SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2014
 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#1

Mathematics

Extension 2

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Each question is to be returned in a separate bundle.
- All necessary working should be shown in Examiner: A.M.Gainford

Question 1. (Start a new page.) (20 marks)
(a) For the complex number $z=1-\sqrt{3} i$ find:
(i) $|z|$
(ii) $\arg z$.
(iii) $\frac{Z}{i}$
(b) Express the following in the form $a+i b$ (for real a and b).
(i) $(6+5 i) \overline{(4-i)}$
(ii) $\frac{-2+3 i}{3-4 i}$
(c) Find the square roots of $9+40 i$, giving your answers in the form $x+i y$.

Question 1 continues on the next page.
(d) Sketch (on separate diagrams) the region in the Argand diagram containing the points z for which:
(i) $\quad \frac{\pi}{4} \leq \arg (z) \leq \frac{\pi}{2}$ and $|z-1-3 i| \leq 2$
(ii) $\arg \left(\frac{z-2 i}{z+2}\right)=\frac{\pi}{4}$
(e) (i) Express $1+i$ in modulus-argument form.
(ii) Given that $(1+i)^{n}=x+i y$, where x and y are real, and n is an integer, prove that $x^{2}+y^{2}=2^{n}$
(f) Which complex numbers are the reciprocals of their conjugates?
(g) Consider the function $y=2 \cos ^{-1}\left(x^{2}-1\right)$.
(i) Determine the domain and range of the function.
(ii) Sketch the graph of the function showing important features.
(iii) Find the derivative of the function and state the values of x for which it is defined.

Question 2. (Start a new page.) (20 marks)

Marks

(a) The points O, I, Z, and P on the Argand diagram represent the complex numbers 0 , $1, z$, and $z+1$ respectively, where $z=\cos \theta+i \sin \theta$ is any complex number of modulus 1 , and $0<\theta<\pi$.
(i) Explain why OIPZ is a rhombus.
(ii) Show that $\frac{z-1}{z+1}$ is purely imaginary.
(iii) Find the modulus of $z+1$ in terms of θ.
(b) Differentiate $x \sin 2 x$, and hence find $\int x \cos 2 x d x$.
(c) Given that $2-i$ is a root of the equation $x^{4}-6 x^{3}+10 x^{2}+2 x-15=0$:
(i) state another complex (non-real) root, giving a reason.
(ii) find all roots of the equation.
(iii) write the equation in fully factored form over the complex field.
(d) Consider the functions $y=-\cos ^{-1}\left(\frac{x}{2}\right)$ and $y=\frac{1}{2} \tan ^{-1}(x)-\frac{\pi}{2}$.
(i) Show that the graphs of these functions intersect on the y-axis.
(ii) Show that the graphs have a common tangent at the point of intersection, and write the equation of this tangent.
(e) Given the quadratic equation $x^{2}-x-3=0$ with roots α_{1}, α_{2} :
(i) Show that $x^{4}=7 x+12$.
(ii) Hence or otherwise find a quadratic equation with roots α_{1}^{4} and α_{2}^{4}.

Question 3. (Start a new page.) (20 marks)

Marks

(a) (i) Find the five roots of the equation $z^{5}=1$. Give the roots in modulusargument form.
(ii) Show that $z^{5}-1$ can be factorised in the form :

$$
z^{5}-1=(z-1)\left(z^{2}-2 z \cos \frac{2 \pi}{5}+1\right)\left(z^{2}-2 z \cos \frac{4 \pi}{5}+1\right)
$$

