Sydney Grammar School

2015 Half-Yearly Examination

FORM VI

MATHEMATICS EXTENSION 2

Friday 20th February 2015

General Instructions

- Writing time - 1 hour 30 minutes
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 55 Marks

- All questions may be attempted.

Section I-7 Marks

- Questions 1-7 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 48 Marks

- Questions 8-11 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eight.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets - 4 per boy
- Multiple choice answer sheet
- Candidature - 73 boys

Examiner

MLS

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

Which of the following represents the complex number $\sqrt{3}-i$ expressed in modulus-argument form?
(A) $2 \operatorname{cis} \frac{\pi}{6}$
(B) $2 \operatorname{cis}\left(-\frac{\pi}{6}\right)$
(C) $2 \operatorname{cis} \frac{2 \pi}{3}$
(D) $2 \operatorname{cis}\left(-\frac{2 \pi}{3}\right)$

QUESTION TWO

What are the solutions to the quadratic equation $z^{2}-4 i z+12=0$?
(A) $-6 i$ or $2 i$
(B) $6 i$ or $-2 i$
(C) $2+2 \sqrt{2} i$ or $2-2 \sqrt{2} i$
(D) $2 i+2 \sqrt{2}$ or $2 i-2 \sqrt{2}$

QUESTION THREE

Which of the following represents the complex number $-i z$ where
$|z|=2 \sqrt{2}$ and $\arg (z)=\frac{\pi}{4}$?
(A) $2(1-i)$
(B) $2(1+i)$
(C) $2(-1+i)$
(D) $2(-1-i)$

QUESTION FOUR

The expression $\frac{9 x}{(x+2)(x-1)^{2}}$ can be expressed in partial fractions as:
(A) $\frac{2}{x-1}-\frac{2}{x+2}+\frac{3}{(x-1)^{2}}$
(B) $\frac{2}{x+2}-\frac{3}{(x-1)^{2}}$
(C) $\frac{2}{x+2}+\frac{3}{(x-1)^{2}}$
(D) $\frac{2}{x-1}+\frac{2}{x+2}+\frac{3}{(x-1)^{2}}$

QUESTION FIVE

Suppose z and w are the roots of the quadratic equation $3 x^{2}+(2-i) x+(4+i)=0$. Without solving the quadratic find the value of $\bar{z}+\bar{w}$.
(A) $-\frac{2+i}{3}$
(B) $\frac{2+i}{3}$
(C) $-\frac{4+i}{3}$
(D) $\frac{4+i}{3}$

QUESTION SIX

Which of the following is a primitive of $\frac{x-1}{x^{2}+4}$?
(A) $2 \log _{e}\left(x^{2}+4\right)-2 \tan ^{-1} x+C$
(B) $\frac{1}{2} \log _{e}(2 x)-\tan ^{-1} x+C$
(C) $2 \log _{e}\left(x^{2}+4\right)-\tan ^{-1} \frac{x}{2}+C$
(D) $\frac{1}{2} \log _{e}\left(x^{2}+4\right)-\frac{1}{2} \tan ^{-1} \frac{x}{2}+C$

QUESTION SEVEN

If $w=\frac{z+1}{z+i}$ and w is imaginary, what is the locus of z ?
(A)

(B)

(C)

(D)

