Sydney Grammar School

FORM VI

MATHEMATICS EXTENSION 2

Thursday 25th February 2016

General Instructions

- Writing time - 1 hour 30 minutes
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 60 Marks

- All questions may be attempted.

Section I-8 Marks

- Questions 1-8 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 52 Marks

- Questions 9-12 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Nine.

Checklist

- SGS booklets - 4 per boy
- Multiple choice answer sheet
- Reference sheet
- Candidature - 74 boys
Examiner
RCF

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The expression $i^{3}+i^{6}+i^{9}+i^{12}+i^{15}$ is equal to:
(A) $-i$
(B) i
(C) 1
(D) -1

QUESTION TWO

Suppose $z=r(\cos \theta+i \sin \theta)$ is a complex number. The complex number z^{2} will be:
(A) $r^{2}\left(\cos \theta^{2}+i \sin \theta^{2}\right)$
(B) $2 r(\cos 2 \theta+i \sin 2 \theta)$
(C) $r^{2}(\cos 2 \theta+i \sin 2 \theta)$
(D) $2 r\left(\cos \theta^{2}+i \sin \theta^{2}\right)$

QUESTION THREE

What are the solutions to the quadratic equation $(z-2-i)(z+3+2 i)=0$?
(A) $z=2-i$ or $-3+2 i$
(B) $z=-2-i$ or $3+2 i$
(C) $z=2+i$ or $-3-2 i$
(D) $z=-2+i$ or $3-2 i$

QUESTION FOUR

Which of the following is a primitive of $\frac{e^{\sqrt{x}}}{\sqrt{x}}$?
(A) $2 e^{\sqrt{x}}$
(B) $\left(e^{\sqrt{x}}\right)^{2}$
(C) $\ln \left(e^{-\sqrt{x}}\right)$
(D) $\sqrt{x} e^{\sqrt{x}}$

QUESTION FIVE

Consider the function $f(x)=2 \cos ^{-1}\left(\frac{1-x}{2}\right)$. What is the gradient of the graph $y=f(x) \quad \mathbf{1}$ at its y-intercept?
(A) $-\frac{4}{\sqrt{3}}$
(B) $\frac{4}{\sqrt{3}}$
(C) $-\frac{2}{\sqrt{3}}$
(D) $\frac{2}{\sqrt{3}}$

QUESTION SIX

A primitive of $2 \cot x$ is:
(A) $\frac{1}{2} \ln \left(\cos ^{2} x\right)$
(B) $2 \ln (\cos x)$
(C) $\frac{-2}{\sin ^{2} x}$
(D) $2 \ln (\sin x)$

QUESTION SEVEN

The Kappa curve has the Cartesian equation

$$
x^{2} y^{2}+y^{4}=a^{2} x^{2}
$$

where a is a known constant. Which of the following is $\frac{d y}{d x}$?
(A) $\frac{-x y}{x^{2}+2 y^{2}}$
(B) $\frac{x\left(a^{2}-y^{2}\right)}{y\left(x^{2}+2 y^{2}\right)}$
(C) $\frac{2\left(a^{2}-y^{2}\right)}{x y\left(x^{2}+2 y^{2}\right)}$
(D) $\frac{x\left(a^{2}-y^{2}\right)}{y^{3}}$

QUESTION EIGHT

The diagram above shows a square $O A B C$ in the complex plane. The vertex A represents the complex number $1+i \sqrt{3}$. Which of the following complex numbers represents point D, the intersection of the diagonals?
(A) $\left(\frac{1-\sqrt{3}}{2}\right)+\left(\frac{\sqrt{3}-1}{2}\right) i$
(B) $\left(\frac{1-\sqrt{3}}{2}\right)+\left(\frac{1+\sqrt{3}}{2}\right) i$
(C) $\left(\frac{1+\sqrt{3}}{2}\right)+\left(\frac{\sqrt{3}-1}{2}\right) i$
(D) $\left(\frac{1+\sqrt{3}}{2}\right)+\left(\frac{1-\sqrt{3}}{2}\right) i$