(iii) Hence show that $\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=-\frac{1}{2}$, and hence find the exact value of $\cos \frac{2 \pi}{5}$.
(b) When a polynomial $P(x)$ is divided by $x-2$ and by $x-3$ the remainders are 4 and 9 respectively. Find the remainder when $P(x)$ is divided by $(x-2)(x-3)$.
(c) Ten people, consisting of three couples and four singles are to be seated randomly at a round table.
(i) How many arrangements are possible?
(ii) What is the probability (as a simplified fraction) that all three couples are seated as couples, separated from other couples by one or two singles?
(d) Prove that the polynomial equation $a x^{4}+b x+c=0$, where a, b, and c are nonzero, cannot have a triple root.
(e) Use the substitution $x=2 \sin \theta$, or otherwise, to evaluate $\int_{1}^{\sqrt{3}} \frac{x^{2}}{\sqrt{4-x^{2}}} d x$.
(f) In the triangle $A B C, A D$ is the perpendicular from A to $B C$. The point E is any point on $A D$, and the circle drawn with $A E$ as diameter cuts $A C$ at F and $A B$ at G

(i) Copy the diagram to your answer booklet.
(ii) Prove that B, G, F, and C are concyclic.

This is the end of the paper.

Blank Page

STANDARD INTEGRALS

$\int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0$, if $n<0$
$\int \frac{1}{x} d x=\ln x, x>0$
$\int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0$
$\int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0$
$\int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0$
$\int \sec ^{2} a x d x=\frac{1}{a} \tan a x$,
$\int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0$
$\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a$
$\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0$
$\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)$
NOTE: $\ln x=\log _{e} x, x>0$
i) a) i)

$$
\begin{aligned}
z & =1-\sqrt{3} i \\
|2| & =\sqrt{(1)^{2}+(-\sqrt{3})^{2}} \\
& =2
\end{aligned}
$$

ii) $\arg z=-\frac{\pi}{3}$
iii)

$$
\begin{aligned}
\frac{1-\sqrt{3} i}{i} \times \frac{-i}{-i} & =\frac{-i-\sqrt{3}}{1} \\
& =-\sqrt{3}-i
\end{aligned}
$$

b)i)

$$
\begin{aligned}
(6+5 i)(4-i) & =(6+5 i)(4+i) \\
& =24+6 i+20 i-5 \\
& =19+26 i
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
-\frac{2+3 i}{3-4 i} \times \frac{3+4 i}{3+4 i} & =\frac{-6-8 i+9 i-12}{9+16} \\
& =-\frac{18+i}{25} \\
& =-\frac{18}{25}+\frac{1}{25}
\end{aligned}
$$

c)

$$
\begin{aligned}
& (x+i y)^{2}=9+40 i \\
& x^{2}-y^{2}+2 x y i=9+40 i
\end{aligned}
$$

equate

$$
\begin{align*}
x^{2}-y & =9 \tag{D}\\
2 x y & =40 \\
\left(x^{2}+y^{2}\right) & =\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2} \\
& =81+1600 \\
& =1681 \\
x^{2}+y^{2} & =41 \tag{3}
\end{align*}
$$

(1) +3

$$
\begin{aligned}
2 x^{2} & =50 \\
x^{2} & =25 \\
x & = \pm 5
\end{aligned}
$$

sub n to (2)

$$
\begin{array}{r}
2(\pm 5) y=40 \\
y= \pm 4 \\
\therefore \quad 5+4 i,-5-4 i
\end{array}
$$

d) i)

ii)

e) i) $1+i=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
ii)

$$
\begin{aligned}
& (1+i)^{n}=x+i y \\
& \left(\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right)^{n}=x+i y \\
& \left(2^{\frac{1}{2}}\right)^{n}\left(\cos n \frac{\pi}{4}+i \sin \frac{n}{4}\right)=x+i y \\
& \left|2^{\frac{n}{2}}\left(\cos n \frac{\pi}{4}+i \sin ^{n} \frac{\pi}{4}\right)\right|=|x+i y| \\
& 2^{\frac{n}{2}}=\sqrt{x^{2}+y^{2}} \\
& x^{2}+y^{2}=2^{n}
\end{aligned}
$$

$f)$ complex numbers with a modulus of 1 .

