

SYDNEY GRAMMAR SCHOOL

2015 Half-Yearly Examination

FORM VI

MATHEMATICS EXTENSION 2

Friday 20th February 2015

General Instructions

- Writing time 1 hour 30 minutes
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 55 Marks

• All questions may be attempted.

Section I – 7 Marks

- Questions 1–7 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II – 48 Marks

- Questions 8–11 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eight.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets 4 per boy
- Multiple choice answer sheet
- Candidature 73 boys

Examiner MLS

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

Which of the following represents the complex number $\sqrt{3} - i$ expressed in modulus–argument form?

- (A) $2 \operatorname{cis} \frac{\pi}{6}$
- (B) $2 \operatorname{cis}\left(-\frac{\pi}{6}\right)$
- (C) $2 \operatorname{cis} \frac{2\pi}{3}$
- (D) $2 \operatorname{cis} \left(-\frac{2\pi}{3}\right)$

QUESTION TWO

What are the solutions to the quadratic equation $z^2 - 4iz + 12 = 0$?

- (A) -6i or 2i
- (B) 6i or -2i
- (C) $2 + 2\sqrt{2}i \text{ or } 2 2\sqrt{2}i$
- (D) $2i + 2\sqrt{2}$ or $2i 2\sqrt{2}$

QUESTION THREE

Which of the following represents the complex number -iz where $|z| = 2\sqrt{2}$ and $\arg(z) = \frac{\pi}{4}$?

- (A) 2(1-i)
- (B) 2(1+i)
- (C) 2(-1+i)
- (D) 2(-1-i)

Exam continues next page ...

1

1

1

QUESTION FOUR

The expression $\frac{9x}{(x+2)(x-1)^2}$ can be expressed in partial fractions as:

(A)
$$\frac{2}{x-1} - \frac{2}{x+2} + \frac{3}{(x-1)^2}$$

(B)
$$\frac{2}{x+2} - \frac{3}{(x-1)^2}$$

(C)
$$\frac{2}{x+2} + \frac{3}{(x-1)^2}$$

(D)
$$\frac{2}{x-1} + \frac{2}{x+2} + \frac{3}{(x-1)^2}$$

QUESTION FIVE

Suppose z and w are the roots of the quadratic equation $3x^2 + (2 - i)x + (4 + i) = 0$. **1** Without solving the quadratic find the value of $\overline{z} + \overline{w}$.

(A)
$$-\frac{2+i}{3}$$

(B) $\frac{2+i}{3}$
(C) $-\frac{4+i}{3}$
(D) $\frac{4+i}{3}$

QUESTION SIX

Which of the following is a primitive of $\frac{x-1}{x^2+4}$?

- (A) $2\log_e(x^2+4) 2\tan^{-1}x + C$
- (B) $\frac{1}{2}\log_e(2x) \tan^{-1}x + C$

(C)
$$2\log_e(x^2+4) - \tan^{-1}\frac{x}{2} + C$$

(D)
$$\frac{1}{2}\log_e(x^2+4) - \frac{1}{2}\tan^{-1}\frac{x}{2} + C$$

Exam continues overleaf ...

1

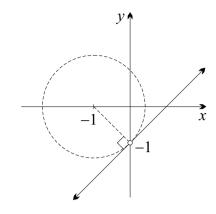
1

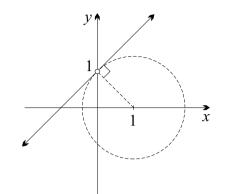
(B)

QUESTION SEVEN

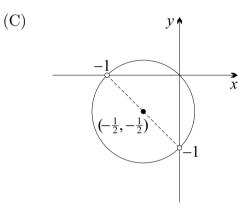
(A)

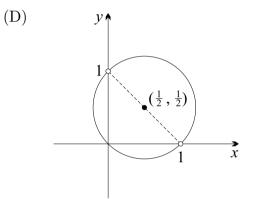
If $w = \frac{z+1}{z+i}$ and w is imaginary, what is the locus of z?

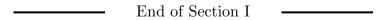




1







Exam continues next page ...

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION EIGHT (12 marks) Use a separate writing booklet. Marks (a) Let u = 8 - 2i and w = 4 + 3i. 1 (i) Find Im(uw). 1 (ii) Find $u + \overline{w}$. (iii) Express $\frac{u}{w}$ in the form a + ib, where a and b are real numbers. $\mathbf{2}$ (i) Describe the locus of those points z such that |z - i| = |z + i|. 1 (b) (ii) Describe and sketch the locus of those points z such that $|z - i| = \sqrt{2} |z + i|$. 3 Do not find any intercepts with the axes. (i) Find all pairs of integers x and y such that $(x + iy)^2 = -3 - 4i$. $\mathbf{2}$ (c) (ii) Using part (i), or otherwise, solve the quadratic equation $z^2 - 3z + (3 + i) = 0$. $\mathbf{2}$

QUESTION NINE (12 marks) Use a separate writing booklet.

