$.
(d) (i) Express the following in the form $r(\cos \theta+i \sin \theta)$,
where $r>0$ and $-\pi<\theta \leq \pi$.
(a) $\sqrt{3}-i$
(β) $(\sqrt{3}-i)^{7}$
(ii) Hence, or otherwise, write $(\sqrt{3}-i)^{7}$ in the form $x+i y$, where x and y are real.

Question 2 (15 marks)
(a) $\quad P(x)=3 x^{3}-5 x^{2}+4 x+2$.
(i) Show that $(1+i)$ is a root of $P(x)=0$.
(ii) Explain why $(1-i)$ is also a root of $P(x)=0$.
(iii) Hence, or otherwise, factorise $P(x)$ over the Real field.
(b) Evaluate $\int_{1}^{4}|2-x| d x$.
(c) (i) Show that $\frac{1}{4+5 \sin ^{2} x}=\frac{2}{13-5 \cos 2 x}$.
(ii) Hence, or otherwise, find $\int \frac{d x}{4+5 \sin ^{2} x}$.
(d) Sketch the locus of the following on separate argand diagrams:
(i) $\quad|z+i| \leq 1$
(ii) $\quad \operatorname{he}(z+i z)<1$
(iii) $2|z|=z+\bar{z}+4$

Section B (Use a SEPARATE writing booklet)

Question 3 (18 marks)
(a) If α, β, γ are the roots of the polynomial equation $2 x^{3}-3 x+1=0$.
(i) Find the value of the following:
($\alpha) \quad \alpha \beta \gamma$
(β) $(1-\alpha)(1-\beta)(1-\gamma)$
$(\gamma) \quad \alpha^{2}+\beta^{2}+\gamma^{2}$
(8) $\quad \alpha^{4}+\beta^{4}+\gamma^{4}$
(ii) Form a polynomial equation which has roots $\frac{1}{2 \alpha+\beta+\gamma}, \frac{1}{\alpha+2 \beta+\gamma}, \frac{1}{\alpha+\beta+2 \gamma}$.
(b) (i) Write $\frac{2 x^{2}+x+5}{(x-3)\left(x^{2}+4\right)}$ in the form $\frac{A}{x-3}+\frac{B x+C}{x^{2}+4}$.
(ii) Hence, or otherwise, find $\int \frac{2 x^{2}+x+5}{(x-3)\left(x^{2}+4\right)} d x$.
(c) (i) State the domain and range of $y=\sin ^{-1}\left(\frac{1}{x}\right), x>0$.
(ii) Find $\frac{d y}{d x}$.
(iii) Show that $\int \frac{d x}{x \sqrt{x^{2}-1}}=\sec ^{-1} x+C$ using the substitution $x=\sec \theta$.
(iv) Consider $y=\sec ^{-1} x$ to be $x=\sec y$ for $0 \leq y<\frac{\pi}{2}$.

Using the results from (ii) and (iii) write $\sec ^{-1} x$ in terms of $\sin ^{-1}\left(\frac{1}{x}\right)$.

Question 4 (15 marks)

(a) Given that $\left|z_{1}\right|=15$ and $z_{2}=-3+4 i$.
(i) Find the maximum value of $\left|z_{1}+z_{2}\right|$.
(ii) Hence, find z_{1} if $\left|z_{1}+z_{2}\right|$ takes its maximum value.
(b) (i) Show that $\int_{0}^{\pi} \frac{\sin x}{\sqrt{1+\cos ^{2} x}} d x=2 \ln (1+\sqrt{2})$ using the substitution $u=\cos x$.
(ii) Hence, or otherwise, evaluate $\int_{0}^{\pi} \frac{x \sin x}{\sqrt{1+\cos ^{2} x}} d x$.
(c) In the diagram below, the points X, Y and Z correspond to the complex numbers x, y and z respectively.

Find the complex numbers represented by:
(i) the vector $O X$ (where O is the origin)
(ii) the vector $X Z$
(iii) the point A such that $X Y A Z$ is a parallelogram
(iv) the point C, the centroid of $\triangle X Y Z$.

Note: The centroid of a triangle is the point of intersection of the three medians.
You may assume that the centroid lies two-thirds along a median from the vertex.

Section C (Use a SEPARATE writing booklet)

Question 5 (13 marks)
(a) Let α be the complex root of the polynomial equation $z^{7}=1$ with the smallest positive argument.

