FORM VI

MATHEMATICS EXTENSION 2

Monday 20th February 2012

General Instructions

- Writing time - 2 Hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 70 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.

Section II - 60 Marks

- Questions 11-14 are of equal value.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Collection

Section I Questions 1-10

- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.

Section II Questions 11-14

- Start each of these questions in a new booklet.
- Write your candidate number clearly on each booklet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place the question paper inside your answer booklet for Question Eleven.

Checklist

- SGS booklets - 4 per boy

Examiner

- Candidature - 88 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

Question One

Which of the following represents the complex number $1-i$ expressed in modulus-argument form?
(A) $\sqrt{2} \operatorname{cis} \frac{3 \pi}{4}$
(B) $\sqrt{2} \operatorname{cis} \frac{\pi}{4}$
(C) $\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)$
(D) $2 \operatorname{cis} \frac{\pi}{4}$

Question Two

Which of the following is true for all complex numbers z ?
(A) $\operatorname{Re}(z)=z+\bar{z}$
(B) $\operatorname{Re}(z)=\frac{z-\bar{z}}{2}$
(C) $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$
(D) $\operatorname{Re}(z)=\frac{z \bar{z}}{2}$

Question Three

The primitive of $\frac{1}{\sqrt{4-9 x^{2}}}$ is:
(A) $\frac{1}{6} \sin ^{-1} \frac{3 x}{2}+C$
(B) $\frac{1}{3} \sin ^{-1} \frac{3 x}{2}+C$
(C) $\frac{2}{3} \sin ^{-1} \frac{3 x}{2}+C$
(D) $\frac{1}{3} \sin ^{-1} \frac{2 x}{3}+C$

Question Four

The solutions to the quadratic equation $z^{2}-2 z+2=0$ are:
(A) $z=1+i$ or $1-i$
(B) $z=-1+i$ or $-1-i$
(C) $z= \pm(1+i)$
(D) $z=1 \pm 2 i$

Question Five

The expression $i^{19}+i^{20}+i^{21}+i^{22}$ is equal to:
(A) i
(B) 0
(C) $-i$
(D) -1

Question Six

Which of the following defines the locus of the complex number z sketched in the diagram above?
(A) $\quad \arg \left(\frac{z-1+i}{z-1-i}\right)=\pi$
(B) $\arg (z-1+i)=\arg (z-1-i)$
(C) $\quad \arg \left(\frac{z+1+i}{z-1-i}\right)=\frac{\pi}{2}$
(D) $\arg (z+1+i)=\arg (z-1-i)$

Question Seven

What is the minimum value of $2 \sin x-3 \cos x$?
(A) $\quad-1$
(B) $-\sqrt{13}$
(C) $\quad-5$
(D) $-\sqrt{2}-\sqrt{3}$

Question Eight

What is the primitive of $\frac{\cos \sqrt{x}}{\sqrt{x}}$?
(A) $\sin \sqrt{x}+C$
(B) $-\sin \sqrt{x}+C$
(C) $\frac{1}{2} \cos ^{2} \sqrt{x}+C$
(D) $2 \sin \sqrt{x}+C$

Question Nine

What is the range of $g(x)=\tan \left(\frac{1}{2} \cos ^{-1} x\right)$?
(A) $y \leq 0$
(B) $y \in \mathbf{R}$
(C) $0 \leq y<1$
(D) $y \geq 0$

Question Ten

In the diagram, $\angle Q P R=90^{\circ}$ and $P Q=P R$. The points P and Q represent the complex numbers w and z respectively. Which complex number represents the point R in the complex plane?
(A) $\quad i(w-z)$
(B) $w+i(z-w)$
(C) $w+i(w-z)$
(D) $i(z-w)$

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

Question Eleven (15 marks) Use a separate writing booklet.
(a) Let $u=2+i$ and $v=-1-i$.
(i) Find $\operatorname{Im}(u v)$.
(ii) Find $\frac{u}{i}$.
(iii) Evaluate $|u-v|^{2}$.
(iv) Express $\frac{u}{v}$ in the form $a+i b$, where a and b are real numbers.
(b) (i) Express the complex numbers $z_{1}=1+i$ and $z_{2}=\sqrt{3}-i$ in modulus-argument form.
(ii) Hence, or otherwise, find $\arg \left(\frac{z_{1}^{2}}{z_{2}}\right)$.
(c) (i) Find the two square roots of $16+30 i$.
(ii) Hence solve $z^{2}+(1+i) z-(4+7 i)=0$.
(d) (i) Sketch the region in the complex plane which simultaneously satisfies
$-\frac{\pi}{4} \leq \arg (z+i) \leq \frac{\pi}{4}$ and $|z-2| \leq 1$.
(ii) Find the maximum value of $|z|$.
(iii) Find the minimum value of $\arg (z)$, given $-\pi<\arg (z) \leq \pi$.

