

TRINITY GRAMMAR SCHOOL

Mathematics Department

2012

HALF YEARLY EXAMINATION

HSC Assessment Task 3
Year 12

Mathematics

Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided on the back of the Section I answer sheet and on page 15
- Show all necessary working in Questions 11 - 16
- Write your Board of Studies Student Number and Class Teacher on the writing booklet(s) or sheet(s) submitted
- WEIGHTING: 30\%

Class Teacher: \qquad
Do NOT write solutions on this question paper. Any working on the question paper will NOT be marked.

Total marks - 100

Section I
 Pages 3-6

10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II
Pages 7-14

90 marks

- Attempt Questions 11 - 16
- Allow about 2 hours 45 minutes for this section

Blank page

Section I 10 marks

- Circle the correct response on the answer sheet provided
- Each question is worth 1 mark

1 Using a suitable substitution, the definite integral $\int_{0}^{\frac{\pi}{24}} \tan 2 x \sec ^{2} 2 x d x$ is equivalent to
A. $\int_{0}^{\frac{\pi}{24}} \frac{u}{2} d u$
B. $\int_{0}^{2-\sqrt{3}} u d u$
C. $\int_{0}^{2-\sqrt{3}} 2 u d u$
D. $\int_{0}^{2-\sqrt{3}} \frac{u}{2} d u$

2 In the Argand plane, the curve $|z-(2+3 i)|=1$ is intersected exactly twice by the curve with equation
A. $\quad|z-3 i|=1$
B. $\quad|z-3 i|=|z-3|$
C. $\quad \operatorname{Im}(z)=4$
D. $\quad \operatorname{Re}(z)=3$

3 The slope of the curve $2 x^{3}-y^{2}=7$ at the point where $y=-3$ is
A. -4
B. -2
C. 2
D. 4

4 Which one of the following relations does NOT have a graph that is a straight line passing through the origin?
A. $z+\bar{z}=0$
B. $\quad 3 \operatorname{Re}(z)=\operatorname{Im}(z)$
C. $z=i \bar{z}$
D. $\operatorname{Re}(z)+\operatorname{Im}(z)=1$

5 A certain complex number z, with $|z|>1$, is represented by the point P on the following Argand diagram below.

The complex number $\frac{1}{\bar{z}}$ is best represented by
A.

B.

C.

D.

6

A possible equation for the graph of the curve $y=f(x)$ shown above is
A. $y=\frac{x^{3}+a}{x}, \quad a>0$
B. $y=\frac{x^{3}+a}{x}, \quad a<0$
C. $y=\frac{x^{4}+a}{x^{2}}, \quad a>0$
D. $y=\frac{x^{4}+a}{x^{2}}, \quad a<0$

7 For a certain complex number $z, \arg (z)=\frac{\pi}{5}$. The complex number z^{7} has principal argument of
A. $-\frac{7 \pi}{5}$
B. $-\frac{3 \pi}{5}$
C. $\frac{3 \pi}{5}$
D. $\frac{7 \pi}{5}$

8 Given that $(1+i)^{n}=a i$, where a is a non-zero real number, then $(1+i)^{2 n+2}$ simplifies to
A. a^{4}
B. $2 a^{2} i$
C. 0
D. $-2 a^{2} i$

9 In simplest form, $\frac{d}{d x} \cos ^{-1}(\sin x)$ is equal to
A. -1 , for all x
B. -1 , if $\cos x<0$
C. $\quad 1$, for all x
D. 1 , if $\cos x<0$

10 Let $z=\cos \theta+i \sin \theta$. The expression $z^{n}+\frac{1}{z^{n}}$ is equivalent to
A. $-2 \cos n \theta$
B. $2 \cos n \theta$
C. $-2 i \sin n \theta$
D. $2 i \sin n \theta$

End of Section I

Section II 90 marks

- Begin each question in a new writing booklet or on a new answer sheet
- Show all necessary working
- Each question is worth 15 marks

Question 11 (15 marks)