End of Section I

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION EIGHT (12 marks) Use a separate writing booklet. Marks
(a) Let $u=8-2 i$ and $w=4+3 i$.
(i) Find $\operatorname{Im}(u w)$.
(ii) Find $u+\bar{w}$.
(iii) Express $\frac{u}{w}$ in the form $a+i b$, where a and b are real numbers.
(b) (i) Describe the locus of those points z such that $|z-i|=|z+i|$.
(ii) Describe and sketch the locus of those points z such that $|z-i|=\sqrt{2}|z+i|$. Do not find any intercepts with the axes.
(c) (i) Find all pairs of integers x and y such that $(x+i y)^{2}=-3-4 i$.
(ii) Using part (i), or otherwise, solve the quadratic equation $z^{2}-3 z+(3+i)=0$.
(a) Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{e^{\tan x}}{\cos ^{2} x} d x$.
(b) Evaluate $\int_{3}^{8} \frac{x}{(x+1)-\sqrt{x+1}} d x$ by using the substitution $x+1=u^{2}$.
(c) (i) Find A and B such that $\frac{6 x+23}{2 x^{2}+11 x-6}=\frac{A}{2 x-1}+\frac{B}{x+6}$.
(ii) Find $\int \frac{6 x+23}{2 x^{2}+11 x-6} d x$.
(d) Using the substitution $t=\tan \frac{x}{2}$, or otherwise, evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d x}{5+3 \sin x+4 \cos x}$.
(a) A curve has parametric equations

$$
\begin{aligned}
& x=\sin \theta \\
& y=\tan \theta
\end{aligned}
$$

where $0<\theta \leq \pi$ and $\theta \neq \frac{\pi}{2}$.
Show that $\frac{d y}{d x}=\sec ^{3} \theta$ and $\frac{d^{2} y}{d x^{2}}=3 \tan \theta \sec ^{4} \theta$.
(b) Using the substitution $x=6 \cos u$, determine $\int \frac{1}{x^{2} \sqrt{36-x^{2}}} d x$.
(c) Suppose the locus of a point P in the Argand diagram has equation $|z-2 i|=1$.
(i) Sketch the locus of P as z varies.
(ii) Find the maximum and minimum values of $\arg z$, if $0<\arg z<\pi$.
(iii) Find the value of z when $\arg z$ takes the minimum value found in part (ii).

Give z in the form $a+i b$.

QUESTION ELEVEN (12 marks) Use a separate writing booklet.
(a) Use integration by parts to determine $\int x^{2} \cos x d x$.
(b) You are given that

$$
2 \cos A \sin B=\sin (A+B)-\sin (A-B)
$$

Let $S=1+2 \cos \theta+2 \cos 2 \theta+2 \cos 3 \theta$.
(i) Show that $S \times \sin \frac{\theta}{2}=\sin \frac{7 \theta}{2}$.
(ii) Hence show that $1+2 \cos \frac{2 \pi}{7}+2 \cos \frac{4 \pi}{7}+2 \cos \frac{6 \pi}{7}=0$.
(iii) By writing S as a sum of powers of $\cos \theta$, show that $\cos \frac{2 \pi}{7}$ is a solution of the polynomial equation $8 x^{3}+4 x^{2}-4 x-1=0$.
(c) Suppose z is a complex number such that $|z-1|=1$ and $\operatorname{Im}(z)>0$. Let the points O, P and Q represent $0+0 i, z$ and $z-1$ respectively.
(i) Draw a diagram showing O, P and Q.
(ii) Let $\arg (z)=\theta$. Write expressions for $\arg (z-1)$ and $\arg (z-2)$ in terms of θ.
(iii) Show that $\arg \left(\frac{z^{2}-2 z}{z-1}\right)=\frac{\pi}{2}$.
(iv) What can we deduce about the locus of the point representing $\frac{z^{2}-2 z}{z-1}$ from the result in part (iii)?
(v) Find the maximum value of $\left|\frac{z^{2}-2 z}{z-1}\right|$.

SGS Half-Yearly 2015 Form VI Mathematics Extension 2 Page 9

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Sydney Grammar School

2015
 Half-Yearly Examination
 FORM VI
 MATHEMATICS EXTENSION 2

Friday 20th February 2015

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One

A \bigcirc
B \qquad
C
D

Question Two

AB \qquad
C

D \bigcirc

Question Three

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Four

A
B
C \bigcirc
D

Question Five

$\mathrm{A} \bigcirc$
B
C

D

Question Six

A \bigcirc
B
C
D \bigcirc

Question Seven

A
B$\mathrm{C} \bigcirc$
D \bigcirc

It Y Ext II Soer 2015
HC
Q.1.
$+\frac{1}{x} \quad B$.