Question Twelve (15 marks) Use a separate writing booklet.
(a) Find the following indefinite integrals.
(i) $\int \frac{1}{\sqrt{9 x^{2}+2}} d x \quad$ (Use the substitution $u=3 x$.)
(ii) $\int \frac{1}{x+\sqrt{x}} d x \quad$ (Use the substitution $u=\sqrt{x}$.)
(b) Evaluate:
(i) $\int_{0}^{1} \frac{1+x}{\sqrt{1-x^{2}}} d x$
(ii) $\int_{0}^{1} \frac{x^{2}-1}{x^{2}+1} d x$
(c) Use integration by parts to find $\int x \ln x d x$.
(d) (i) Express $\frac{4 x+2}{(x+1)\left(x^{2}+1\right)}$ in the form $\frac{a}{x+1}+\frac{b x+c}{x^{2}+1}$ for real constants a, b and c.
(ii) Hence, or otherwise, evaluate $\int_{0}^{\sqrt{3}} \frac{4 x+2}{(x+1)\left(x^{2}+1\right)} d x$.

Question Thirteen (15 marks) Use a separate writing booklet.
(a) Find the equation of the tangent to the curve $x^{3}+y^{3}-5 y-3=0$ at the point $(1,-2)$.
(b)

In the diagram $O A B C$ is a square where O is the origin. The point A represents the complex number z.
(i) Find the complex number represented by B in terms of z.
(ii) The square is rotated about O anti-clockwise through 45° to $O A^{\prime} B^{\prime} C^{\prime}$.

Show that the point C^{\prime} represents the complex number $\frac{\sqrt{2}}{2}(-1+i) z$.
(c) The origin O and the points P, Q and R, representing the complex numbers $z, z+\frac{1}{z}$ and $\frac{1}{z}$ respectively, are joined to form a quadrilateral. Suppose that $0<\arg (z)<\frac{\pi}{2}$ and $|z| \geq 1$.
(i) Sketch the quadrilateral $O P Q R$ on the complex plane.
(ii) Find the complex number z for $O P Q R$ to be a square.
(d) (i) Show that $(k+1)^{2}(k+4)=k^{3}+6 k^{2}+9 k+4$.
(ii) Use mathematical induction to prove that for all integers $n \geq 1$,

$$
\frac{1}{1 \times 2 \times 3}+\frac{1}{2 \times 3 \times 4}+\cdots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)} .
$$

(iii) Hence find

$$
\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)}
$$

Question Fourteen (15 marks) Use a separate writing booklet.
(a) (i) Find a general solution to the equation $\cos 3 x=\sin 2 x$.
(ii) Hence, or otherwise, find the smallest positive solution of the equation $\cos 3 x-\sin 2 x=0$.
(b)

The circle drawn through the vertices of triangle $A B C$ has centre O and radius r.
(i) Show that $B C=2 r \sin A$.
(ii) Use the fact that the sum of the areas of triangles $O B C, O C A$ and $O A B$ is equal to the area of triangle $A B C$, to show that

$$
\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C
$$

(c) (i) If $z=\cos \theta+i \sin \theta$, show that $1+z=2 \cos \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)$.
(ii) Suppose that z_{1} and z_{2} are complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=1$. If z_{1} and z_{2} have arguments α and β respectively, where $-\pi<\alpha<\pi$ and $-\pi<\beta<\pi$, show that $\frac{z_{1}+z_{1} z_{2}}{z_{1}+1}$ has modulus $\frac{\cos \frac{\beta}{2}}{\cos \frac{\alpha}{2}}$ and argument $\frac{\alpha+\beta}{2}$.
(iii) Given that $\left|z_{1}\right|=\left|z_{2}\right|=1$ and $\frac{z_{1}+z_{1} z_{2}}{z_{1}+1}=2 i$, find z_{1} and z_{2} in the form $x+i y$, where x and y are real.