$$
\text { Consider } \begin{aligned}
z & =\frac{1}{2} \\
2 \bar{z} & =1 \\
|z|^{2} & =1 \\
|z| & =1
\end{aligned}
$$

g) $y=2 \cos ^{-1}\left(x^{2}-1\right)$
i)

$$
\begin{aligned}
&-1 \leqslant x^{2}-1 \leqslant 1 \\
& 0 \leqslant x^{2} \leqslant 2 \\
&-\sqrt{2} \leqslant x \leqslant \sqrt{2}
\end{aligned}
$$

$R: \quad x^{2} \geqslant 0$

$$
x^{2}-1 \geqslant-1
$$

since $x^{2}-1$ rill give all values between $-1 \not \& 1$

$$
\begin{aligned}
& 0 \leqslant \cos ^{-1}\left(x^{2}-1\right) \leqslant \pi \\
& 0 \leqslant 2 \cos ^{-1}\left(x^{2}-1\right) \leqslant 2 \pi \\
& 0 \leqslant y \leqslant 2 \pi
\end{aligned}
$$

ii)
iii)

$$
\begin{aligned}
y & =2 \cos ^{-1}\left(x^{2}-1\right) \\
y & =2 \times \frac{-1}{\sqrt{1-\left(x^{2}-1\right)^{2}}} \times 2 x \\
& =\frac{-4 x}{\sqrt{1-\left(x^{4}-3 x^{2}+1\right)}} \\
& =\frac{-4 x}{\sqrt{2 x^{2}-x^{4}}}
\end{aligned}
$$

$O R$

$$
= \begin{cases}\frac{4}{\sqrt{2-x^{2}}}, \text { when } x>0 \\ \frac{4}{\sqrt{2-x^{2}}}, \text { when } x<0\end{cases}
$$

The derivative is defined when

$$
\begin{aligned}
& 2 x^{2}-x^{4}>0 \\
& x^{2}\left(2-x^{2}\right)>0 \\
& x^{2}(\sqrt{2}-x)(\sqrt{2}+x)>0
\end{aligned}
$$

$$
-\sqrt{2}<x<0,0<x<\sqrt{2}
$$

or

$$
-\sqrt{2}<x<\sqrt{2}, x \neq 0
$$

Note: as $x \rightarrow 0^{+}, y^{\prime} \rightarrow-2 \sqrt{2}$

$$
\text { as } x \rightarrow 0, y^{\prime} \rightarrow 2 \sqrt{2}
$$

2014 Extension 2 Mathematics Task 1:

Solutions- Question 2

2. (a) The points O, I, Z, and P on the Argand diagram represent the complex numbers $0,1, z$, and $z+1$ respectively, where $z=\cos \theta+i \sin \theta$ is any complex number of modulus 1 , and $0<\theta<\pi$.
(i) Explain why $O I P Z$ is a rhombus.

$\therefore O I P Z$ is a rhombus (equal sides).

$|O I|=|Z P|=1$ by construction,
$O I \| Z P$,
$\therefore O I P Z$ is a parallelogram (opp. sides equal and parallel),
$|O I|=|O Z|=1$ (given),
$\therefore O I P Z$ is a rhombus.
(ii) Show that $\frac{z-1}{z+1}$ is purely imaginary.

Solution: Method 1-
Consider the diagonals of the rhombus OIPZ:

$$
\begin{aligned}
O P & =z+1, \\
I Z & =z-1, \\
\arg (z-1)-\arg (z+1) & =\frac{\pi}{2},(O P \perp I Z, \text { diagonals of rhombus }) \\
\text { i.e., } \arg \left(\frac{z-1}{z+1}\right) & =\frac{\pi}{2} .
\end{aligned}
$$

So $\frac{z-1}{z+1}$ must lie on the imaginary axis and is purely imaginary.