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION NINE (13 marks) Use a separate writing booklet. Marks
(a) Let $w=1+3 i$ and $z=2-2 i$.
(i) Evaluate $i^{3} z+z$.
(ii) Find $\overline{w-z}$.
(iii) Evaluate $|w+z|^{2}$.
(iv) Find $\operatorname{Re}(w z)$.
(v) Express $\frac{z}{w}$ in the form $a+i b$, where a and b are real numbers in simplest form.
(b) (i) Express $u=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}$ and $v=1-i \sqrt{3}$ in modulus-argument form.
(ii) Hence, or otherwise, find $\arg \left(u^{2} v\right)$.
(c) Sketch the locus of those points z in the complex plane such that $|z-i|=|z+1|$.
(d) (i) Find the two square roots of $-7+24 i$.
(ii) Hence, or otherwise, solve the quadratic equation $z^{2}+(1+2 i) z+(1-5 i)=0$.
(a) (i) Find $\int \frac{x}{25-4 x^{2}} d x$.
(ii) Find $\int \frac{x}{\left(25-4 x^{2}\right)^{3}} d x$.
(iii) Find $\int \frac{1}{\sqrt{25-4 x^{2}}} d x$.
(b) Use partial fractions to find $\int \frac{x+1}{x^{2}+4 x-21} d x$.
(c) (i) Use the compound angle formulae to show that

$$
\cos \alpha \cos \beta=\frac{1}{2} \cos (\alpha+\beta)+\frac{1}{2} \cos (\alpha-\beta) .
$$

(ii) Hence evaluate $\int_{0}^{\frac{\pi}{2}} \cos 6 x \cos 5 x d x$.
(d) Use integration by parts to evaluate $\int_{0}^{1} 4 x e^{2 x} d x$.
(a) (i) Show that $\frac{d}{d u} \log _{e}\left(u+\sqrt{a^{2}+u^{2}}\right)=\frac{1}{\sqrt{a^{2}+u^{2}}}$, where a is a constant.
(ii) Hence evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{4+\sin ^{2} x}} d x$.
(b) Use the substitution $t=\tan \frac{x}{2}$ to find $\int \frac{1}{1+\cos x+\sin x} d x$.
(c) A complex number satisfies $|z-4| \leq 2$ and $\operatorname{Im}(z) \leq 0$.
(i) Sketch the locus of z.
(ii) Show that $-\frac{\pi}{6} \leq \arg z \leq 0$.
(d) By rationalising the numerator of the integrand, evaluate $\int_{\frac{1}{2}}^{1} \sqrt{\frac{x}{2-x}} d x$.
(e) Use a suitable substitution to evaluate $\int_{3}^{9} \frac{3}{(9+x) \sqrt{x}} d x$.
(a) Determine the locus specified by $\operatorname{Im}\left(z+\frac{1}{z}\right)=0$.
(b) Let $I_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \sin x d x$.
(i) Prove that $I_{n}=n\left(\frac{\pi}{2}\right)^{n-1}-n(n-1) I_{n-2}$ for $n \geq 2$.
(ii) Hence evaluate $I_{4}=\int_{0}^{\frac{\pi}{2}} x^{4} \sin x d x$.
(c) Find $\int \sec ^{5} x d x$.

You may use the fact that $\int \sec ^{3} x d x=\frac{1}{2}(\sec x \tan x+\log (\sec x+\tan x))+C$.
(d) In the Fibonacci sequence

$$
1,1,2,3,5,8, \ldots
$$

the terms of the sequence are defined recursively by the equation

$$
F_{n+1}=F_{n}+F_{n-1}
$$

where $F_{1}=1, F_{2}=1$ and $n \geq 2$.
Use Induction to prove that, for $n \geq 2$,