END OF EXAMINATION

SGS Half-Yearly 2012 Form VI Mathematics Extension 2 Page 10

BLANK PAGE

SGS Half-Yearly 2012 Form VI Mathematics Extension 2 Page 11

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Question One

AB \qquad
C

D
Question Two
A
B
C

D \bigcirc

Question Three

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Four

$\mathrm{A} \bigcirc$
B \bigcirc
$\mathrm{C} \bigcirc$
D

Question Five

A
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Six

- Fill in the circle completely.
- Each question has only one correct answer.
A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Seven

A \bigcirc
B \bigcirc
C
D \bigcirc

Question Eight

AB \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Nine

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Ten

A \bigcirc
B \qquad
C
\bigcirc
D \bigcirc

EXT II half yearly 2012

(a) $\mu=2+i \quad v=-1-i$
(i)

$$
\begin{aligned}
& \mu v=(2+i)(-1-i) \\
&=-2-2 i-i+1 \\
&=-1-3 i \\
& \operatorname{Im}(-1-3 i)=-3
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{u}{i} & =\frac{2+i}{i} \times \frac{i}{i} \\
& =\frac{2 i-1}{-1} \\
& =1-2 i
\end{aligned}
$$

(iii)

$$
\begin{aligned}
|u-r|^{2} & =|3+2 i|^{2} \\
& =9+4 \\
& =13
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\frac{u}{v} & =\frac{2+i}{-1-i} \frac{-1+i}{-1+i} \\
& =\frac{-2+2 i-i-1}{1+1} \\
& =\frac{i-3}{2} \\
& =-\frac{3}{2}+\frac{1}{2} i
\end{aligned}
$$

(b) (i)

$$
\begin{array}{ll}
z_{1}=1+i & z_{2}=\sqrt{3}-i \\
z_{1}=\sqrt{2} \operatorname{cis} \frac{\pi}{4} & z_{2}=2 \operatorname{cis}\left(-\frac{\pi}{6}\right)
\end{array}
$$

(ii) $\arg \left(\frac{z_{1}{ }^{2}}{z_{2}}\right)=$

$$
\begin{aligned}
& =2 \arg \left(z_{1}\right)-\arg \left(z_{2}\right) \\
& =2 \pi \frac{\pi}{4}-\frac{\pi}{6} \\
& =\frac{\pi}{2}+\frac{\pi}{6}
\end{aligned}
$$

(15)

$$
=\frac{2 \pi}{3} V
$$

(c) $(a+b i)^{2}=16+30 i$
(i) $a^{2}-b^{2}+2 a b i=16+30 i$
$\left.\begin{array}{rl}a^{2}-b^{2} & =16 \\ 2 a b & =30\end{array}\right\}$
$a=5$ and $b=3$ or
$a=-5$ and $b=-3$
The square roots of $16+30 i$ are $\pm(5+3 i)$.
(ii) $z^{2}+(1+i) z-(4+7 i)=0$
$z=\frac{-(1+i) \pm \sqrt{(1+i)^{2}+4(4+7 i)}}{2}$

$$
z=\frac{-(1+i) \pm \sqrt{16+30 i}}{2}
$$

$$
z=\frac{-1-i \pm(5+3 i)}{2}
$$

$$
z=\frac{4+2 i}{2} \text { or } z=\frac{-6-4 i}{2}
$$

$$
z=2+i \text { or } z=-3-2 i
$$

QVESTTON 12
(a) (i)

$$
\int \frac{1}{\sqrt{9 x^{2}+2}} d x
$$

ut $\quad \mu=3 \dot{x}$

$$
d u=3 \cdot d x
$$

$$
\begin{aligned}
& =\frac{1}{3} \ln \left(\mu+\sqrt{\mu^{2}+2}\right)+c \\
& =\frac{1}{3} \ln \left(3 x+\sqrt{9 x^{2}+2}\right)+c
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \int \frac{1}{x+\sqrt{x}} d x \\
& \mu=\frac{\sqrt{x}}{d u}=\frac{1}{2 \sqrt{x}} d x \\
& 2 \mu d u=d x \\
&= \int \frac{1}{\mu^{2}+u} \times 2 \mu d u \\
&= 2 \int \frac{1}{u+1} d u \\
&= 2 \ln (\mu+1)+c \\
&= 2 \ln (\sqrt{x}+1)+c^{u}
\end{aligned}
$$

$$
\text { (b) (i) } \int_{0}^{1} \frac{1+x}{\sqrt{1-x^{2}}} d x
$$

$$
=\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}}+\frac{x}{\sqrt{1-x^{2}}} d x
$$