Let $\theta=\alpha+\alpha^{2}+\alpha^{4}$ and $\phi=\alpha^{3}+\alpha^{5}+\alpha^{6}$.
(i) Explain why $\alpha^{7}=1$ and $\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha+1=0$.
(ii) Show that $\theta+\phi=-1$ and $\theta \phi=2$.
(iii) Show that $\theta=-\frac{1}{2}+i \frac{\sqrt{7}}{2}$ and $\phi=-\frac{1}{2}-i \frac{\sqrt{7}}{2}$.
(iv) Show that $-\cos \frac{\pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}=-\frac{1}{2}$.
(b) 4 students have yet to be placed in a sport.

There are 6 different sports to choose from. How many ways can this be done if:
(i) there are no restrictions
(ii) they must each be placed in different sports
(iii) no more than 2 can be placed in the same sport
(iv) 2 particular students can't play the same sport?

Question 6 (12 marks)
(a) $\quad I_{n}=\int_{0}^{1} x^{n} \sqrt{1-x} d x$
(i) Show that $I_{n}=\frac{2 n}{2 n+3} I_{n-1}$.
(ii) Use mathematical induction to prove that $I_{n}=\frac{n!(n+1)!}{(2 n+3)!} 4^{n+1}$ for positive integers n.
(iii) Hence, find I_{3}.
(b) Prove that $a x^{3}+3 b x^{2}+3 c x+d$ has a triple zero if a, b, c, d are 4 successive terms of a geometric series.

ExTZ - Section A 2012.
1.(a)

$$
\text { (a) } \begin{align*}
& \int \frac{5}{\cos ^{2} x} d x \\
= & \iint \sec ^{2} x d x \tag{1}\\
= & \int \tan x+C
\end{align*}
$$

(b)
(i) $\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=\frac{\sqrt{6}}{6}$
(iii) $\tan ^{-1}\left(\tan \frac{5 \pi}{6}\right)=\frac{\pi}{6}$
(iii) $\sin \left(2 \sin ^{-1}\left(\frac{1}{\sqrt{5}}\right)\right)$

$$
=\sin (2 \alpha) \text { where } \alpha=\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)
$$

$$
\begin{equation*}
\text { (c) }(i) 3-4 i=3+4 i \tag{1}
\end{equation*}
$$

Hal-Yearly
(1)

$$
\equiv 2 \sin \alpha \cos \alpha
$$

$$
\begin{equation*}
=2 \cdot \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{2}}{\sqrt{3}} \tag{2}
\end{equation*}
$$

$$
=\frac{\sqrt{5}}{3} \cdot \sqrt{3}
$$

$$
\text { (ii) } \frac{1}{3-4 i}=\frac{1}{3-4 i} \times \frac{3+4 i}{3+4 i}=\frac{3+4 i}{25} \geq \mathbb{1}
$$

$$
\begin{aligned}
& \text { (iii) } \sqrt{3-4 i}=a+b i \quad / \text { Crom (2) } b=\frac{-2}{a} \\
& 3-4 i=\left(\frac{a+b i}{2}\right)^{2} \\
& 3-4 i=a^{2}-b^{2}+2 a b i \\
& \Rightarrow 3=a^{2}-b^{2} \text { (1) } \\
& -4=2 a b(2) \\
& \operatorname{sun} \text { in (1) } \\
& \Rightarrow 3=a^{2}-\frac{4}{a^{2}} \\
& 3 a^{2}=a^{4}-4 \\
& a^{4}-3 a^{2}-4=0 \\
& \left(a^{2}-4\left(a^{2}+1\right)=0\right.
\end{aligned}
$$

L(d)
(i) $(\alpha) \sqrt{3}-i$

$$
\begin{align*}
& \text { Then } r=\sqrt{3+1}=2 \\
& \text { and } \theta=\tan ^{-1}\left(\frac{-1}{\sqrt{3}}\right)=\frac{-\pi}{6} \\
& \therefore \quad \sqrt{3-i}=2\left(\left(\cos \left(\frac{-r}{6}\right)+i \text { onn }\left(-\frac{\pi}{6}\right)\right)\right. \tag{1}\\
& \therefore \quad,
\end{align*}
$$