Solution: Method 2 -

$$
\begin{aligned}
& \frac{\frac{z-1}{z+1} \times \frac{\bar{z}+1}{\bar{z}+1}}{}=\frac{z \bar{z}+z-\bar{z}-1}{z \bar{z}+z+\bar{z}+1} \\
&=\frac{1+2 i \sin \theta-1}{1+2 \cos \theta+1} \\
&=\frac{2 i \sin \theta}{2+2 \cos \theta} \\
&=\frac{i \sin \theta}{1+\cos \theta}, \text { which is purely imaginary. }
\end{aligned}
$$

Solution: Method 3-
If $\frac{z-1}{z+1}$ is purely imaginary, then $\frac{z-1}{z+1}+\overline{\left(\frac{z-1}{z+1}\right)}=0$.
L.H.S. $=\frac{z-1}{z+1}+\frac{\bar{z}-1}{\bar{z}+1}$,
$=\frac{\bar{z} \bar{z}+z-\bar{z}-1+z \bar{z}+\bar{z}-z-1}{z \bar{z}+z+\bar{z}+1}$.
But $z \bar{z}=|z|^{2}=1$,
so L.H.S. $=\frac{0}{z+\bar{z}+2}$,
$=0$,
$=$ R.H.S.

Solution: Method $4-$
$\frac{\cos \theta+i \sin \theta-1}{\cos \theta+i \sin \theta+1} \times \frac{\cos \theta-i \sin \theta+1}{\cos \theta-i \sin \theta+1}$
$=\frac{\cos ^{2} \theta-i \sin \theta \cos \theta+\cos \theta+i \sin \theta \cos \theta+\sin ^{2} \theta+i \sin \theta-\cos \theta+i \sin \theta-1}{\cos ^{2} \theta-i \sin \theta \cos \theta+\cos \theta+i \sin \theta \cos \theta+\sin ^{2} \theta+i \sin \theta+\cos \theta-i \sin \theta+1}$
$=\frac{2 i \sin \theta}{2+2 \cos \theta}$,
$=\frac{i \sin \theta}{1+\cos \theta}$, which is purely imaginary.

Solution: Method 5-

$$
\begin{aligned}
\frac{x-1+i y}{x+1+i y} \times \frac{x+1-i y}{x+1-i y} & =\frac{x^{2}+x-i x y-x-1+i y+i x y+i y+y^{2}}{(x+1)^{2}+y^{2}} \\
& =\frac{x^{2}+y^{2}-1+2 i y}{(x+1)^{2}+y^{2}} .
\end{aligned}
$$

But $x^{2}+y^{2}=1$ (i.e. $|z|^{2}$),
so $\frac{z-1}{z+1}=\frac{2 i y}{(x+1)^{2}+y^{2}}$, which is purely imaginary.

$$
\begin{aligned}
& \text { Solution: Method } 6 \\
& \frac{z-1}{z+1}=\frac{\cos \theta+i \sin \theta-1}{\cos \theta+i \sin \theta+1}, \\
& =\frac{1-2 \sin ^{2} \frac{\theta}{2}+2 i \sin \frac{\theta}{2} \cos \frac{\theta}{2}-1}{2 \cos ^{2} \frac{\theta}{2}-1+2 i \sin \frac{\theta}{2} \cos \frac{\theta}{2}+1} \text {, } \\
& =\frac{-2 \sin \frac{\theta}{2}\left(\sin \frac{\theta}{2}-i \cos \frac{\theta}{2}\right)}{2 \cos \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)}, \\
& =\frac{i \sin \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)}{\cos \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)}\left(\text { as }-1=i^{2}\right) \text {, } \\
& =i \tan \frac{\theta}{2} \text { which is purely imaginary. }
\end{aligned}
$$

(iii) Find the modulus of $z+1$ in terms of θ.