Q2.

$$
\begin{gathered}
z^{2}-4 i z+12=0 \\
(z-6 i)(z+2 i)=0 \\
z=6 i \text { or }-2 i
\end{gathered}
$$

Q3.

$$
\begin{aligned}
z & =2 \sqrt{2} \text { ces } \\
& =2 \sqrt{2}(\sqrt{2}+\sqrt{2} i) \\
& =2+2 i \\
-i z & =-i(2+2 i) \\
& =2-2 i \\
& =2(1-i)
\end{aligned}
$$

Q4.

$$
\begin{aligned}
\frac{9 x}{(x+2)(x-1)^{2}} & =\frac{A}{x+2}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}} \\
9 x & =A(x-1)^{2}+B(x+2)(x-1)+C(x+2) . \\
x=1 \quad 9 & =3 C, \quad C=3 \\
x=-2, \quad-18 & =9 A, \quad A=-2 \quad A .
\end{aligned}
$$

Q5

$$
\begin{aligned}
3 x^{2}+(2-i) x+(4+i) & =0 \\
z+w & =-\frac{(2-i)}{3} \\
\bar{z}+\bar{w} & =\overline{z+w} \\
& =-\frac{(2+i)}{3}
\end{aligned}
$$

6.

$$
\begin{aligned}
\int \frac{x-1}{x^{+}+4} d x & =\frac{1}{2} \int \frac{2 x}{x^{2}+4} d x-\int \frac{1}{x^{2}+4} d x-\frac{1}{2} \ln \left|x^{2}+4\right|-\frac{1}{2} \tan ^{-1} \frac{x}{2}+C \\
& =\frac{1}{2}
\end{aligned}
$$

7. let $z=x+i$ is

$$
\begin{aligned}
\omega & =\frac{x+1+i j}{x+i(y+1)} \times \frac{x-i(y+1)}{x-i(y+1)} \\
& =\frac{x(x+1)+(y x-i(y+1)(x+1)+y(y+1)}{x^{2}+(y+1)^{2}}
\end{aligned}
$$

unary if re $(\omega)=0$
ie $\quad x(x+1)+y(y+1)=0$

$$
\begin{aligned}
& x^{2}+x+y^{2}+y=0 \\
& x^{2}+x+\frac{1}{4}+y^{2}+y+\frac{1}{4}=\frac{1}{2} . \\
& \left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}=\frac{1}{2}
\end{aligned}
$$

circle centre $\left(-\frac{1}{2},-\frac{1}{2}\right)$, radius $\frac{1}{\sqrt{2}}$.

Q8.
a)
(i)

$$
\begin{aligned}
& \begin{aligned}
u \omega & =(8-2 i)(4+3 i) \\
& =32-8 i+24 i+6 \\
\operatorname{Im}(v \omega) & =16
\end{aligned}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\mu+\bar{\omega} & =8-2 i+4-3 i \\
& =12-5 i
\end{aligned}
$$

(III)

$$
\begin{aligned}
\frac{\mu}{\omega} & =\frac{8-2 i}{4+3 i} \times \frac{4-3 i}{4-3 i} \\
& =\frac{32-8 i-24 i-6}{16+9} \\
& =\frac{26-32 i}{25} \\
& =\frac{1}{25}(26-32 i)
\end{aligned}
$$

(b) (i) $|z-i|=|z+i|$

We wont the lows of all parents equidistant from i and $-i$ re the x axis or real axis or $y=0$.
ii) $\quad|z-i|=\sqrt{2}|z+i|$
let $z=x+i y$

$$
\begin{gathered}
|x+i(y-1)|=\sqrt{2}|x+i(y+1)| \\
x^{2}+(y-1)^{2}=2\left(x^{2}+(y+1)^{2}\right) \\
x^{2}+y^{2}-2 y+1=2 x^{2}+2 y^{2}+4 y+2 \\
x^{2}+y^{2}+6 y+1=0 \\
x^{2}+\left(y^{2}+6 y+9\right)=-1+9 \\
x+(y+3)^{2}=8
\end{gathered}
$$

circle centre $(0,-3)$, radius $2 \sqrt{2}$.