(a) Find $\operatorname{Im}\left(\frac{3+4 i}{1+2 i}\right)$.
(b) Express $z=i-1$ in modulus-argument form.
(c) Find, in modulus-argument form, all the roots of $z^{3}=-8$.
(d) Sketch on separate Argand diagrams the locus of a point $z=x+y i$ such that:
(i) $\quad 2|z|=z+\bar{z}+4$
(ii) $\quad \operatorname{Im}\left(z^{2}\right)=-2$
(iii) $|\operatorname{Re}(z)|>1$
(e) A complex number z satisfies the equations $2|z-1|=|z|$ and $\arg (z-1)-\arg z=\frac{\pi}{3}$.
(i) Show that $\frac{z-1}{z}=\frac{1}{2} \operatorname{cis} \frac{\pi}{3}$.
(ii) Hence, or otherwise, solve for z. Leave your answer in Cartesian form.
(a) Using the substitution $u=\ln x$, evaluate $\int_{1}^{e^{3}} \frac{(\ln x)^{3}}{x} d x$.
(c) (i) Show that $f(x)=x \sin x$ is an even function about the line $x=0$.
(ii) Find, using integration by parts, the area of the region bounded by $y=x \sin x,|x|=\frac{\pi}{2}$ and the x-axis.
(d) (i) Find real values A, B and C such that:

$$
\frac{9+x-2 x^{2}}{(1-x)\left(3+x^{2}\right)}=\frac{A}{1-x}+\frac{B x+C}{3+x^{2}}
$$

(ii) Hence find $\int \frac{9+x-2 x^{2}}{(1-x)\left(3+x^{2}\right)} d x$.

(a) The diagram above shows the graph of a function $y=f(x)$.

On the separate answer sheet provided, sketch the graphs of:
(i) $y=\frac{1}{f(x)}$
(ii) $y=f(-x)$
(iii) $\quad y=f|x|$
(iv) $\quad|y|=f(x)$
(v) $y^{2}=f(x)$
(vi) $y=\log _{e} f(x)$
(b) Use the principle of mathematical induction to show that $3^{n}>n^{3}$, for positive integers $n>3$.

Question 13 continued:

(c)

In the diagram above, $O P Q R$ is a parallelogram with $O P=\frac{1}{2} O R$.
The point P represents the complex number $-\frac{1}{2}+\frac{\sqrt{3}}{2} i$.
If $\angle P O R=60^{\circ}$, find in Cartesian form, the complex numbers representing
(i) $\quad R$; 2
(ii) Q. 1
(a) Let $y=\left(x^{2}-1\right) \sqrt{x+1}$.
(i) State the domain of $y=\left(x^{2}-1\right) \sqrt{x+1}$.
(ii) Find the x and y-intercept(s).
(iii) Let $\frac{d y}{d x}=\frac{5 x^{2}+4 x-1}{2 \sqrt{x+1}}$ and $\frac{d^{2} y}{d x^{2}}=\frac{3\left(5 x^{2}+8 x+3\right)}{4(x+1) \sqrt{x+1}}$ (DO NOT PROVE THIS).

Find the coordinate(s) of any stationary point(s) and determine their nature.
(iv) Sketch the graph of $y=\left(x^{2}-1\right) \sqrt{x+1}$.
(v) Find the area enclosed by $y=\left(x^{2}-1\right) \sqrt{x+1}$ and the x-axis. 4
Give your final answer in the form $\frac{a \sqrt{b}}{c}$, where a, b and c are non-zero integers.
(b) (i) Expand and simplify $\cos (A+B)-\cos (A-B)$.
(ii) Hence or otherwise, solve $\cos x-\cos 3 x=0$.

Give your final answer(s) in general form.
(a) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{2}{1+\cos \theta+\sin \theta} d \theta$, using the substitution $t=\tan \frac{\theta}{2}$.
(b)

In the diagram above, P is the midpoint of the chord $A B$ in the circle with centre O. A second chord $S T$ passes through P and the tangents at the endpoints meet $A B$ produced at M and N respectively.