Solution: $\quad|z+1|^{2}=(z+1)(\bar{z}+1)$,

$$
=2+2 \cos \theta \text { as above },
$$

$$
\begin{aligned}
\therefore|z+1| & =\sqrt{2(1+\cos \theta)}, \\
& =\sqrt{2 \times 2 \cos ^{2} \frac{\theta}{2}}, \\
& =2 \cos \frac{\theta}{2} .
\end{aligned}
$$

(b) Differentiate $x \sin 2 x$, and hence find $\int x \cos 2 x d x$.

$$
\text { Solution: } \begin{aligned}
\frac{d}{d x}(x \sin 2 x) & =\sin 2 x+2 x \cos 2 x, \\
\text { i.e., } 2 x \cos 2 x & =\frac{d}{d x}(x \sin 2 x)-\sin 2 x . \\
\int 2 x \cos 2 x d x & =x \sin 2 x-\int \sin 2 x d x, \\
& =x \sin 2 x+\frac{\cos 2 x}{2}+C . \\
\text { So } \int x \cos 2 x d x & =\frac{x \sin 2 x}{2}+\frac{\cos 2 x}{4}+C . \\
\text { Alternatively, } \int 2 x \cos 2 x d x & =x \sin 2 x-\int 2 \sin x \cos x d x, \\
& =x \sin 2 x-\sin ^{2} x+C . \\
\text { So } \int x \cos 2 x d x & =\frac{x \sin 2 x-\sin ^{2} x}{2}+C .
\end{aligned}
$$

(c) Given that $2-i$ is a root of the equation $x^{4}-6 x^{3}+10 x^{2}+2 x-15=0$:
(i) state another complex (non-real) root, giving a reason.

Solution: $2+i$, as polynomials with real coefficients have their complex roots occurring in conjugate pairs.
(ii) find all the roots of the equation.

Solution: Method 1-
Possible other roots are $\pm 1, \pm 3, \pm 5$.

$$
\begin{aligned}
& \mathrm{P}(1)=1-6+10+2-15 \\
& \neq 0 \\
& \mathrm{P}(-1)=1+6+10-2-15 \\
&=0 \\
& \mathrm{P}(3)=81-162+90+6-15 \\
&=0 \\
& \therefore \text { The roots are } 2 \pm i,-1, \text { and } 3 .
\end{aligned}
$$

Solution: Method 2-

$$
\begin{aligned}
&(x-2-i)(x-2+i)=x^{2}-4 x+4+1 \\
&=x^{2}-4 x+5 \\
&\left.x^{2}-4 x+5\right) \\
& \begin{aligned}
x^{2}-2 x-3 \\
x^{4}-6 x^{3}+10 x^{2}+2 x-15 \\
-x^{4}+4 x^{3}-5 x^{2}
\end{aligned} \\
& \hline-2 x^{3}+5 x^{2}+2 x \\
&-2 x^{3}-8 x^{2}+10 x \\
&-3 x^{2}+12 x-15 \\
& 3 x^{2}-12 x+15 \\
& \hline
\end{aligned}
$$

$$
x^{2}-2 x-3=(x-3)(x+1)
$$

$$
\therefore \text { The roots are } 2 \pm i,-1, \text { and } 3
$$

(iii) write the equation in fully factored form over the complex field.

Solution: $(x+1)(x-3)(x-2-i)(x-2+1)=0$.
(d) Consider the functions $y=-\cos ^{-1}\left(\frac{x}{2}\right)$ and $y=\frac{1}{2} \tan ^{-1}(x)-\frac{\pi}{2}$.
(i) Show that the graphs of these functions intersect on the y-axis.

Solution: For $y=-\cos ^{-1}\left(\frac{x}{2}\right)$, Domain: $-1 \leqslant \frac{x}{2} \leqslant 1$, $-2 \leqslant x \leqslant 2$.
Range: $-\pi \leqslant y \leqslant 0$.
When $y=0, \quad x=-\frac{\pi}{2}$.
For $y=\frac{1}{2} \tan ^{-1}(x)-\frac{\pi}{2}, \quad$ Domain : $\quad x \in \mathbb{R}$,
Range : $-\frac{\pi}{4}-\frac{\pi}{2}<y<\frac{\pi}{4}-\frac{\pi}{2}$,
$-\frac{3 \pi}{4}<y<-\frac{\pi}{4}$,
When $y=0, x=-\frac{\pi}{2}$.