C.
(i)

$$
\begin{gathered}
(x+i y)^{2}=-3-4 i \\
x^{2}-y^{2}+2 x y i=-3-4 i \\
x^{2}-y^{2}=-3 \\
x y=-2 \\
y=-\frac{2}{x} \\
x^{2}-\frac{4}{x^{2}}=-3 \\
x^{4}+3 x^{2}-4=0 \\
\left(x^{2}+4\right)\left(x^{2}-1\right)=0 \\
x=1 \text { or }-1 \\
y=-2 \text { or } 2 \\
(1-2 i) \text { or }(-1+2 i)
\end{gathered}
$$

(ii)

$$
\begin{aligned}
& z^{2}-3 z+(3+i)=0 \\
& z=\frac{3 \pm \sqrt{9-4(3+i)}}{2} \\
&=\frac{3 \pm \sqrt{-3-4 i}}{2} \\
&=\frac{3 \pm(1-2 i)}{2} \\
&=\frac{4-2 i \text { or } \frac{2+2 i}{2}}{2} \\
&=(2-i) \text { or }(1+i)
\end{aligned}
$$

Q9.
(a)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \frac{e^{\tan x}}{\cos ^{2} x} d x & =\int_{0}^{\frac{\pi}{4}} \sec ^{2} x e^{\tan x} d x \\
& =\left[e^{\tan x}\right]_{0}^{\frac{\pi}{4}} \\
& =e^{-1}
\end{aligned}
$$

(b) $\int_{3}^{8} \frac{x}{(x+1)-\sqrt{x+1}} d x$
$=\int_{2}^{3} \frac{u^{2}-1}{\mu^{2}-u} 2 u d u$

$$
\begin{gathered}
x+1=u^{2} \\
d x=2 u d u \\
x \mid 8 \\
\hline u
\end{gathered} \frac{3}{} \begin{aligned}
& 8 \\
& \hline u
\end{aligned}
$$

$$
=2 \int_{2}^{3} \frac{(u+1)(u-1)}{u-1} d u
$$

$$
=2 \int_{2}^{3}(u+1) d u
$$

$$
\left.=\mu^{2}+2 \mu\right]_{2}^{3}
$$

$$
=(9+6)-(4+4)
$$

$$
=7
$$

C.

$$
\begin{aligned}
& \text { (i) } \begin{aligned}
\frac{6 x+23}{2 x^{2}+11 x-6} & =\frac{A}{2 x-1}+\frac{B}{x+6 .} \\
x=-6, \quad 6 x+23 & =A(x+6)+B(2 x-1) . \\
x=13 & =-13 B \Rightarrow B=1 \\
x= & \Rightarrow \quad \frac{1}{2}, \quad 26
\end{aligned} \quad \frac{B}{2} A \Rightarrow A=4
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
\int \frac{6 x+23}{2 x^{2}+11 x-6} d x & =\int \frac{4}{2 x-1}+\frac{1}{x+6} d x \\
& =2 \ln (2 x-1)+\ln (x+6)+C
\end{aligned}
$$

$$
\text { (d) } \begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \frac{d x}{5+3 \sin x+4 \cos x} \\
= & \int_{0}^{1} \frac{2 d t}{5+\frac{6 t}{1+t^{2}}+\frac{4-4 t^{2}}{1+t^{2}}} \times \frac{1}{\left(1+t^{2}\right)} \\
= & \int_{0}^{1} \frac{2 d t}{5+5 t^{2}+6 t+4-4 t^{2}} \\
= & \int_{0}^{1} \frac{2 d t}{t^{2}+6 t+9} \\
= & 2 \int_{0}^{1}\left(t^{1}+3\right)^{-2} d t
\end{aligned}
$$

$$
\begin{aligned}
& =-2\left[(t+3)^{-1}\right]_{0}^{1} \\
& =-2\left[\frac{1}{4}-\frac{1}{3}\right] \\
& =-2 x-\frac{1}{12} \\
& =\frac{1}{6}
\end{aligned}
$$