Copy or trace this diagram into your writing booklet.
(i) Explain why $O P N T$ is a cyclic quadrilateral.
(ii) Explain why OPSM is a cyclic quadrilateral.
(iii) Let $\angle O T S=\alpha$. Show that $\angle O N P=\angle O M P=\alpha$.
(iv) Prove that $A M=B N$.
(c) Let $f(x)=2 \cos ^{-1} \frac{x}{\sqrt{2}}-\sin ^{-1}\left(1-x^{2}\right)$ for $0 \leq x \leq 1$.
(i) Show that $f^{\prime}(x)=0$.
(ii) Hence evaluate $\int_{0}^{1} f(x) d x$.
(a) (i) Sketch the graphs of $f(x)=|3 x+3|+|x-1|$ and $g(x)=4 x+3$ on the same number plane.
(ii) Hence, or otherwise, solve for x where $f(x) \leq g(x)$.
(b) Let $I_{n}=\int_{0}^{1} x^{n} e^{-x} d x$, where n is an integer such that $n \geq 0$.
(i) Evaluate I_{0}. 1
(ii) Show that $I_{n}=n I_{n-1}-\frac{1}{e}$, for $n>0$.
(iii) Hence, evaluate I_{4}.

Question 16 continued:

(c)

In the diagram above, R represents the complex number $z_{1}=\cos \theta+i \sin \theta$. P represents the complex number $1+0 i$ and Q represents the complex number $z_{2}=1+z_{1}$. Quadrilateral $O P Q R$ is a rhombus.
(i) Show that $z_{2}=2 \cos \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)$.
(ii) Hence, show that $\frac{1}{z_{2}}=\frac{1}{2}-\frac{i}{2} \tan \frac{\theta}{2}$.

End of Section II

End of Examination

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\quad \frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=\quad-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln +\sqrt{x^{2}-a^{2}},>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left[\sqrt{x^{2}+a^{2}}\right\rangle \\
& \text { Note } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

STANDARD INTEGRALS

$$
\text { Note } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\quad \frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=\quad-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(+\sqrt{x^{2}-a^{2}}, \ggg 0\right. \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(+\sqrt{x^{2}+a^{2}}\right\rangle
\end{aligned}
$$

TRINITY GRAMMAR SCHOOL
2012, Year 12 Mathematics Extension 2
Half Yearly Examination, HSC Assessment Task 3
SECTION I
ANSWER SHEET

Name:
Class Teacher: \qquad

Be sure to write your answers for Section I on this answer sheet. After you have selected an answer, CIRCLE the correct answer. To change an answer, erase your previous mark completely, and then record your new answer. Mark only one answer for each question.
Q1. A B C D
Q2.

Q3. A B

B
C
D

Q4. $\begin{array}{llll}\text { A } & \text { B } & \text { C }\end{array}$

Q5.
Q6.
A
B
C
D
Q7.
C
D

Q8.
A
B
Q9. A

B
C
D
Q10. A B C D

TRINITY GRAMMAR SCHOOL
2012, Year 12 Mathematics Extension 2
Half Yearly Examination, HSC Assessment Task 3
SECTION II
QUESTION 13 (a) ANSWER SHEET

BOS Student Number:
Class Teacher:

Each diagram below shows the graph of $y=f(x)$. On the number planes supplied below, sketch:
(i) $y=\frac{1}{f(x)}$

2

(ii) $y=f(-x)$

(iii) $y=f|x|$

(iv) $\quad|y|=f(x)$

(v) $y^{2}=f(x)$

(vi) $\quad y=\log _{e} f(x)$

End of Section II, Question 13(a)

TRINITY GRAMMAR SCHOOL

2012, Year 12 Mathematics Extension 2
Half Yearly Examination, HSC Assessment Task 3
ANSWERS

SECTION II

QUESTION 13 (a) ANSWER SHEET

BOS Student Number:
Class Teacher:

Each diagram below shows the graph of $y=f(x)$. On the number planes supplied below, sketch:
(i) $y=\frac{1}{f(x)}$

(ii) $y=f(-x)$

(iii) $\quad y=f|x|$

(iv) $\quad|y|=f(x)$

(v) $y^{2}=f(x)$

(vi) $y=\log _{e} f(x)$

End of Section II, Question 13(a)