(β)
$\xrightarrow{\rightarrow}$ reject
$\therefore \sqrt[\pm]{3-4 i}=\sqrt{2-i}$ or $-2+1$ \qquad
\qquad
(d)
(β)
E

$$
\begin{aligned}
& (\sqrt{3}-i)^{7}=(r \operatorname{cis} \theta)^{7} \\
& =-\left[2 \operatorname{cis}\left(\frac{-\pi}{-6}\right)\right]^{7} \\
& =2^{7} \operatorname{cis}\left(\frac{7 \times-\frac{\pi}{6}}{6}\right) \text { by DeMTh. } \\
& =12.8 \mathrm{cis}\left(-\frac{7 \pi}{6}\right) \\
& =128 \mathrm{cio} \frac{5 \pi}{6} \\
& =-128\left(\cos \frac{5 \pi}{6}+1 \sin \frac{5 \pi}{6}\right) \backslash \\
& \text { - }
\end{aligned}
$$

I (d) (\#iu)

$$
\begin{align*}
(\sqrt{3}-i)^{7} & =128\left(\cos \frac{5 \pi}{6}+i \sin \frac{3 \pi}{6}\right) \\
& =128\left(-\frac{\sqrt{3}}{2}+i \cdot \frac{1}{2}\right) \\
& =64(-\sqrt{3}+i) \\
& =-64 \sqrt{3}+64 i \tag{1}
\end{align*}
$$

Q2. $\quad P(x) \equiv 3 x^{3}-5 x^{2}+4 x+2$
(i)

$$
\begin{align*}
\text { Let } x & =1+i \\
x^{2} & =(1+i)^{2}=1-1+2 i=2 i \\
x^{3} & =(2 i(1+i)=2 i-2 \\
P(1+i) & =3(2 i-2)-5(2 i)+4(1+i)+2 \tag{1}\\
& =6 i-6=10 i+4+4 i+2
\end{align*}
$$

(ii) By the conjugate rot thearem if ($(a+i b)$ is la complex ro ot of $P(x)$ where $P(x)$ has real coldfficients then $(a-i b)$ is aloo a root.
(iii) Then $(x-(1-i))(x-(1+i))$ is a factor of $P(x$,

$$
\begin{aligned}
& \quad \Rightarrow x^{2}-\dot{x}(1+i)-x(1-i)+2 \text { in a factor } \\
& \left.\quad \Rightarrow x^{2}-2 x+2\right) \text { is a factor. } \\
& 3 x^{3}-5 x^{2}+4 x+2=\left(-x^{2}-2 x+2\right) \cdot(3 x+1) \\
& \therefore P(x)=\left(x^{2}-2 x+2\right)(3 x+1) \text { by obser R R tion }
\end{aligned}
$$

$2(b) \quad \int_{1}^{4}|2-x| d x$

$$
\begin{aligned}
& =\int_{11}^{2}(2-x) d x+\int_{2}^{4}(x-2) d x \\
& =\left[2 x-\frac{x^{2}}{2}\right]_{1}^{4}+\left[\frac{x^{2}}{2}-2 x\right]_{2}^{4}
\end{aligned}
$$

$$
\equiv\left[(4-2)-\left(2-\frac{1}{2}\right)\right]+[(8-8)-(2-4)]
$$

$$
\begin{aligned}
& =\frac{1}{2} \\
& =2 / 2 \frac{1}{2} \text { or } 5 / 2
\end{aligned}
$$

(c) (i) Show $\frac{1}{4+5 \sin ^{2} x}=\frac{2}{13=5 \cos 2 x}$

$$
\begin{align*}
\text { RHS } & =\frac{2}{13=5 \cos ^{2 x}} \\
& =\frac{2}{13-5\left(2 \cos ^{3} x-1\right)} \\
& =\frac{2}{13-10 \cos ^{2} x+5} \\
& =\frac{2}{18-10 \cos ^{2} x} \\
& =\frac{1}{9-5\left(1-\sin ^{2} x\right)} \\
& =\frac{1}{9-5+5 \sin ^{2} x \cdot} \\
& =\frac{1}{4+5 \sin ^{2} x}=\text { LHS }
\end{align*}
$$

$$
\begin{aligned}
& \text { 2(c) (ii) } \int \frac{d x}{4+\sin ^{2} x} \\
& =2 \int \frac{1}{-13-5 \cos 2 x} d x \\
& =2 \int \frac{1}{-5 \cos 2 x+13} d x \\
& \text { Let } t=\tan x
\end{aligned}
$$