Q 10.
a).

$$
\begin{aligned}
x & =\sin \theta \\
\frac{d x}{d \theta} & =\cos \theta \\
y & =\tan \theta \\
\frac{d y}{d \theta} & =\sec ^{2} \theta \\
\frac{d y}{d x} & =\frac{d y}{d \theta} \frac{d \theta}{d x} \\
& =\frac{\sec ^{2} \theta}{\cos \theta} \\
& =\sec ^{3} \theta \\
\frac{d^{2} y}{d x^{2}} & =\frac{d\left(\sec ^{3} \theta\right)}{d x} \\
& =\frac{d\left(\sec ^{3} \theta\right)}{d \theta} \times \frac{d \theta}{d x} \\
& =3 \sec ^{2} \theta \cdot \sec \theta \operatorname{ten} \theta \frac{d \theta}{d x} \\
& =3 \sec ^{3} \theta \tan \theta \frac{1}{\cos \theta} . \\
& =3 \tan ^{2} \theta \sec 4 \theta
\end{aligned}
$$

b)

$$
x=6 \cos u
$$

c)
(i)

$$
\begin{aligned}
& \int \frac{1}{x^{2} \sqrt{36-x^{2}}} d x \\
& d x=-\operatorname{cin} u d u \\
& \sqrt{36-x^{2}}=\sqrt{36-36 \cos ^{2} u} \\
& =65 \operatorname{in} \mu \text {. } \\
& =\int \frac{1}{36 \cos ^{2} u \cos x}(-6 \sin u d u) \text {. } \\
& =-\int \frac{1}{36 \cos ^{2} t} d x \\
& =-\frac{1}{36} \int \sec ^{2} u d x \\
& =-\frac{1}{36} \tan u+c \text {. } \\
& =-\frac{1}{36} \frac{\sqrt{36-x^{2}}}{x}+C
\end{aligned}
$$

ii)

$$
\begin{aligned}
\angle C O P_{0} & =\frac{\pi}{6} \\
\text { so } \theta & =\frac{\pi}{2}-\frac{\pi}{2} \\
& =\frac{\pi}{3} .
\end{aligned}
$$

minimum value of $\arg z$ is $\frac{\pi}{3}$
So maximum value of $\arg z$ is $2 \pi-\frac{\pi}{3}$

$$
=\frac{2 \pi}{3}
$$

111) At $P_{0}, Z=\sqrt{3}\left(\cos \frac{\pi}{3}+c \sin \frac{\pi}{3}\right)$

$$
\begin{aligned}
& =\sqrt{3}\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \\
& =\frac{\sqrt{3}}{2}+\frac{i 3}{2}
\end{aligned}
$$

QII.
(a)

$$
\begin{aligned}
\int x^{2} \cos x d & =x^{2} \sin x-\int 2 x \sin x d x \\
& =x^{2} \sin x-2\left[-x \cos x-\int-\cos x d x\right] \\
& =x^{2} \sin x+2 x \cos x-2 \sin x+c
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
\text { LHS }= & 3 \times \sin \frac{\theta}{2} \\
= & \sin \frac{\theta}{2}(1+2 \cos \theta+2 \cos 2 \theta+2 \cos 3 \theta) \\
= & \sin \frac{\theta}{2}+2 \cos \theta \sin \frac{\theta}{2}+2 \cos 2 \theta \sin \frac{\theta}{2}+ \\
& \quad 2 \cos 3 \theta \sin \frac{\theta}{2} \\
= & \sin \frac{\theta}{2}+\left(\sin \frac{3 \theta}{2}-\sin \frac{\theta}{2}\right)+\left(\sin \frac{\operatorname{si\theta }}{2}-\sin \frac{\theta}{2}\right) \\
& +\left(\sin \frac{2 \theta}{2}-\sin \frac{5 \theta}{2}\right) \\
= & \sin \frac{\theta \theta}{2} \\
= & \text { RHS }
\end{aligned}
$$