From the common point $\left(0,-\frac{\pi}{2}\right)$ and the sketch, it is clear that the curves have their intersection on the y-axis.
(ii) Show that these graphs have a common tangent at the point of intersection, and write the equation of this tangent.

$$
\text { Solution: } \begin{array}{rlrl}
y & =-\cos ^{-1}\left(\frac{x}{2}\right), & y & =\frac{1}{2} \tan ^{-1}(x)-\frac{\pi}{2} \\
\frac{d y}{d x} & =-\frac{1}{2} \times \frac{-1}{\sqrt{1-\frac{x^{2}}{4}}}, & \frac{d y}{d x} & =\frac{1}{2} \times \frac{1}{x^{2}+1}, \\
& =\frac{1}{\sqrt{4-x^{2}}} . & \text { When } x & =0, \frac{d y}{d x}=\frac{1}{2} . \\
\text { When } x & =0, \frac{d y}{d x}=\frac{1}{2} . &
\end{array}
$$

\therefore The tangents have a common slope and a common point, i.e., a common tangent.
$y-\left(-\frac{\pi}{2}\right)=\frac{1}{2}(x-0)$,
$2 y+\pi=x$,
$x-2 y-\pi=0$ is the equation of the common tangent.
(e) Given the quadratic equation $x^{2}-x-3=0$ with roots α_{1}, α_{2} :
(i) Show that $x^{4}=7 x+12$.

Solution: $\quad x^{2}=x+3$,

$$
\begin{aligned}
x^{4} & =x^{2}+6 x+9, \\
& =(x+3)+6 x+9, \\
& =7 x+12 .
\end{aligned}
$$

(ii) Hence or otherwise find a quadratic equation with roots α_{1}^{4} and α_{2}^{4}.

Solution: Method 1-

$$
\begin{aligned}
\text { Put } y & =x^{4}, \text { i.e., } x=y^{1 / 4}, \\
y & =7 y^{1 / 4}+12, \\
y^{1 / 4} & =\frac{y-12}{7} . \\
0 & =\left(\frac{y-12}{7}\right)^{2}-\frac{y-12}{7}-3, \\
& =y^{2}-24 y+144-7 y+84-147, \\
& =y^{2}-31 y+81 .
\end{aligned}
$$

So the desired equation is $x^{2}-31 x+81=0$.

Solution: Method 2-

$$
\begin{aligned}
\alpha_{1}+\alpha_{2} & =1, \\
\alpha_{1} \alpha_{2} & =-3, \\
\alpha_{1}^{4} & =7 \alpha_{1}+12, \\
\alpha_{2}^{4} & =7 \alpha_{2}+12, \\
\alpha_{1}^{4}+\alpha_{2}^{4} & =7\left(\alpha_{1}+\alpha_{2}\right)+24, \\
& =7(1)+24, \\
& =31 . \\
\alpha_{1}^{4} \alpha_{2}^{4} & =49 \alpha_{1} \alpha_{2}+84\left(\alpha_{1}+\alpha_{2}\right)+144, \\
& =49(-3)+84(1)+144, \\
& =81 . \\
\therefore x^{2}-31 x+81 & =0 .
\end{aligned}
$$

Solution: Method 3-

$$
\begin{aligned}
\alpha_{1}+\alpha_{2} & =1, \\
\alpha_{1} \alpha_{2} & =-3, \\
\left(\alpha_{1}+\alpha_{2}\right)^{2} & =\alpha_{1}^{2}+2 \alpha_{1} \alpha_{2}+\alpha_{2}^{2}=1, \\
\alpha_{1}^{2}+\alpha_{2}^{2} & =1-2(-3), \\
& =7, \\
\alpha_{1}^{2} \alpha_{2}^{2} & =9, \\
\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right)^{2} & =\alpha_{1}^{4}+2 \alpha_{1}^{2} \alpha_{2}^{2}+\alpha_{2}^{4}=49, \\
\alpha_{1}^{4}+\alpha_{2}^{4} & =49-2(9), \\
& =31, \\
\alpha_{1}^{4} \alpha_{2}^{4} & =81, \\
\therefore x^{2}-31 x+81 & =0 .
\end{aligned}
$$