$$
F_{n}^{2}-F_{n+1} F_{n-1}=(-1)^{n+1} .
$$

Sydney Grammar School

2016
Half-Yearly Examination
FORM VI
MATHEMATICS EXTENSION 2
Thursday 25th February 2016

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One

AB$\mathrm{C} \bigcirc$
D \bigcirc

Question Two

AB

$\mathrm{C} \bigcirc$
D \bigcirc

Question Three

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Four

A
B
\bigcirc
C

D

Question Five

A \bigcirc
B
C
D \bigcirc

Question Six

AB

C

D

Question Seven
A \bigcirc
B
\bigcirc
CD

Question Eight

A
B \bigcirc
C \bigcirc
D \bigcirc
(1) $\begin{aligned} i^{3}+i^{6}+i^{9}+i^{12}+i^{15} & =(-i)+(-1) \\ & =(-i)\end{aligned}$
(A)
(2) $z^{2}=r^{2} \cos 2 \theta+i \sin 2 \theta$
(3) $(z-(2+i))(z-(-3-2 i))=0$
$z=2+i$ or $-3-2 i$
(4) $\frac{d}{d x}\left(e^{\sqrt{x}}\right)=\frac{1}{2 \sqrt{x}} e^{\sqrt{x}}$
(C)
(c) $/$
$F(x)=2 e^{\sqrt{x}}$
(A)
(5) $y=200^{-1}\left(\frac{1-x}{2}\right)$
$\frac{d y}{d x}=2\left(-\frac{1}{\sqrt{1-\left(\frac{-x}{2}\right)^{2}}} \times\left(-\frac{b}{6}\right)\right)$

$$
=\frac{1}{\sqrt{1-\left(\frac{-x}{2}\right)^{2}}}
$$

$\begin{aligned}\left(\frac{d y}{d x}\right)_{x=0} & =\frac{1}{\sqrt{1-1 / 4}} \\ & =\frac{2}{\frac{13}{3}}\end{aligned}$
(D)
(6) $\int \frac{2 \cos x}{\sin x} d x=2 \ln (\sin x)(D)$
(7) $x^{2} y^{2}+y^{4}=a^{2} x^{2}$
(好) $2 x y^{2}+x^{2} 2 y \frac{d y}{d x}+4 y^{3} \frac{d y}{d x}=2 a^{2} x$

$$
\begin{aligned}
& =\frac{d y}{d x}\left(2 x y+4 y^{3}\right)=2 a^{2} x-2 x y^{2} \\
& d y=a^{2} x-x y^{2}
\end{aligned}
$$

Mutt Choive Summat
(1) A (2) C (3) C
(4) A (5) D (6) D
(7) B (B) B
(Imark ead)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{a^{2} x-x y^{2}}{x^{2} y+2 y} \\
& =x\left(a^{2} y^{2}\right)
\end{aligned}
$$

$$
=\frac{x\left(a^{2}-y^{2}\right)}{y\left(x^{2}+2 y^{2}\right)}
$$

Question (9)
a) $\omega=1+3 i \quad z=2-2 i$
(4)
(ii)
(iii)
(iv)
(v)
(8) A repesents $z=1+i \sqrt{3}$

C eppesents iz $-\sqrt{3}+i$ (Rotuthor, antuctode ine
B repoesent $z+i z=(1-\sqrt{3})+i(1+\sqrt{3}) 90^{\circ}$
(B)

$$
\begin{aligned}
i^{3} z+z & =(-i+1) z \\
& =(-i+1)(2-2 i) \\
& =-2 i+2 i^{2}-2 i+2 \\
& =-4 i
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
& =-4 i \sqrt{\omega-z}
\end{aligned}=\begin{aligned}
&(1+3 i)-(2-2 i) \\
&=\frac{-1+5 i}{|\omega+z|^{2}} \\
&=|3+i|^{2} \\
&=(3+i)(3-i) \\
&=9+3 i-3 i-i^{2} \\
&=10 \\
& \text { ve } \operatorname{Re}(\omega z)=\operatorname{Re}\{(1+3 i)(2-2 i)\} \\
&=\operatorname{Re}\{2+6 i-2 i+6\} \\
&=\operatorname{Re}\{8+4 i\} \\
&=8
\end{aligned}
$$

$$
\text { or } \begin{aligned}
-i & (2-2 i) \\
& +(2-2 i) \\
& =-2 i-2+2-2 i \\
& =-4 i
\end{aligned}
$$

$$
\begin{aligned}
\frac{z}{\omega} & =\frac{2-2 i}{1+3 i} \times(1-3 i)^{v} \\
& =\frac{2-2 i-6 i-6}{1+9} J
\end{aligned}
$$

$$
=\frac{-4-8 i}{10}
$$

$$
\begin{aligned}
& =\frac{-4}{10} \\
& =\frac{-(2+4 i)}{5}, \\
& =(-2)+(-4) i
\end{aligned}, b=\left(-\frac{1}{5}\right)
$$

$$
=\left(-\frac{2}{5}\right)+\left(-\frac{4}{5}\right)
$$

D represento $k(z+i z)=\left(\frac{1-\sqrt{3}}{2}\right)+i\left(\frac{1+\sqrt{3}}{2}\right)$
b) (i) $u=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}$
$\Rightarrow r=1$
$\theta=1 / 4$
$u=\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}$