(a) Evaluate
$$\int_0^{\frac{\pi}{4}} \frac{e^{\tan x}}{\cos^2 x} dx.$$
 2

Marks

3

1

(b) Evaluate
$$\int_{3}^{8} \frac{x}{(x+1) - \sqrt{x+1}} dx$$
 by using the substitution $x + 1 = u^2$.

(c) (i) Find A and B such that
$$\frac{6x+23}{2x^2+11x-6} = \frac{A}{2x-1} + \frac{B}{x+6}$$
. 2

(ii) Find
$$\int \frac{6x+23}{2x^2+11x-6} dx.$$

(d) Using the substitution $t = \tan \frac{x}{2}$, or otherwise, evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{5+3\sin x+4\cos x}$.

QUESTION TEN (12 marks) Use a separate writing booklet.

(a) A curve has parametric equations

$$x = \sin \theta$$
$$y = \tan \theta$$

where $0 < \theta \le \pi$ and $\theta \ne \frac{\pi}{2}$. Show that $\frac{dy}{dx} = \sec^3 \theta$ and $\frac{d^2y}{dx^2} = 3 \tan \theta \sec^4 \theta$.

- (b) Using the substitution $x = 6 \cos u$, determine $\int \frac{1}{x^2 \sqrt{36 x^2}} dx$.
- (c) Suppose the locus of a point P in the Argand diagram has equation |z 2i| = 1.
 - (i) Sketch the locus of P as z varies.
 - (ii) Find the maximum and minimum values of $\arg z$, if $0 < \arg z < \pi$.
 - (iii) Find the value of z when $\arg z$ takes the minimum value found in part (ii). Give z in the form a + ib.

L	1	
	3	
[2	

3

Exam continues overleaf ...

3

QUESTION ELEVEN (12 marks) Use a separate writing booklet.

- (a) Use integration by parts to determine $\int x^2 \cos x \, dx$. $\mathbf{2}$
- (b) You are given that

$$2\cos A\sin B = \sin(A+B) - \sin(A-B).$$

Let $S = 1 + 2\cos\theta + 2\cos 2\theta + 2\cos 3\theta$.

- (i) Show that $S \times \sin \frac{\theta}{2} = \sin \frac{7\theta}{2}$.
- (ii) Hence show that $1 + 2\cos\frac{2\pi}{7} + 2\cos\frac{4\pi}{7} + 2\cos\frac{6\pi}{7} = 0.$
- (iii) By writing S as a sum of powers of $\cos \theta$, show that $\cos \frac{2\pi}{7}$ is a solution of the polynomial equation $8x^3 + 4x^2 - 4x - 1 = 0.$
- (c) Suppose z is a complex number such that |z 1| = 1 and Im(z) > 0. Let the points O, P and Q represent 0 + 0i, z and z - 1 respectively.
 - (i) Draw a diagram showing O, P and Q.
 - (ii) Let $\arg(z) = \theta$. Write expressions for $\arg(z-1)$ and $\arg(z-2)$ in terms of θ .
 - (iii) Show that $\arg\left(\frac{z^2-2z}{z-1}\right) = \frac{\pi}{2}$.

(iv) What can we deduce about the locus of the point representing $\frac{z^2-2z}{z-1}$ from the 1 result in part (iii)?

(v) Find the maximum value of
$$\left|\frac{z^2 - 2z}{z - 1}\right|$$

End of Section II

END OF EXAMINATION

1

1

 $\mathbf{2}$

Marks

	1	
[1	
Г	1	

2	
-	

BLANK PAGE

The following list of standard integrals may be used:

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

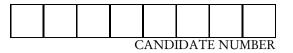
$$\int \sec^2 ax dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \operatorname{NOTE} : \ln x = \log_e x, \quad x > 0$$



SYDNEY GRAMMAR SCHOOL

2015 Half-Yearly Examination FORM VI MATHEMATICS EXTENSION 2 Friday 20th February 2015

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One					
A 🔿	В ()	С ()	D ()		
Question Two					
A 🔿	В ()	С ()	D ()		
Question Three					
A 🔿	В ()	С ()	D ()		
Question Four					
A 🔿	В ()	С ()	D ()		
Question Five					
A 🔿	В ()	С ()	D ()		
Question Six					
A 🔿	В ()	С ()	D ()		
Question Seven					
A 🔾	В ()	С ()	D 🔘		