$$
\begin{align*}
& =2 \int \frac{1-\frac{d t}{1+x^{2}}}{5 x+\frac{1+t^{2}}{1+t^{2}+13}} \cdot \frac{1-t^{2}}{1+t^{2}} \\
& =2 \int \frac{d t}{-5\left(1-t^{2}\right)+13\left(1+1 t^{2}\right)} \\
& =2 \int \frac{d t}{-5+5 t^{2}+13+13 t^{2}} \equiv: 2 \int \frac{d t}{18 t^{2}+8} \\
& =\int \frac{d t}{4+9 t^{2}}=\int \frac{d t}{4+(3 t)^{2}} \tag{2}\\
& \left.=\frac{-1}{3} \cdot \frac{1}{2} \tan ^{-1}\left(\frac{3 t}{2}\right)\right)+c \\
& =\frac{1}{6} \tan ^{-1}\left(\frac{3}{2} \tan x\right)
\end{align*}
$$

$2(d)$
$(-i)|z+i| \leq 1$

$$
\text { (iii) } \begin{aligned}
& \operatorname{Re}(z+i z)<1 \quad \text { Let } z=x+y i \\
& \Rightarrow \operatorname{Re}(x+y i+i(x+y i)) \\
&= \operatorname{Re}(x-y+(x+y) i) \\
&= x-y .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \text {) } \left.\begin{array}{l}
2 \mid z=z+\bar{z}+4 \\
\cot z=x+y i \\
2 \sqrt{x^{2}+y^{2}}=x+y x+x-y i+4 \\
2 \sqrt{x^{2}+y^{2}}=2 x+4 \\
\sqrt{x^{2}+y^{2}}=x+2 \\
x^{2}=y^{2}=x^{2}+4 x+4 \\
\Rightarrow y^{2}
\end{array}\right]=4(x+1)
\end{aligned}
$$

$$
\Rightarrow y^{-2}=4(x+1)
$$

Sisction 3
(a) (i)
(α)

$$
\begin{aligned}
\sigma \beta r & =-\frac{d}{a} \\
& =-\frac{1}{2}
\end{aligned}
$$

(B)

$$
\begin{aligned}
& (1-\alpha)(1-\beta)(1-r) \\
& =(1-\alpha)(1-\gamma-\beta+\beta r) \\
& =(1-\gamma-\beta+\beta r-\alpha+\alpha r+\alpha \beta-\alpha \beta r \\
& =1-(\alpha+\beta+r)+(\alpha \beta+\beta r+\alpha r)-\alpha \beta r \\
& =1-0-\frac{3}{2}+\frac{1}{2} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
(r)\left(\alpha^{2}+\beta+r\right)^{2} & =\left(\alpha^{2}+\beta^{2}+r^{2}\right)+2(\alpha \beta+\beta r+\alpha r) . \\
\alpha^{2}+\beta^{2}+r^{2} & =(\alpha+\beta+r)^{2}-2(\alpha \beta+\beta r+\alpha r) \\
& =-2\left(-\frac{3}{2}\right) \\
& =+3 .
\end{aligned}
$$

(δ)

$$
\begin{aligned}
& 2 x^{4}-3 x^{2}+x=0 \\
& 2\left(\alpha^{4}+\beta^{4}+r^{4}\right)-3\left(\alpha^{2}+\beta^{2}+r^{2}\right)+(\alpha+\beta+r)=0 \\
& 2\left(\alpha^{4}+\beta^{4}+r^{4}\right)=3\left(\alpha^{2}+\beta^{2}+r^{2}\right)-(\alpha+\beta+r) \\
& = \\
& =3(+3)-0 \\
& \alpha^{4}+\beta^{4}+r^{4}
\end{aligned}=+\frac{9}{2} .
$$

ii)

$$
\begin{aligned}
& \frac{1}{2 \alpha+\beta+r} ; \frac{1}{\alpha+2 \beta+r}, \frac{1}{\alpha+\beta+2 r} \\
& =\frac{1}{\alpha+(\alpha+\beta+r)}, \frac{1}{\beta+(\alpha+\beta+r)}, r+(\alpha+\beta+r) \\
& =\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{1}
\end{aligned}
$$

Let $x=\frac{1}{x}$.