SECTION I MULTIPLE CHOICE

QUESTIONS 1-10
MARKING GUIDELINES

3.	Using implicit differentiation, $6 x^{2}-2 y \frac{d y}{d x}=0$. Therefore $\frac{d y}{d x}=\frac{3 x^{2}}{y}$. When $y=-3,2 x^{3}-9=7$ i.e. $\quad x^{3}=8 \Rightarrow x=2$ $\therefore \frac{d y}{d x}=\frac{3(2)^{2}}{-3}=-4$	Answer: A	1
4.	A. $\quad \Rightarrow 2 x=0$ B. $\Rightarrow 3 x=y$ C. $\Rightarrow x+y i=i(x-y i)$ $x+y i=i x+y$ $y(i-1)=x(i-1)$ $\therefore y=x$ D. $x+y=1$	Answer: D	1
5.	$\begin{aligned} & \quad\|z\|>1 \Rightarrow \bmod (z)>1 \\ & \therefore \quad \quad \quad \bar{z}=\|z\| \operatorname{cis}(\theta) \\ & \Rightarrow \frac{1}{\bar{z}}=\frac{1}{\|z\| \operatorname{cis}(\theta)} \\ & \text { i.e. }\left\|\frac{1}{\bar{z}}\right\|=\frac{1}{\|z\|} \\ & \arg \left(\frac{1}{\bar{z}}\right)=\arg 1-\arg \bar{z}=0-\theta=-\theta \\ & \therefore \frac{1}{\bar{Z}}=\frac{1}{\|z\|} \operatorname{cis}(-\theta) \end{aligned}$	Answer: C	1
6.	A. $y=\frac{x^{3}+a}{x}=x^{2}+\frac{a}{x}, a>0$ B. $y=\frac{x^{3}+a}{x}=x^{2}+\frac{a}{x}, a<0$ C. $y=\frac{x^{4}+a}{x^{2}}=x^{2}+\frac{a}{x^{2}}, a>0$ D. $y=\frac{x^{4}+a}{x^{2}}=x^{2}+\frac{a}{x^{2}}, a<0$	Answer: C	1

7.	$\begin{aligned} & \arg \left(z^{7}\right)=7 \arg z=\frac{7 \pi}{5} \\ & \text { Principal } \arg \left(z^{7}\right)=\frac{7 \pi}{5}-2 \pi=-\frac{3 \pi}{5} \end{aligned}$	Answer: B	1
8.	$\begin{aligned} (1+i)^{2 n+2} & =\left[(1+i)^{n}\right]^{2}(1+i)^{2} \\ & =[a i]^{2}(1+2 i-1) \\ & =-a^{2}(2 i) \\ & =-2 a^{2} i \end{aligned}$	Answer: D	1
9.	$\begin{aligned} \frac{d}{d x} \cos ^{-1}(\sin x) & =-\frac{\cos x}{\sqrt{1-\sin ^{2} x}} \\ & =-\frac{\cos x}{\|\cos x\|} \\ & =1, \text { if } \cos x<0 \end{aligned}$	Answer: D	1
10.	$\begin{aligned} z^{n}+\frac{1}{z^{n}}=\operatorname{cisn} \theta & +\operatorname{cis}(-n \theta) \\ & =\cos n \theta+i \sin n \theta+\cos (-n \theta)+i \sin (-n \theta) \\ & =2 \cos n \theta \end{aligned}$	Answer: B	1

QUESTION 11
 MARKING GUIDELINES

(a)

Suggested solution	CRITERIA/COMMENTS	MARKS
$\operatorname{Im}\left(\frac{3+4 i}{1+2 i}\right)=\operatorname{Im}\left(\frac{3+4 i}{1+2 i} \times \frac{1-2 i}{1-2 i}\right)$	- Correct solution	2
$\begin{aligned} & =\operatorname{Im}\left(\frac{3+4 i}{1+2 i} \times \frac{1-2 i}{1-2 i}\right) \\ & =\operatorname{Im}\left(\frac{11-2 i}{5}\right) \\ & =-\frac{2}{5} \end{aligned}$	- Obtaining $\frac{11-2 i}{5}$ or equivalent form - Attempt to realise the denominator e.g. writing anywhere $\frac{3+4 i}{1+2 i} \times \frac{1-2 i}{1-2 i}$	1