HY Ext II Sem 2015 MC × B. QI. Q2. 22-402+12=0 (z - 6i)(z + 2i) = 0B 2 = 6 is or - 2i Z = 21/2 cus 74 Q3. = 202 (t2 + t2 i) = 2+26 -iz = -i(2+2i) A. = 2-2i = 2(1-1) Q4. $\frac{9x}{(x+2)(x-1)^2} = \frac{A}{x+2} + \frac{B}{x-1} + \frac{C}{(2-1)^2}$ $\begin{array}{rcl}
9\chi &=& A(\chi-1)^{2} + B(\chi+1)(\chi-1) + C(\chi+2) \\
\chi &=& 1 & 9 = 3C, & C = 3 \\
\chi &=& -2, & -18 = 9A, & A = -2 & n
\end{array}$ A. 3x + (2-i)x + (4+i) =0 65 2 + au = -(2-i) $\overline{z} + \overline{\omega} = \overline{z} + \overline{\omega}$ A. = -(2+i)

6. $\int \frac{x^{-1}}{x^{+4}} dx = \frac{1}{2} \int \frac{2x}{x^{+4}} dx - \int \frac{1}{x^{2}+4} dx D$ = 2lu/2014/ - 2 ton 2 + C

let z = x + iy $\omega = \frac{x+i + iij}{x + i(y+i)} \times \frac{x - i(y+i)}{x - i(y+i)}$ 7, = $\frac{\chi(\chi+i) + (y)\chi - i(y+i)(\chi+i) + y(y+i)}{\chi^2 + (y+i)^2}$ imag if recui =0 ie $\chi(x+i) + \chi(y+i) = 0$ cercle centre (-2, -2), radius 1/2.

Q8. a) (1) uw = (8-2i)(4+3i)= 32-8i+24i+6Im(uw) = 16u+ū = 8-2i + 4-3i = 12-5i (ii) $(11) \frac{11}{22} = \frac{8-2i}{4+3i} \times \frac{4-3i}{4-3i} \vee$ = 32-81-241-6 = 26 - 3211 = 25(26-322) (b) (i) 1z-il=1z+il We want the locus of all prents equidissout from i and -i 10 the xasis or real aris or

11) /z-i/= Va/z+i/ let z= z+ uj $|x+i(y-i)| = \overline{02}|x+i(y+i)|$ $\chi^{2} + (y - i)^{2} = 12(\chi^{2} + (y + i)^{2})$ $\chi^{2} + y^{2} - 2y + 1 = 2\chi^{2} + 2y^{2} + 4y + 2$ x + y + + 6 y + 1 = 0 x~+ (y~+6y+9) = -1+9. x+ (y+3)2 = 8 cercle centre (0,-3), radius 212 x keed centre of radius to he clear.

C. (1) G+iy) = -3-46 x-y" + 2246 = -3-46 $2^{2} - y^{2} = -3$ 2y = -2 $y = -\frac{1}{3}$ 22-41=-3 $\frac{x^{4} + 3x^{2} - 4}{(x^{2} + 4)(x^{2} - 1)} = 0$ $\frac{x^{2} = 1 \text{ or } -1}{x^{2} = 1 \text{ or } -1}$ y = -2 or 2 \sim (1-2i) or (-1 +2i) (ii) 22-32+(3+2)=0 Z = 3 ± 19-4(3+2) = 3± 1-3-41 $=3 \pm (1 - 2i)$ = 4-20 01 2+20 = (2-i) or (1+i)

 $\int \frac{E}{\cos^2 x} dx = \int \sec^2 x e^{-\frac{1}{2}} dx$ (a) $= \left[e^{jaux} \right]_{0}^{\overline{4}}$ - e-/ (b) $\int \frac{z}{(x+i) - vx+i} dx$ $\mathcal{I}+1 = \mathcal{U}^2$ doc= 2 u du 283 $= \int_{2}^{3} \frac{u^{2}-1}{u^{2}-u} \quad \text{and} \quad u$ $= 2 \int_{-\infty}^{3} \frac{(u+i)(u-i)}{u-i} du$ = 2 (cu+i) du le + zu] = (9+6) - (4+4)= 7.