$$
\begin{aligned}
& x=\frac{1}{x} \\
& \frac{2}{x^{3}}-\frac{3}{x}+1=0 \\
& 2-3 x^{2}+x^{3}=0 \\
& x^{3}-3 x^{2}+2=0
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
& \frac{2 x^{2}+x+5}{(x-3)\left(x^{2}+4\right)} \equiv \frac{A}{x-3}+\frac{B x+C}{x^{2}+4} \\
& 2 x^{2}+x+5 \equiv A\left(x^{2}+4\right)+(B x+C)(x-3)
\end{aligned}
$$

when $x=3$.

$$
\begin{gathered}
18+3+5=13 A \\
A=2
\end{gathered}
$$

x^{2}

$$
\begin{array}{ll}
2=A+B & \underline{x} \quad 1=-3 B+C \\
B=0 & C=1 .
\end{array}
$$

$$
\frac{2}{x-3}+\frac{1}{x^{2}+4}
$$

(ii) $\int \frac{2}{x-3}+\frac{1}{x^{2}+4} d x$

$$
=2 \ln (x-3)+\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)+C
$$

(O) $\left.\mathrm{C}_{i}\right)$

Range: $O \leqslant y \leq \frac{\pi}{2}$
(ii)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{\sqrt{1-\left(\frac{1}{x}\right)^{2}}} \times-\frac{1}{x^{2}} \\
& =-\frac{1}{\sqrt{x^{4}-x^{2}}} \\
& =-\frac{1}{x \sqrt{x^{2}-1}}
\end{aligned}
$$

(iii)

$$
\int \frac{d x}{x \sqrt{x^{2}-1}} \quad x=\sec \theta
$$

$$
\frac{d x}{d \theta}=\sec \theta \tan \theta
$$

$$
=\int \frac{\sec \theta \tan \theta d \theta}{\sec \theta \sqrt{\sec ^{2} \theta-1}}
$$

$$
d x=\sec \theta \tan \theta \cdot d \theta
$$

$$
=\int \frac{\tan \theta}{\sqrt{\tan ^{2} \theta}} d \theta
$$

$$
=\theta+C
$$

$$
\begin{aligned}
=\sec ^{-1} x+c \quad x & =\sec \theta \\
\theta & =\sec ^{-1} x .
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& y=\sin ^{-1}\left(\frac{1}{x}\right) \\
& \frac{d y}{d x}=-\frac{1}{x \sqrt{x^{2}-1}} \\
& y=-\int \frac{1}{x \sqrt{x^{2}-1}} \\
& y=-\sec ^{-1} x+C \\
& \sin ^{-1}\left(\frac{1}{x}\right)=c-\sec ^{-1} x .
\end{aligned}
$$

when $x=1$

$$
\begin{aligned}
\sin ^{-1}(1) & =C-\sec ^{-1} 1 \\
\frac{\pi}{2} & =C .
\end{aligned}
$$

So $\sec ^{-1} x=\frac{\pi}{2}-\sin ^{-1}\left(\frac{1}{x}\right)$.

Question 4
(ai)

$$
\begin{aligned}
\left|z_{1}+z_{2}\right| & \leqslant\left|z_{1}\right|+\left|z_{2}\right| \\
& =20
\end{aligned}
$$

(ii)

max when $\arg \left(3_{1}\right)=\arg \left(3_{2}\right)$

$$
Z_{i}=-9+12 i
$$

$(b i)$

$$
\int_{0}^{\pi} \frac{\sin x}{\sqrt{1+\cos ^{2} x}} d x
$$

$$
=\int_{-1}^{1} \frac{d u}{\sqrt{1+u^{2}}}
$$

$$
=2 \int_{0}^{1} \frac{d u}{\sqrt{T+u^{2}}}
$$

$$
=2\left[\ln \left(u+\sqrt{1+u^{2}}\right)\right]_{0}^{1}
$$

$$
=2 \ln (1+\sqrt{2})
$$

(ii)

$$
\begin{aligned}
I & =\int_{0}^{\pi} \frac{x \sin x}{\sqrt{1+\cos ^{2} x}} d x \\
& =\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{\sqrt{1+\cos ^{2}(\pi-x)}} d x
\end{aligned}
$$

$$
\begin{aligned}
& I=+\pi \int_{0}^{\pi} \frac{\sin x}{\sqrt{1+\cos ^{2} x}} d x-\int_{0}^{\pi} \frac{x \sin x}{\sqrt{1+\cos ^{2} x}} d x \\
& 2 I=2 \pi \ln (1+\sqrt{2}) \\
& I=\pi \ln (1+\sqrt{2})
\end{aligned}
$$