(b)

Suggested solution	CRITERIA/COMMENTS	MARKS	
$z=-1+i$	$=\sqrt{(-1)^{2}+(1)^{2}} \operatorname{cis}\left(\pi-\tan ^{-1}\left(\frac{1}{1}\right)\right)$		
	$=\sqrt{2} \operatorname{cis}\left(\pi-\frac{\pi}{4}\right)$		
	$=\sqrt{2} \operatorname{cis} \frac{3 \pi}{4}$	Correct answer	
			$\mathbf{1}$

(c)

Suggested solution	CRITERIA/COMMENTS	MARKS
	- Correct solution with three correctly listed roots in mod-argument form	2
$\begin{array}{ll} & z^{3}=-8 c i s \pi \\ \therefore & \\ \text { i.e. } & =(-8)^{\frac{1}{3}} \operatorname{cis}\left(\frac{\pi+2 k \pi}{3}\right) \\ & z_{1}=-2 \operatorname{cis} \pi \\ & z_{2}=-2 \operatorname{cis}\left(-\frac{\pi}{3}\right) \\ & z_{3}=-2 \operatorname{cis}\left(\frac{\pi}{3}\right) \end{array}$	- Correct solution with three correct roots in Cartesian form - At least one correct root in Cartesian or mod-arg form - Expressing -8 in mod-arg form - Correctly factorising $z^{3}+8$ into one linear and quadratic factor - Correctly factorising $z^{3}+8$ into three linear factors (one real and two complex factors) - Correctly identifying the roots represent points equally spaced on a circle of radius 2 , centre $(0,0)$ e.g. argument between each complex number is given by $\frac{2 \pi}{n}$, where $n=3,120^{\circ}$, or $\frac{2 \pi}{3}$	1

(d) (i)

(d) (ii)

(d) (iii)

Suggested solution	CRITERIA/COMMENTS	MARKS
$\begin{aligned} & \quad\|\operatorname{Re}(z)\|>1 \\ & \Rightarrow \text { Let } z=x+y i \\ & \text { i.e. } \quad\|x\|>1 \end{aligned}$	- Correctly positioned 'broken' vertical straight lines through $x=1$ and $x=-1$ and the correct shaded region	2
	- Attempt to find the Cartesian equation of the locus e.g. replacing z with $x+y i$ into the LHS of the given complex equation - Correctly positioned 'broken’ or 'unbroken' vertical straight lines through $x=1$ and $x=-1$ - A correctly shaded region (that is extending to the right and left of their x-intercept) but axes unlabelled at $x=1$ or -1 or their intercept. Must have a pair of vertical straight lines though.	
y		
		1
$\|x\|>1$		

(e) (i)

Suggested solution	CRITERIA/COMMENTS	MARKS
Given $2\|z-1\|=\|z\|$ $\begin{equation*} \arg (z-1)-\arg z=\frac{\pi}{3} \tag{1} \end{equation*}$ From (1) \& (2) : $\frac{\|z-1\|}{\|z\|}=\frac{1}{2}$ i.e. $\quad\left\|\frac{z-1}{z}\right\|=\frac{1}{2}$ \& $\quad \arg \left(\frac{z-1}{z}\right)=\frac{\pi}{3}$	- A correct solution, must refer to the fact (or clearly implied from working) that $\left\|\frac{z_{1}}{z_{2}}\right\|=\frac{\left\|z_{1}\right\|}{\left\|z_{2}\right\|}$ and $\arg \left(z_{1}\right)-\arg \left(z_{2}\right) \pm 2 n \pi=\arg \left(\frac{z_{1}}{z_{2}}\right)$ Answer is already given check solution carefully for 'fudged' attempts - A correct solution by changing the LHS to Cartesian form after solving for z in Cartesian or mod-arg form the complex equations \& then establishing the required answer(long-winded approach)	2
Hence: $\begin{aligned} \frac{z-1}{z} & =\left\|\frac{z-1}{z}\right\| \operatorname{cis}\left[\arg \left(\frac{z-1}{z}\right)\right] \\ & =\frac{1}{2} \operatorname{cis} \frac{\pi}{3} \end{aligned}$	- Correctly indicating $\left\|\frac{z-1}{z}\right\|=\frac{\|z-1\|}{\|z\|}=\frac{1}{2}$ - Correctly indicating $\arg \left(\frac{z-1}{z}\right)=\arg (z-1)-\arg (z)$	1