C. $\begin{array}{rcl} (i) & \underline{6x+23} & = & \underline{A} & \underline{+} & \underline{B} \\ & \underline{2x^2+11x-6} & & \underline{2x-1} & \underline{+} & \underline{-} & \underline{-} \\ \end{array}$ 6x + 23 = A(a+6) + B(2x-1). $x = -6, -13 = -13B \implies B = 1$ $x = \frac{1}{2}, 26 = \frac{13}{2}A \implies A = 4$ $\begin{array}{ll} (ii) \int \frac{6x+23}{2x^2+11x-6} \, dx &= \int \frac{4}{2x-1} \, + \, \frac{1}{2x+6} \, dx \\ &= 2\ln(2x-1) \, + \, \ln(x+6) \, + C \end{array}$ $\begin{array}{c} (d) \int_{0}^{\frac{\pi}{2}} \frac{dx}{5+3\sin x + 4\cos x} & \begin{array}{c} let t = 4\cos x \\ \frac{dt}{5+3\sin x + 4\cos x} & \begin{array}{c} \frac{dt}{dx} = \frac{1}{2} \operatorname{Aec}^{2} \frac{3u}{2} \\ \frac{dx}{2} & = \frac{1}{2} (4\cos^{2} t + 1) \\ \frac{dt}{3u} = \frac{1}{$ $= \int \frac{2dt}{5+5t^2+6t+4-4t^2}$ x 2 0 t 1 0 $= \int \frac{2dt}{t^2 + 6t + 9} V$

 $= 2 \left(\frac{(t+3)^{-2}}{2} \right)^{-2} dt$

= -2 [4 - 3]

 $= -2 \times -\frac{1}{12}$ $= -\frac{1}{6}$

Q10. a) $\frac{\partial c}{\partial x} = con \Theta$ y = tono rule de = seco dy = dy da= secto = sec³0 $= \frac{d(sec^3 \Theta)}{dx}$ $= \frac{d(per^{3}\theta)}{d\theta} \times \frac{d\theta}{dx}$ = 3 secto, seco tano da 3 secto tano diso. C = 3 tong sec "O

b) x = 6 uda = - 65 Ince du 22036-222 dx 136-20 = V36-36405-U = 651ML. = (- 651mm (- 651mm der), U = - [36 cosin der = - 36 Spectru der 136-22 - 36 tonu + C, he $-\frac{1}{36}$ $\frac{\sqrt{36-2^{2}}}{2c}$ + C - against Traipile L c)Cir 12-2il centre 2 x

ii) C_2 0 Po < COP. = #6 2 50 日= 笠- 芒 = #3 minimum value of argz is \$ So maximum value of arg Z is 2TT-IF = 211 At Po, Z= U3 (un 5 + LSIN 5) 111) = 13(2+1号) $= \frac{13}{2} + \frac{13}{2}$

Q11. (a) $\int x^2 \cos x d = x^2 \sin x - \int 2x \sin x dx V$ = $x^2 \sin x - 2 \left[-x \cos x - \int -x \cos x dx \right]$ = ISINX + 1X CESX - 2SINX +CV

61 i) LHS = 3 × 5/1 2 $= \sin \frac{9}{2} (1 + 2 \cos \frac{9}{2} + 2 \cos \frac{9}{2}$ 200305100 = SIND + (SIN 30 - 5/100) + (SIN 50 - 5/130) + (SIN 70 - SIN 50) = SIN 70 - RHS 11) Let 0 = 21J Hon SINIE (1+200215 + 200415 + 200615) = SIN - (25) = sin T = 0 HOW SINT TO SO 1+2002 + 2004 + 2006 20

jíi) S=1+2000+20020+20030 = 1+ 2000 + 2(2000-1) + 2(40030-300) $\begin{bmatrix} asile & un30 = un8 cus20 - Singsin20 \\ = un0(2(n^{2}0-i)-2us0(1-un0) \\ = 4un^{3}0 - 3cus0 \end{bmatrix}$ $S_0 = S co^3 \theta + 4 co^2 \theta - 4 co^3 \theta - 1$ = 0 for $\theta = 2II$ So x= us 21 is a solution of 8x + 4x - 4x - 1 = 0 11

C. y (i)

(ii) Call (1,0) R (2,0) S. Then OR = RP = 1 So DOPR is isosceles SO ZROP = ZOPR = O The exterior angle of a treangle equals the seen of the enterior opposite angles So ZPRS = 20 10 arg(Z-1) = 20 OR = RP = RS = 1, So 2 OPS is an angle in a semi cercle So ∠OPS = 芝.

So <PSX = 0+ 5, ext angle of 1e arg (Z-2) = 0+ 5.

111) $arg\left(\frac{2^{2}-22}{2-1}\right) = arg\frac{z(z-2)}{2-1}$ = arg Z + arg (Z-2) - arg (Z-1) = 0 + 0 + 3 - 20 = 12 IN It less on the upper half of the V) Let Z = 14 cus d $\frac{2(z-2)}{z-1} = (\cos \alpha + i)(\cos \alpha - i)$ $= \frac{\cos 2\alpha - 1}{\cos \alpha} \times \frac{\cos(-\alpha)}{\cos(-\alpha)}.$ = cesa - ces(-a) = 2 SINX, which has a waximum of 2 So maximum value of 22-22/10 2. //