Solution: Method 4-

$$
\text { Put } y=x^{4} \text {, i.e., } x=y^{1 / 4} \text {, }
$$

$$
\begin{aligned}
\left(y^{1 / 4}\right)^{2}-y^{1 / 4}-3 & =0, \\
y^{1 / 4} & =y^{1 / 2}-3, \\
\left(y^{1 / 4}\right)^{2} & =\left(y^{1 / 2}-3\right)^{2}, \\
y^{1 / 2} & =y-6 y^{1 / 2}+9, \\
\left(7 y^{1 / 2}\right)^{2} & =(y+9)^{2}, \\
49 y & =y^{2}+18 y+81, \\
0 & =y^{2}-31 y+81 .
\end{aligned}
$$

So the desired equation is $x^{2}-31 x+81=0$.

Solution: Method 5-

$$
\begin{aligned}
\alpha^{2}-\alpha+\frac{1}{4} & =3+\frac{1}{4}, \\
\left(\alpha-\frac{1}{2}\right)^{2} & =\frac{13}{4}, \\
\alpha-\frac{1}{2} & = \pm \frac{\sqrt{13}}{2}, \\
\alpha & =\frac{1 \pm \sqrt{13}}{2}, \\
\alpha^{2} & =\frac{1 \pm 2 \sqrt{13}+13}{4}, \\
& =\frac{14 \pm 2 \sqrt{13}}{4}, \\
& =\frac{7 \pm \sqrt{13}}{2}, \\
\alpha^{4} & =\frac{49 \pm 14 \sqrt{13}+13}{4}, \\
& =\frac{62 \pm 14 \sqrt{13}}{4}, \\
& =\frac{31 \pm \sqrt{13}}{2}, \\
\alpha_{1}^{4}+\alpha_{2}^{4} & =31, \\
\alpha_{1}^{4} \alpha_{2}^{4} & =\frac{31^{2}-49 \times 13}{4}, \\
& =81, \\
\therefore x^{2}-31 x+81 & =0
\end{aligned}
$$

Question 3
(a) (i) $3^{5}=1$

$$
\begin{aligned}
& z_{0}=\operatorname{cis} 0=1 \\
& z_{1}=\operatorname{cis} \frac{\pi \pi}{5} \\
& z_{2}=\operatorname{cis} \frac{4 \pi}{5} \\
& z_{3}=\operatorname{cis}-\frac{2 \pi}{5}=z_{1} \\
& z_{4}=\operatorname{cis}-\frac{4 \pi}{5}=\overline{z_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) }(z-1)\left(z-z_{2}\right)\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-\bar{z}_{2}\right)=z^{5}-12 \\
& \left(z^{2}-2 z \cos ^{2 \pi} \frac{\pi}{5}+1\right)\left(z^{2}-2 z \cos \frac{4 \pi}{5}+1\right) \equiv z^{4}+z^{3}+z^{2}+z+1 .
\end{aligned}
$$

(iii) coefl of 3

$$
\begin{aligned}
& -2 \cos ^{2} \frac{\pi}{5}-2 \cos \frac{4 \pi}{5}=1 . \\
& \cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=-\frac{1}{2} \\
& \cos 2 A=2 \cos ^{2} A-1 \\
& \cos \frac{2 \pi}{5}+2 \cos ^{2} \frac{2 \pi}{5}-1=-\frac{1}{2} . \\
& 4 \cos ^{2 \pi} \frac{\pi}{5}+2 \cos ^{2} \frac{\pi}{5}-1=0 .
\end{aligned}
$$