(e) (ii)

Suggested solution	CRITERIA/COMMENTS	MARKS
From(i) $\quad z^{z-1}=\frac{1}{2}$ cis $\frac{\pi}{3}$	- Correct solution in $x+y$ form only	2
From(i) $\begin{array}{ll} \text { i.e. } & z-1=z\left(\frac{1}{2} \operatorname{cis} \frac{\pi}{3}\right) \\ & z\left(1-\frac{1}{2} \operatorname{cis} \frac{\pi}{3}\right)=1 \\ & z\left(\frac{3}{4}-\frac{\sqrt{3}}{4} i\right)=1 \\ \therefore & \\ & z=\frac{4}{3-\sqrt{3}} \\ & =1+\frac{\sqrt{3}}{3} i \end{array}$	- Correct answer in mod-arg form - Reasonable attempt to find z e.g. showing $z=\frac{4}{3-\sqrt{3} i}$ or equivalent but not in simplest Cartesian form $x+y i$	1

QUESTION 12 MARKING GUIDELINES
(a)

Suggested solution	CRITERIA/COMMENTS	MARKS
$\begin{aligned} \text { Let } u= & \ln x \therefore \frac{d u}{d x}=\frac{1}{x} \\ \text { when } x & =1, u=\ln 1=0 \\ \text { when } x & =e^{3}, u=\ln e^{3}=3 \\ \therefore \int_{1}^{e^{3}} \frac{(\ln x)^{3}}{x} d x & =\int_{1}^{e^{3}} \frac{(\ln x)^{3}}{x} \frac{d x}{d u} d u \\ & =\int_{0}^{3} u^{3} d u \\ & \left.=\frac{u^{4}}{4}\right]_{0}^{3} \\ & =\frac{81}{4}-0 \\ & =\frac{81}{4}\left(\text { or } 20 \frac{1}{4} \text { or } 20.25\right) \end{aligned}$	- Correct solution using the substitution given (\& specified technique) only	3
	- Correct solution using a modified primitive and substitution or equivalent and/or other appropriate method - Correctly finding the new limits (in terms of u) and $\frac{d u}{d x}$ and establishing the integrand of u^{3} (seen anywhere) but the answer is incorrect.	2
	- Correctly finding the new limits in terms of u - Correctly finding their $\frac{d u}{d x}$ - Reasonable attempt to use the substitution technique (any substitution) - Find a correct primitive of their integrand - Correct answer from their incorrect integral statement	1

(b)

Suggested solution	CRITERIA/COMMENTS	MARKS
$\begin{aligned} \int \cos ^{3} x d x & =\int \cos ^{2} x \cos x d x \\ & =\int\left(1-\sin ^{2} x\right) \cos x d x \end{aligned}$	- Correct solution in terms of x using any method such as a modified integrand by substitution or integration by parts ($+c$ is not required)	2
$\begin{gathered} =\sin x-\frac{\sin ^{3} x}{3}+c \\ \text { or } \int \cos ^{3} x d x=\frac{1}{4}\left(\frac{\sin 3 x}{3}+3 \sin x\right)+c \end{gathered}$	- Reasonable attempt to find the primitive of the given expression ($+c$ is not required)	1

(c) (i)

Suggested solution	CRITERIA/COMMENTS	MARKS
$\begin{aligned} & f(x)=x \sin x \\ f(-x) & =(-x) \sin (-x) \\ & =-x(-\sin x) \\ & =x \sin x \\ & =f(x) \end{aligned}$ Since $f(-x)=f(x)$ then $f(x)$ is an even	- Algebraically: Correct solution clearly showing a substitution of x with $-x$ and the property $\sin (-x)=-\sin x$ (an odd function) - Graphically: A sketch graph of $y=f(x)$ would suffice showing symmetry about $x=0$.	2
	- Reasonable attempt to sketch the graph of $y=f(x)$ or substituting x with $-x$ in the given expression - Identifying both x and $\sin x$ are odd functions by perhaps drawing their individual graphs and then attempting to use multiplication of ordinates to deduce $y=f(x)$ is an even function	1