$$
=\left[\sin ^{-1} x-\sqrt{1-x^{2}}\right]_{0}^{1}
$$

$$
=\frac{\pi}{2}+1
$$

(ii) $\int_{0}^{1} \frac{x^{2}-1}{x^{2}+1} d x$

$$
=\int_{0}^{1} \frac{x^{2}+1-2}{x^{2}+1} d x
$$

$$
=\int_{0}^{1} 1-\frac{2}{1+x^{2}} d x
$$

$$
=\left[x-2 \tan ^{-1} x\right]_{0}^{1}
$$

$$
=\left(1-\frac{\pi}{2}\right)-0
$$

$$
=\frac{1}{2}(2-\pi)
$$

(e)

$$
\int x \cdot \ln x d x
$$

let

$$
\begin{array}{ll}
\mu=\ln x & V^{\prime}=x \\
\mu^{\prime}=\frac{1}{x} & V^{\prime}=\frac{x^{2}}{2}
\end{array}
$$

$$
\begin{aligned}
& \therefore(c) \\
& \int x \ln x d x=\frac{x^{2} \ln x-\int \frac{1}{x} \times \frac{x^{2}}{2} d x}{} \\
&=\frac{x^{2}}{2} \ln x-\int \frac{x}{2} d x \\
&=\frac{1}{2} x^{2} \ln x-\frac{x^{2}}{4}+c
\end{aligned}
$$

(d)
(i) eut

$$
\begin{aligned}
& \frac{4 x+2}{(x+1)\left(x^{2}+1\right)} \equiv \frac{a}{x+1}+\frac{b x+c}{x^{2}+1} \\
& 4 x+2 \equiv a\left(x^{2}+1\right)+(x+1)(b x+c)
\end{aligned}
$$

put $x=-1$:

$$
-2=2 a, \quad a=-1
$$

$4 x+2=(a+b) x^{2}+(b+c) x+(a+c)$
equating pawers of x :

$$
\left.\begin{array}{l}
a+b=0 \\
b+c=4 \\
a+c=2
\end{array}\right\} \begin{aligned}
& b=1 \\
& e=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \begin{aligned}
& \int_{0}^{\sqrt{3}} \frac{4 x+2}{(x+1)\left(x^{2}+1\right)} d x \\
= & \int_{0}^{\sqrt{3}} \frac{-1}{x+1}+\frac{x+3}{x^{2}+1} d x \\
= & \int_{0}^{\sqrt{3}} \frac{x}{x^{2}+1}+\frac{3}{x^{2}+1}-\frac{1}{x+1} d x
\end{aligned}, l
\end{aligned}
$$

Question 13
(a)

$$
\begin{gathered}
x^{3}+y^{3}-5 y-3=0 \\
3 x^{2}+3 y^{2} \frac{d y}{d x}-5 \frac{d y}{d x}=0 \\
\frac{d y}{d x}\left(3 y^{2}-5\right)=-3 x^{2} \\
\frac{d y}{d x}=\frac{3 x^{2}}{5-3 y^{2}}
\end{gathered}
$$

at $(1,-2)$

$$
\text { gradient }=\frac{3}{-7}
$$

equal: of the tangent:

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y+2=-\frac{3}{7}(x-1) \\
y+14=3 x+3 \\
3 x+7 y+11=0 .
\end{gathered}
$$

(b)
(i) B :

$$
\begin{aligned}
O C & =A B=i z \\
O B & =O A+A B \\
& =z+i z
\end{aligned}
$$

(ii)

$$
\begin{aligned}
O C^{\prime} & =O C \times \operatorname{cis} \frac{\pi}{4} \\
& =i z \operatorname{cis} \frac{\pi}{4} \\
& =i z\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right) \\
& =i z\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right) \\
& =\frac{\sqrt{2}}{2} i z-\frac{\sqrt{2}}{2} z
\end{aligned}
$$

$$
=\frac{\sqrt{2}}{2}(-1+i) z
$$

(c)

$$
\text { note: } \arg (z)=-\arg \left(\frac{1}{z}\right)
$$

(ii) $|z|=1$ and $\arg (z)=\frac{\pi}{4}$

Hence $z=$ cis $\frac{\pi}{4}$, for OPGR to the a square.
(d)
(i)

$$
\begin{aligned}
\angle H S= & (k+1)^{2}(k+4) \\
= & \left(k^{2}+2 k+1\right)(k+4) \\
= & k^{3}+4 k+2+k^{2}+8 k \\
& +k+4 \\
= & k^{3}+6 k^{2}+9 k+4 \\
= & \text { RUS. }
\end{aligned}
$$