$V=1-i \sqrt{3}$

$$
\begin{equation*}
\Rightarrow r=2 \tag{3}
\end{equation*}
$$

$\left.V=2 \cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right) \sqrt{\left(\frac{s}{3}+\pi\right.}+\sqrt{\text { conett }}\right)$
(ii) $\begin{aligned} \arg \left(u^{2} v\right) & =2 \times \frac{\pi}{4}+\left(-\frac{\pi}{3}\right) \\ & =\frac{\pi}{3}-\frac{\pi}{3}\end{aligned}$

$$
=\frac{\pi}{2}-\frac{\pi}{3}
$$

$=\pi / 6$.
c) Lorm of ponts equistant from $(-1,0)$ and $(0,1)$ ie pespendicins brector/

$$
\text { d)(i) } \begin{gathered}
(a+i b)^{2}=-7+24 i \\
\left.\begin{array}{l}
a^{2}-b^{2}+2 a b i=-7+24 i \\
a^{2}-b^{2}=(-7) \\
a b=12
\end{array}\right\} \sqrt{ } \text { a } 1-4
\end{gathered}
$$

$$
\begin{aligned}
& a b=12 \\
& \therefore b=4, a=3 \quad \text { or } b=(-4), a=(-3)
\end{aligned}
$$

squase voots are $3+4 i$ and $-(3+4 i)$
(ii)

$$
\begin{aligned}
& z^{2}+(1+2 i) z+(1-5 i)=0 \\
& \begin{aligned}
\Delta & =(1+2 i)^{2}-4 x 1 \times(1-5 i) \\
& =1-4+4 i-4+20 i \\
& =-7+24 i \\
z & =\frac{-(1+2 i)+3+4 i}{2} \text { or } \quad \frac{-(1+2 i)-(3+4 i)}{2} \\
& =\frac{2+2 i}{2}=1+i \quad \text { or } \quad \frac{-4-6 i}{2}=-23 i
\end{aligned}
\end{aligned}
$$

(10)
a) (i) $\int \frac{x}{25-4 x^{2}} d x=-\frac{1}{3} \ln \left|25-4 c^{2}\right|+c$
(ii) $\int \frac{x}{\left(25-4 x^{2}\right)^{3}} d x=\frac{1}{16}\left(25-4 x^{2}\right)^{-2}+c$
(iii) $\int \frac{1}{\sqrt{25-4 x^{2}}}=1 / 2 \int \frac{1}{\sqrt{\frac{\alpha-x_{1}-x^{2}}{2}}} d x$

$$
\left.=1 / \sin ^{-1}(x) x_{2}\right)+c
$$

$$
=2 \sin (2 x / 5)+C \int_{1 \rightarrow \text { coef conet }}=\frac{2 x}{}
$$

c) (i)

$$
\begin{align*}
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \tag{11
2}
\end{align*}
$$

(1)+(2)

$$
\begin{aligned}
& \cos (\alpha+\beta)+\cos (\alpha-\beta)=2 \cos \alpha \cos \beta . \\
& 2[\cos (\alpha+\beta)+\cos (\alpha-\beta)]=\cos \alpha \cos \beta \quad \text {.shan }
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \int \frac{x+1}{\left.x^{2}+4 x-21\right)} d x=\int \frac{x+1}{(x+7)(x-3)} d x \text { Let } \frac{x+1}{(x+7)(x-3)}=\frac{A}{(x+7)}+\frac{B V}{(x-3)} \\
& =\int \frac{3 / 5}{(x+7)}+\frac{2 / 5}{(x-3)} d x \quad B \quad \begin{array}{l}
\text { coer l } 10 \\
4=10 B
\end{array} \text { Pule } \\
& \begin{array}{l}
\frac{3}{} \frac{15}{(x+7)}+\frac{5}{(x-3)} \quad \begin{array}{l}
4=10 B
\end{array} \rightarrow B=2 / 5 \\
=3 / 5 \ln (x+7)+2 / 5 \ln (x-3)+C=-10 A \rightarrow A=3 / 5 /
\end{array} \\
& =\frac{1}{5}[3 \ln (x+7)+2 \ln (x-3)]+c
\end{aligned}
$$