(ci) x
(ii) $2-x$
(iii) $y+z^{-x}$
(iv)

$$
\begin{aligned}
u & =\frac{3+x}{2} \\
p & =\frac{1}{3}(y-u)+u \\
& =\frac{y}{3}-\frac{u}{3}+\frac{3 u}{3} \\
& =\frac{y}{3}+\frac{3+x}{3} \\
& =\frac{x+y+3}{3}
\end{aligned}
$$

Q3
(a) (八) $z^{7}=1$

$$
\begin{gathered}
\therefore z^{7}-1=0 \\
\therefore(z-1)\left(z^{6}+z^{5}+z^{x}+z^{3}+z^{2}+z+1\right)=0
\end{gathered}
$$

new α is a rentit. $\quad 1 \alpha^{7}=1$

$$
\begin{align*}
& \therefore(\alpha-1)\left(\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha+1\right)=0 \\
& \alpha \neq 1 \\
& \therefore \cdot / \alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha+1=0 \tag{17}
\end{align*}
$$

(11)

$$
\theta+\phi=\alpha+\alpha^{2}+\alpha^{4}+\alpha^{3}+\alpha^{\prime}+\alpha^{6}
$$

$=-1$ Riem (A.)

$$
\begin{aligned}
\theta \phi & =\left(\alpha+\alpha^{2}+\alpha^{4}\right)\left(\alpha^{3}+\alpha^{\prime}+\alpha^{6}\right) \\
& =\alpha^{4}+\alpha^{6}+\alpha^{7}+\alpha^{5}+\alpha^{7}+\alpha^{2}+\alpha^{7}+\alpha^{9}+\alpha^{10} \\
& =\alpha^{4}+\alpha^{6}+1+\alpha^{5}+1+\alpha+1+\alpha^{2}+\alpha^{3} \\
& =3+\left(\alpha+\alpha^{2}+\alpha^{3}+\alpha^{5}+\alpha^{5}+\alpha^{6}\right) \\
& =3+(-1) \\
& =\alpha .
\end{aligned}
$$

(III) Focen an equation (quadratei) wich voets θ \& ϕ sisue $\theta+\phi=-1 \& \theta \phi=2$

$$
\begin{aligned}
x^{2}-(\theta+\phi) x+\phi & =0 . \\
x^{2}+x+\alpha & =0 . \\
x & =\frac{-1 \pm \sqrt{1-8}}{2}
\end{aligned}
$$

$($ (Oarts)

$$
\therefore x=-\frac{1}{2}=i \frac{\sqrt{7}}{2}
$$

Tren

Cleashy $\theta=\alpha+\alpha^{2}+\alpha^{\rho}$
has a parifive
invagivany pant.
$\alpha p=\alpha^{3}+\alpha^{5}+\alpha^{6}$ has a segatrize imaginary front.

$$
\therefore \theta=-\frac{1}{2}+\frac{i \sqrt{7}}{2} \quad \& \quad \phi=-\frac{1}{2}-i \frac{\sqrt{7}}{2}
$$

(v) new $\alpha=\operatorname{is} \frac{2 \pi}{7}$

$$
\theta=\alpha+\alpha^{2}+\alpha^{4}=-\frac{1}{2}+i \frac{\sqrt{7}}{2} .
$$

ie $\operatorname{cis} \frac{2 \pi}{7}+i \sin \frac{4 \pi}{7}+i \sin \frac{8 \pi}{7}=-\frac{1}{2}+i \frac{\sqrt{7}}{2}$
otaking neal fants.

$$
\begin{aligned}
& \cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{8 \pi}{7}=-\frac{1}{2} \\
& \cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{\pi}{7}=-\frac{1}{2} \\
& \therefore 1-\frac{\cos \frac{\pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}=-\frac{1}{2}}{}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { (I) } 6^{4}=1296 \\
& \text { (II) } 6 \times 5 \times 4 \times 3=1170 . \\
& \text { (III) } 6^{4}-\left(6+{ }^{4} C_{3} \times 6 \times 5\right)=1170 . \\
& {\left[\text { OR } 6 \times 5 \times 4 \times 3+{ }^{4} C_{2} \times 6 \times 5 \times 4+\frac{{ }^{4} C_{2} \times 6 \times 5}{2}=1170\right]} \\
& \text { (IV) } 6^{4}-6^{3}=1080 \\
& {[\text { OR } 6 \times 5 \times 6 \times 6=1080]}
\end{aligned}
$$