ii) Let $\theta=\frac{2 \pi}{7}$
then $\sin \frac{\pi}{7}\left(1+2 \cos \frac{2 \pi}{7}+2 \cos \frac{4 \pi}{7}+2 \cos \frac{6 \pi}{7}\right)$

$$
\begin{aligned}
& =\sin \frac{7}{2}\left(\frac{2 \pi}{7}\right) \\
& =\sin \pi \\
& =0
\end{aligned}
$$

How $\sin \frac{\pi}{7} \pm 0$ so $1+2 \cos \frac{2 \pi}{7}+2 \cos \frac{4 \pi}{7}+2 \cos \frac{6 \pi}{7}$

$$
=0
$$

iii)

$$
\begin{aligned}
S & =1+2 \cos \theta+2 \cos 2 \theta+2 \cos 3 \theta \\
& =1+2 \cos \theta+2\left(2 \cos ^{2} \theta-1\right)+2\left(4 \cos ^{3} \theta-3 \cos \theta\right)
\end{aligned}
$$

aside

$$
\begin{aligned}
\cos 3 \theta & =\cos \theta \cos 2 \theta-\sin \theta \sin 2 \theta \\
& =\cos \theta\left(2 \cos ^{2} \theta-1\right)-2 \cos \theta\left(1-\cos ^{2} \theta\right) \\
& =4 \cos ^{3} \theta-3 \cos \theta
\end{aligned}
$$

So

$$
\begin{aligned}
S & =8 \cos ^{3} \theta+4 \cos ^{2} \theta-4 \cos \theta-1 \\
& =0 \quad \operatorname{sos} \theta=\frac{2 \pi}{7}
\end{aligned}
$$

So $x=\cos \frac{2 \pi}{7}$ es a solution

$$
\text { of } 8 x^{3}+4 x^{2}-4 x-1=0
$$

c.

(ii) Call $(1,0) R_{1} \quad(2,0) S$.

Then $O R=R P=1$
So $\triangle O P R$ is isosceles
So $\angle R O P=\angle O P R=\theta$
The exterior angle of a triangle equals
the seen of the interior opposite angles
So $\angle P R S=2 \theta$
le $\arg (z-1)=20$
$O R=R P=R S=1$, So $\angle O P S$ an an angle
un u semisurcla
So $\angle O P S=\frac{\pi}{2}$.
So $\angle P S X=0+\frac{\pi}{2}$, ext angle of $\triangle O P S$.
ie $\arg (z-\alpha)=\theta+\frac{\pi}{2}$
III)

$$
\begin{aligned}
\arg \left(\frac{z^{2}-2 z}{z-1}\right) & =\arg \frac{z(z-2)}{z-1} \\
& =\arg z+\arg (z-2)-\arg (z-1) \\
& =\theta+\theta+\frac{\pi}{2}-2 \theta \\
& =\frac{\pi}{2}
\end{aligned}
$$

N) It lies on the upper half of the imaginary axis
v) Let $z=1+\cos \alpha$

$$
\begin{aligned}
& \frac{z(z-2)}{z-1}=\frac{(\cos \alpha+1)(\cos \alpha-1)}{\cos \alpha} \\
&=\frac{\cos 2 \alpha-1}{\cos \alpha} \times \frac{\cos (-\alpha)}{\cos (-\alpha)} \\
&=\cos \alpha-\operatorname{cis}(-\alpha) \\
&=2 \sin \alpha \text { when h has a } \\
& \text { maximum of } 2
\end{aligned}
$$

So maximum value of $\left|\frac{z^{2}-2 z}{z-1}\right|$ is 2 .