ii)

$$
\begin{aligned}
\int_{0}^{\pi / 2} \cos 6 x \cos 5 x d x & =\int_{0}^{\pi / 2} \frac{1}{2}(\cos 1 x+\cos x) d x \\
& \left.=\frac{1}{2}\left[\frac{1}{1} \sin 1 b x+\sin x\right]_{0}^{\pi / 2}\right] \\
& =\frac{1}{2}\left[\left(11 \sin \frac{1 \pi}{2}+\sin \frac{\pi}{2}\right)-0\right] \\
& =\frac{1}{2}\left(1-\frac{1}{11}\right) \\
& =5 / 11
\end{aligned}
$$

(11)a) (i)
d)

$$
\begin{aligned}
& \int_{0}^{1} 4 x e^{2 x} d x \\
& =\left[4 x\left(2 e^{2 x}\right)\right]_{0}^{1}-\int_{0}^{1} 4 y_{2}^{2 x} d x / \frac{d u}{d x}=4 \\
& \quad v=1 e^{2 x} \\
& =\left[2 x e^{2 x}-e^{2 x}\right]^{\prime} \\
& =\left[(2 x-1) e^{2 x}\right]_{0}^{2 x}=e^{2}-\left(-1 e^{0}\right)=e^{2}+1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d u} \ln \left(u+\sqrt{a^{2}+u^{2}}\right) \\
& \quad=\frac{1}{u+\sqrt{a^{2}+u^{2}}} \times\left(1+\frac{1}{2}\left(a^{2}+u^{2}\right)^{2-2} \times 2 u\right) \\
& \quad=\frac{1+\frac{u}{\sqrt{a^{2}+u^{2}}}}{u+\sqrt{a^{2}} \times u^{2}+u^{2}} \\
& \sqrt{a^{2}+u^{2}} \\
& \\
& =\frac{\left(\sqrt{a^{2}+u^{2}}+u\right)}{\left(u+\sqrt{a^{2}+u^{2}}\right) \sqrt{a^{2}+u^{2}}} \\
& \\
& =\frac{1}{\sqrt{a^{2}+u^{2}}}
\end{aligned}
$$

(ii) $\int_{0}^{\frac{\pi}{2}} \frac{\frac{\sqrt{a^{2}+u^{2}}}{\sqrt{4+\sin ^{2} x}} d x \quad \text { is } a=2 \quad n=\sin x \quad \frac{d u}{d x}=\cos x}{}$

$$
=\left[\ln \left(\sin x+\sqrt{4+\sin ^{2} x}\right)\right]_{0}^{\frac{\pi}{2}}
$$

$$
=\ln (1+\sqrt{5})-\ln (0+2)
$$

$$
=\ln \left(\frac{1+\sqrt{5}}{2}\right)
$$

$$
\begin{aligned}
& \text { b) } I=\int \frac{1}{1+\cos x+\sin x} \quad \text { Let } \begin{aligned}
t & =\tan \left(\frac{x}{2}\right) \\
d t & =\sec ^{2}(x)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \left(x \frac{1+t^{2}}{1+t^{2}}\right) \\
& d x=\frac{2 d t}{1+t^{2}} \\
& \cos x=\frac{1-t^{2}}{1+t^{2}} \quad \sin x=\frac{2 t}{1+t}
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{2 d t}{1+t^{2}+1-t^{2}+2 t} \\
& =\int \frac{2 d t}{2+2 t} \\
& =\int \frac{d t}{1+t} \\
& =\ln |1+t|+c \\
& =\ln |1+\tan x|+c
\end{aligned}
$$

c) (i)