Q6. (a)

$$
\begin{aligned}
I_{n} & =\int_{0}^{1} x^{n} \sqrt{1-x} d x . \\
& =\int_{0}^{1} x^{n} \frac{2}{d x}\left(-\frac{2}{3}\right)(1-x)^{3 / 2} d n \cdot 1 \\
& =\left[-\frac{2}{3} x^{n}(1-x)^{3 / 2}\right]_{0}^{1}+\frac{2}{3} \int_{0}^{1} n x^{n-1}(1-x)^{3 / 2} d n \\
& =[0-0]+\frac{2}{3} n \int_{0}^{n-1} x^{n}(1-x)(1-x)^{\frac{1}{2}} d n \\
& =\frac{2 n}{3} \int_{0}^{1} x^{n-1} \sqrt{1-x} d x-\frac{2 n}{3} \int_{0}^{1} x^{n} \sqrt{1-x} d n \\
\therefore I_{n} & =\frac{2 n}{3} I_{n-1}-\frac{2 n}{3} I_{n} \\
I_{n}\left(1+\frac{2 n}{3}\right) & =\frac{2 n}{3} I_{n-1} \\
I_{n} \frac{2 n+3}{3} & =\frac{2 n}{3} I_{n-1} \\
I_{n} & =\frac{2 n}{2 n+3} I_{n-1}
\end{aligned}
$$

(b) Fire $I_{n}=\frac{n!(n+1)!}{(2 n+3)!} 4^{n+1}$
when $n=1$.

$$
\begin{aligned}
\text { LHS }=I_{1} & =\frac{2}{5} I_{0} \\
& =\frac{2}{5} \cdot\left[-\frac{2}{3}(1-x)^{3 /-}\right]_{0}^{1} \\
& =\frac{2}{5} \times \frac{2}{3} \\
& =\frac{4}{15} \\
\text { RHS } & =\frac{1!\times 2!}{5!} \times 4^{2} \\
& =\frac{32}{5 \times+\times 3 \times 2 \times 1} \quad \therefore \text { Inue } \\
& =\frac{4}{1!} \quad \therefore \text { sunn }=1 .
\end{aligned}
$$

Cosume ite statement to the tive wher $n=々$.
ii. $\frac{I}{k}=\frac{k!(k+1)!4^{k+1}}{(2 k+3)!}$
R.T.P. statement is true when $n=k+1$ (ukeng the accumptron)
iè $I_{n+1}=\frac{(k+1)!(k+2)!4^{k+2}}{(2 k+1)!}$
nen $I_{k+1}=\frac{2(k+1)}{(2 k+5)} \cdot I_{k}$.

$$
\begin{aligned}
& =\frac{2(k+1)}{2 k+5} \times \frac{k!(k+1)!}{(2 k+3)!} \times 4^{k+1} \\
& =\frac{2(k+1)}{2 k+5} \times \frac{k!\times(k+1)!}{(2 k+3)!} \times \frac{2 k+4}{2 k+4} \times 4^{k+1} \\
& =\frac{4(k+1) k!(k+1)!(k+2)}{(2 k+1)!} \times 4^{k+1} \\
& =\frac{(k+1)!(k+2)!}{(2 k+5)!} \times 4^{k+2} \\
& =2+5 .
\end{aligned}
$$

\therefore By the Arinciple of suatternatieal instuction the statement is tive PN all praitie integes.

$$
\text { (111) } \begin{aligned}
I_{3} & =\frac{3!(3+1)!4^{4}}{9!} \\
& =\frac{3!\times 4!\times 4}{9!} \\
& =\frac{32}{315} .
\end{aligned}
$$

(b) y ivin $f(x)=a x^{3}+B b x^{2}+3 c x+d$.

$$
\text { Let } \begin{aligned}
a & =a \\
b & =a r \\
c & =a r^{2} \\
d & =a r^{3} \\
\therefore \quad P(x) & =a x^{3}+3 a r x^{2}+3 a r^{2} x+a r^{3} \\
& =a\left(x^{3}+3 r x^{2}+3 r^{2} x+r^{3}\right) \\
& =a(x+r)^{3} \text { which has } \\
& \text { a tuathle tatt of }-r .
\end{aligned}
$$

(There are many ath ways of
Alving itir quertiai).