Let $u=\cos \frac{2 \pi}{5}$

$$
\begin{aligned}
& 4 n^{2}+2 n-1=0 \\
& \left(u+\frac{1}{4}\right)^{2}-\frac{1}{16}=\frac{4}{16}
\end{aligned}
$$

$$
\begin{aligned}
& u=-\frac{1}{4} \pm \frac{\sqrt{5}}{4} \\
& \cos ^{2} \frac{\pi}{5}=\frac{\sqrt{5}-1}{4}
\end{aligned}
$$

since $\frac{2 \pi}{5}$ is in the first quadrank.
(b)

$$
\begin{align*}
& P(x)=A(x) Q(x)+(a x+b) . \\
& P(x)=(x-2)(x-3) Q(x)+(a x+b) \\
& P(2)=2 a+b=4 \tag{1}\\
& P(3)=3 a+b=9 \tag{2}
\end{align*}
$$

(2) - (1)

$$
\begin{gathered}
a=5 \\
10+b=4 \\
b=-6
\end{gathered}
$$

nemainder is $5 x-6$
(c) (i) $9!$
(ii) $4!\times 2 \times 3 \times 8=1152$

$$
\begin{aligned}
& 2^{3} \times 3!\times 4 c_{3} \times 3!=1152 \\
& \frac{1152}{9!}=\frac{1}{315}
\end{aligned}
$$

(d) $a x^{4}+b x+c=0$

$$
\begin{gathered}
4 a x^{3}+b=0 \\
12 a x^{2}=0 \\
x=0 .
\end{gathered}
$$

If this ha, a tuple root then
has a double rook. So has a spagle root.
which is,

But $x=0$ is not a root of $a x^{4}+3 x+c=0$.

$$
\begin{aligned}
& x=2 \sin \theta \\
& \frac{d x}{d \theta}=2 \cos \theta . \\
& d x=2 \cos \theta d \theta . \\
& x
\end{aligned}
$$

$$
\frac{x}{\sqrt{3}} \rightarrow \frac{\pi}{3}
$$

$$
1 \rightarrow \frac{\pi}{6}
$$

$$
\begin{aligned}
& =4 \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin ^{2} \theta \cos \theta}{\sqrt{1-\sin ^{2} \theta}} d \theta \\
& =4 \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} \sin ^{2} \theta d \theta \\
& =2 \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1-\cos 2 \theta d \theta \\
& =2\left[\theta-\frac{\sin 2 \theta}{2}\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} . \\
& \text { (e) } \int_{1}^{\sqrt{3}} \frac{x^{2}}{\sqrt{4-x^{2}}} d x \\
& \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin ^{2} \theta 2 \cos \theta}{\sqrt{4-4 \sin ^{2} \theta}} d \theta \\
& =2\left[\left(\frac{\pi}{3}-\frac{\sin 2 \frac{\pi}{3}}{2}\right)-\left(\frac{\pi}{6}-\frac{\sin \frac{\pi}{3}}{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =2\left[\frac{\pi}{3}-\frac{\pi}{6}-\sin \frac{\pi}{3} \cos \frac{\pi}{3}+\frac{\sin \frac{\pi}{2}}{2}\right] \\
& =\frac{\pi}{3}-2 \times \frac{\sqrt{3}}{2} \times \frac{1}{2}+\frac{\sqrt{3}}{2} \\
& =\frac{\pi}{3}
\end{aligned}
$$

(f) Join GF. Let H be the intersection of $G F$ and $A E$.
Join GE
Let $\angle G E A=\alpha^{\circ}$ and $\angle G A E=\beta^{0}$
$\triangle A G E$ is a right angle triangle with $\angle A G E=90^{\circ}$ (angl in a semi- circle)

$$
\therefore \alpha+\beta=90^{\circ}(L \operatorname{sum} \triangle)
$$

Since $\triangle A D B$ is right angle triangle $\angle A B D=\alpha^{\circ}(\angle \sin$ of a $\Delta)$.
$\angle G F A=2^{\circ}$ (\angle s in the same segment).
$\angle G F C=180^{\circ}-\alpha^{\circ}$ (supplementary).
$\therefore B C F G$ is cyclic (opposite L_{s} are $)$ 4