(ii) Minnmum and maximum arguments sceur for P, at tangent from orign in 4^{*} qued, and on x asde at an plowt on the intenal) $A B$.
d)

$$
\begin{aligned}
\int_{\frac{1}{2}}^{1} \sqrt{\frac{x}{2-x}} d x \underset{(x \sqrt{x})}{(x \sqrt{x})} & =\int_{1 / 2}^{1} \frac{x}{\sqrt{2 x-x^{2}}} d x \\
& =\int_{1 / 2}^{1} \frac{1-(1-x)}{\sqrt{2 x-x^{2}}} d x \\
& =\int_{1 / 2}^{1} \frac{1}{\sqrt{1-(1-x)^{2}}} d x-\frac{1}{2}\left[\frac{2(1-x)}{\left(2 x-x^{2}\right)^{2}} d x /\right. \\
& =\left[-\sin ^{-1}(1-x)-\sqrt{2 x-x^{2}}\right]_{1 / 2}^{1} \\
& =\left(-\sin ^{-1} 0-\sqrt{1}\right)-\left(-\sin ^{-1} 1 / \sqrt{3 / 4}\right) \\
& =-1+\frac{\pi}{6}+\sqrt{3} / 2 \\
& =\frac{\pi+3 \sqrt{3}-6}{6}
\end{aligned}
$$

e) $I=\int_{3}^{9} \frac{3}{(9+x) \sqrt{x}} d x$

$$
\begin{aligned}
& u=\sqrt{x} \\
& d u=\frac{1}{2 \sqrt{x}} d x
\end{aligned}
$$

$$
=\int_{\sqrt{3}}^{3} \frac{3 \times 2 d u}{9+u^{2}} /
$$

$$
\begin{array}{l|l|l}
x & 3 & 9 \\
\hline u & \sqrt{3} & 3
\end{array}
$$

$$
=6 \int_{\sqrt{3}}^{3} \frac{d u}{9+u^{2}}
$$

$$
=6\left[\frac{1}{3} \tan ^{-1} \frac{u}{3}\right]_{\sqrt{3}}^{3}
$$

$$
\begin{aligned}
& =2 \tan ^{-1} 1-2 \tan ^{-1}\left(\frac{1}{\sqrt{3}}\right) \\
& =\pi-\pi /
\end{aligned}
$$

$$
=\frac{\pi}{2}-\frac{\pi}{3}
$$

$=\pi / 6$.
(12) a) $\begin{aligned} \operatorname{Im} & (z+i z) \\ \text { Let } z & =x+i y . \\ z+y & =x+i y\end{aligned}$

$$
\begin{aligned}
& z+\frac{1}{z}=x+i y+\frac{1}{x+i y} \\
&=x+i y+\frac{(x-i y)}{x^{2}+y^{2}} \\
&=\frac{x^{3}+x y^{2}+i x^{2} y+i y^{3}+x-i y}{x^{2}+y^{2}} \\
&=\left(x^{3}+x y^{2}+x\right)+i\left(x^{2} y+y^{3}-y\right) \\
& x^{2}+y^{2}
\end{aligned}
$$

A neat attematre which simplyes algebra is:
$\operatorname{Im}(z)+\operatorname{Im}\left(\frac{1}{\varepsilon}\right)$
$\left(\right.$ NB $x^{2}+y^{2} \neq 0$
since $z \neq 0)$

$$
\therefore \operatorname{Im}(z+y)=0^{x^{2}+y^{2}} \Rightarrow x^{2} y+y^{3}-y=0
$$

$$
y\left(x^{2}+y^{2}-1\right)=0
$$

$\therefore y=0$ OR $x^{2}+y^{2}=1$

b) $=$
(ii)

$$
\begin{aligned}
I_{0} & =\int_{0}^{\frac{\pi}{3}} \sin x d x \\
& =[-\cos x]_{0}^{\pi / 2} \\
& =-\cos \pi \frac{3}{2}--\cos 0 \quad / \\
& =1 \\
I_{2} & =2\left(\frac{\pi}{2}\right)-2 \times 1 \times I_{0} \\
& =\pi-2 \\
I_{4} & =4\left(\frac{\pi}{2}\right)^{3}-4 \times 3 I_{2} \\
& =\frac{\pi^{3}}{2}-12 \pi+24
\end{aligned}
$$

c) $\int \sec ^{5} x d x=\int \sec ^{2} x \times \sec ^{3} x d x$

Let $\frac{d v}{d x}=\sec ^{2} x \quad v=\tan x$

$$
\left.\begin{array}{ll}
\frac{d v}{d x}=\sec ^{2} x & v=\tan x \\
u=\sec ^{3} x & \frac{d u}{d x}=3 \sec ^{2} x \times \sec x \operatorname{ta} x \\
=3 \sec ^{3} x \tan x
\end{array}\right\}
$$