(ii)

A/ show the statement is true for $n=1$.
pert $n=1$:

$$
\begin{aligned}
\operatorname{LH}+ & =\frac{1}{1 \times 2 \times 3} \\
& =\frac{1}{6}
\end{aligned}
$$

Cl...

$$
\begin{aligned}
\text { RHO } & =\frac{1(1+3)}{4(1+1)(1+2)} \\
& =\frac{4}{4 \times 2 \times 3} \\
& =\frac{1}{6}
\end{aligned}
$$

Hence the statement is true for $n=1$.
B) Assume true for $1=k$. (k an integer.)

$$
\begin{equation*}
\frac{1}{1 \times 2 \times 3}+\frac{1}{2 \times 3 \times 4}+\cdots+\frac{1}{k(k+1)(k+2)}=\frac{k(k+3)}{4(k+1)(k+2)} \tag{*}
\end{equation*}
$$

To prove for $n=k+1$.
To prove:

$$
\frac{1}{1 \times 2 \times 3}+\frac{1}{2 \times 3 \times 4}+\cdots+\frac{1}{k(k+1)(k+2)}+\frac{1}{(k+1)(k+2)(k+3)}=\frac{(k+1)(k+4)}{4(k+2)(k+3}
$$

N sing the assumption (*)

$$
\begin{aligned}
\angle H S & =\frac{k(k+3)}{4(k+1)(k+2)}+\frac{1}{(k+1)(k+2)(k+3)} \\
& =\frac{k(k+3)^{2}+4}{4(k+1)(k+2)(k+3)} \\
& =\frac{k\left(k^{2}+6 k+9\right)+4}{4(k+1)(k+2)(k+3)} \\
& =\frac{k^{3}+6 k^{2}+9 k+4}{4(k+1)(k+2)(k+3)} \\
& =\frac{(k+1)^{2}(k+4)}{4(k+1)(k+2)(k+3)} \\
& =\frac{(k+1)(k+4)}{4(k+2)(k+3)} \\
& =\text { RUS. }
\end{aligned}
$$

$$
=\frac{k^{3}+6 k^{2}+9 k+4}{4(k+1)(k+2)(k+3)} \text { (from prot (i)) }
$$

C) It follows from parts A and B by mathematical induction that the statement is true for all integers $n \geqslant 1$.
(iii) $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)}$
$=\lim _{n \rightarrow \infty} \frac{n(n+3)}{4(n+1)(n+2)}$
Divide ty n^{2} :

$$
=\lim _{n \rightarrow \infty} \frac{1(1+3 / n)}{4\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)}
$$

$\left(a_{\infty} n \rightarrow \infty, \frac{1}{n} \rightarrow 0\right)$

$$
=\frac{1}{4}
$$

QUESTION 14
(a)
(i)

$$
\begin{aligned}
& \cos 3 x=\sin 2 x \\
& \cos 3 x=\cos \left(\frac{\pi}{2}-2 x\right) x
\end{aligned}
$$

$$
\begin{aligned}
3 x & =2 \pi n+\left(\frac{\pi}{2}-2 x\right) \\
5 x & =2 \pi n+\frac{\pi}{2} \\
x & =\frac{2 \pi n}{5}+\frac{\pi}{10}
\end{aligned}
$$

or $3 x=2 \pi n-\left(\frac{\pi}{2}-2 x\right)$

$$
(n \in z)
$$

(ii) $\cos 3 x-\sin 2 x=0$

$$
\begin{aligned}
& x=\frac{2 \pi n}{5}+\frac{\pi}{10} \text { or } \\
& x=2 \pi n-\frac{\pi}{2}
\end{aligned}
$$

put $n=0: \quad x=\frac{\pi}{10} \sqrt{l}$
is the smallest positive solution.
(b) $\angle B O C=2 A$
(the angle subtended ky an are at the centre is terce the angle subtended by the arc at the circumference.

(ii) $|\triangle O B C|=\frac{1}{2} r^{2} \sin 2 A$

$$
|\triangle O C A|=\frac{1}{2} r^{2} \sin 2 B
$$

$$
|\triangle \triangle A B|=\frac{1}{2} r^{2} \sin 2 C
$$

$$
|\triangle A B C|=\frac{1}{2} r^{2}(\sin 2 A+\sin 2 B
$$

A150:

$$
\begin{equation*}
+\sin 2 c) \tag{1}
\end{equation*}
$$

$$
|\triangle A B C|=\frac{1}{2} B C \times A C \times \sin C
$$

$$
\binom{B C=2 r \sin A \text { and }}{A C=2 r \sin B \quad \text { from (i) }}
$$

$$
|\triangle A B C|=\frac{1}{2} \times 2 r \sin A \times 2 r \sin B \times
$$

inc

$$
=2 r^{2} \sin A \sin B \sin C-C
$$

equate (1) and (2)

$$
\begin{gathered}
\frac{1}{2} r^{2}(\sin 2 A+\sin 2 B+\sin 2 C)= \\
2 r^{2} \sin A \sin B \sin C \\
\text { and } \\
\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C \\
(\cos \text { requited.) }
\end{gathered}
$$

Question 14....
(c)
(i)

$$
\begin{aligned}
z & =\cos \theta+i \sin \theta \\
z-1 & =1+\cos \theta+i \sin \theta \\
z+1 & =1+\left(2 \cos ^{2} \theta-1\right)+2 i \sin \theta \cos \frac{\theta}{2} \\
z+1 & =2 \cos ^{2} \frac{\theta}{2}+2 i \sin \theta \cos \theta \\
z+1 & =2 \cos \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \theta\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{z_{1}+z_{1} z_{2}}{z_{1}+1} \\
= & z_{1} \frac{\left(1+z_{2}\right)}{\left(1+z_{1}\right)}
\end{aligned}
$$

using the reutt foor (i):-

$$
\begin{aligned}
& =\frac{(\cos \alpha+i \sin \alpha) 2 \cos \beta / 2(\cos \beta / 2+i \sin \beta / 2) /}{2 \cos \alpha / 2(\cos \alpha / 2+i \sin \alpha / 2)} \\
& =\frac{\cos \beta / 2}{\cos \alpha / 2} \operatorname{cis}(\alpha+\beta / 2-\alpha / 2) \\
& =\frac{\cos \beta / 2}{\cos \alpha / 2} \text { cis }\left(\frac{\alpha+\beta}{2}\right) \\
& \text { (1) } \\
& \cos \beta / 2=2 \cos \alpha / 2 \\
& \cos B / 2=2 \cos \left(\frac{\pi}{2}-B / 2\right) \\
& \cos \beta / 2=2 \sin \beta / 2 \\
& \tan \beta / 2=\frac{1}{2}=t
\end{aligned}
$$

(iii) $\frac{z_{1}+z_{3} z_{2}}{z_{1}+1}=2 i$

$$
\frac{\cos \beta / 2}{\cos t / 2} \operatorname{cis}\left(\frac{\alpha+\beta}{2}\right)=2 i
$$

(1) $\frac{\cos \beta / L}{\cos \pi / 2}=2$
(2)

$$
\begin{gathered}
\cos \left(\frac{\alpha+\beta}{2}\right)=0 \\
\alpha+\beta=\pi \\
\alpha=\pi-\beta
\end{gathered}
$$

Rb. inds (1)

Now $\quad \cos \beta=\frac{1-t^{2}}{1+t^{2}}$

$$
\begin{aligned}
& =\frac{1-1 / 4}{1+1 / 4} \\
& =\frac{3}{5}
\end{aligned}
$$

and $\quad \sin \beta=\frac{2 t}{1+t^{2}}$

$$
\begin{aligned}
& =\frac{1}{1+1 / 4} \\
& =4 / 5
\end{aligned}
$$

Q14 (c)

$$
\begin{aligned}
\therefore \gamma_{2}=\frac{3}{5} & +\frac{4}{5} i, \sqrt{2} \\
\text { (1) } 2 \cos \frac{\alpha}{2} & =\cos \beta / 2 \\
2 \cos \frac{\alpha}{2} & =\cos \left(\frac{\pi}{2}-\frac{\alpha}{2}\right) \\
2 \cos \frac{\alpha}{2} & =\sin \alpha / 2 \\
\tan \frac{\alpha}{2} & =2=t
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \sin \alpha=\frac{2 t}{1+t^{2}} \\
&=\frac{4}{5} \\
& \cos \alpha=\frac{1-t^{2}}{1+t^{2}} \\
&=\frac{1-4}{5} \\
& \therefore \quad z_{1}=-\frac{3}{5} \\
& \therefore \quad \frac{3}{5}+\frac{4}{5}
\end{aligned}
$$