$$
I=\sec ^{3} x \tan x-\int 3 \sec ^{3} x \tan ^{2} x d x
$$

$$
=\sec ^{3} x \tan x-\int 3 \sec ^{3} x\left(\sec ^{2} x-1\right) d x
$$

$$
\begin{aligned}
& =\sec ^{3} x \tan x+3 \sec ^{3} x d x-\int 3 \sec ^{5} x d x \\
T & =\sec ^{3} x \tan x+3 \operatorname{sen}^{3} x d x
\end{aligned}
$$

$$
4 I=\sec ^{3} x \tan x+3 \int \sec ^{3} x d x
$$

$$
I=\frac{1}{4} \sec ^{3} x \tan x+\frac{3}{8} \sec x \tan x+3 / 8 \log (\sec x+\tan x)
$$

$$
\begin{aligned}
& I_{n}=\int_{0}^{z} x^{n} \sin x d x \quad \text { By Parts } \quad u=x^{n} \quad d y=\sin x \\
& =\left[-\cos x \times x^{n}\right]_{0}^{\pi / 3}-\int_{0}^{\frac{\pi}{2}}-\cos x\left(n x^{n-1}\right) d x \quad \frac{d x}{d x}=n x^{n-1} \quad v=-\cos x \\
& =0+n \int_{0}^{\frac{\pi}{2}} x^{n-1} \cos x d x \text { By Pats } u=x^{n-1} \\
& \left.\begin{array}{l}
=n\left\{\left[x^{n-1} \sin x\right]_{0}^{\pi / 2}-\int_{0}^{\pi / 2}(n-1) x^{n-2} \sin x d x\right. \\
=n(\pi)^{n-1}-n(n-1) 1
\end{array}\right\} \begin{array}{l}
\frac{d x}{d x}=(n-1) x^{n-2} \\
\frac{d v}{d x}=\cos x \\
v=\sin x
\end{array} \\
& =n\left(\frac{\pi}{2}\right)^{n-1}-n(n-1) I_{n-2} \quad \text { as sequined }
\end{aligned}
$$

d) EAp $F_{n}^{2}-F_{n+1} F_{n-1}=(-1)^{n+1}$

STEPA
Ractme for $n=2$.
LHS $F_{2}^{2}-F_{3} \times F_{1}=1^{2}-2 \times 1$
RHIS $(-1)^{3}=(-1)^{=}$
SIEP B.
$\therefore \angle H S=$ RHTS \therefore Time for $n=2$.
Assume resutt the for $n=k \quad(k \geqslant 2)$
ie $F_{k}^{2}-F_{k+1} F_{k-1}=(-1)^{k+1}$
Now prove the for $n=k+1$
is $F_{k+1}^{2}-F_{k+2} F_{k}=(-1)^{k+2}$

$$
L H S=F_{k+1}^{2}-F_{k+2} F_{k}
$$

$$
=F_{k+1}^{2+1}-\left(F_{k+1}^{k+2} F_{k}\right) \times F_{k}
$$

$$
=F_{k+1}^{2}-F_{k+1}^{k+1} F_{k}-F_{k}^{2}
$$

$$
=F_{k+1}^{k+1}\left(F_{k+1}^{k+1}-F_{k}\right)-F_{k}^{2}
$$

$$
\begin{aligned}
& =-(-1)^{k+1} \\
& =(-1)^{k+2} \\
& =\text { RHS }
\end{aligned}
$$

usung recusive dof hation
Conelse

$$
\begin{aligned}
& \text { Onelle } \\
& \text { Rehumwie }
\end{aligned}
$$

uning vecusine defintion Defontion

$$
=F_{k+1}^{k+1} F_{k-1}^{k+1}-F_{k}^{2}
$$

$$
F_{k+1}-F_{k}=F_{k-1}
$$

$$
=-\left(F_{k}^{2}-F_{k+1}^{k+1} F_{k-1}^{k}\right)
$$

woing assmiptoon $/$ Vseof ossuppon

STEPC piniaple of mattematical mincuition, hapotess proven the for all integer $n \geqslant 2$.