(c) (ii)

(d) (i)

(d) (ii)

Suggested solution	CRITERIA/COMMENTS	MARKS
$\int \frac{9+x-2 x^{2}}{(1-x)\left(3+x^{2}\right)} d x=\int \frac{2}{1-x}+\frac{4 x+3}{3+x^{2}} d x$	- Correct solution of their integrand in terms of x using a modified integrand by partial fractions from (i) (provided the integral has not been made easier than intended) ($+c$ is not required)	2
$\begin{aligned} & =\int \frac{-}{1-x}+\frac{1}{3+x^{2}}+\frac{1}{3+x^{2}} d x \\ & =-2 \ln \|1-x\|+2 \ln \left(3+x^{2}\right)+\frac{3}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}+c \end{aligned}$	- Reasonable attempt to find a primitive of the given expression e.g. Splitting the integrand into partial fractions - Correct solution of their integrand in terms of x using any method other than by partial fractions ($+c$ is not required)	1

QUESTION 13 MARKING GUIDELINES

(a)
(i) $y=\frac{1}{f(x)}$

(ii) $y=f(-x)$

(iv) $|y|=f(x)$

- $\mathbf{1}$ = correct graph
(v) $y^{2}=f(x)$

(vi) $y=\log _{e} f(x)$

(b) (ii)

Suggested solution

Let $S(n)$ be the statement $3^{n}>n^{3}$
Step 1: Show $S(4)$ is true
LHS $=3^{4}=81$
RHS $=3^{3}=27$
SINCE $81>27$ then $S(4)$ is true

Step 2: Assume $S(k)$ is true for $3<k \leq n$, $(k, n) \in \mathbb{Z}^{+}$
i.e. $\quad 3^{k}>k^{3}$

Aim to prove $S(k+1)$ is true
i.e. $\quad 3^{k+1}>(k+1)^{3}$

The statement (2) can be shown if we can show that for $k>3,3^{k+1}-(k+1)^{3}>0$.

$$
\begin{aligned}
3^{k+1}-(k+1)^{3} & =3\left(3^{k}\right)-(k+1)^{3} \\
& >3 k^{3}-(k+1)^{3} \text { from (1) } \\
& =3 \times 4^{3}-5^{3}, \quad k=4 \\
& =67 \\
& >0, \text { if } k>3
\end{aligned}
$$

Since $S(1)$ and if $S(k)$ is true then $S(k+1)$ is also true. So by the principle of mathematical induction $3^{n}>n^{3}$, for integral $n>3$.
(c) (i)

Suggested solution	CRITERIA/COMMENTS	MARKS
$\begin{aligned} \|\overrightarrow{O R}\| & =2\|\overrightarrow{O P}\| \\ & =\sqrt{\left(-\frac{1}{)^{2}}+\left(\frac{\sqrt{3}}{}\right)^{2}\right.} \end{aligned}$	- A correct solution in correct modulus and argument form or in correct Cartesian form	2
$\begin{aligned} = & 2 \times 1 \\ = & 2 \\ \arg (\overrightarrow{O P}) & =180^{\circ}-\tan ^{-1}(\sqrt{3}) \\ & =60^{\circ} \\ \therefore \arg (\overrightarrow{O R}) & =(120-60)^{\circ}=60^{\circ} \\ \text { i.e. } \quad \overrightarrow{O R} & =2 \operatorname{cis} 60^{\circ} \\ & =1+\sqrt{3} i \end{aligned}$	- Numeric form of either one of $\|\overrightarrow{O P}\|,\|\overrightarrow{O R}\|=2\|\overrightarrow{O P}\|, \arg (\overrightarrow{O P})$, or $\arg (\overrightarrow{O R})$ - Recognising that $\overrightarrow{O R}$ is a rotation of $\overrightarrow{O P}$ clockwise by 60° but twice the modulus of $\overrightarrow{O P}$.	1

ALTERNATIVE:		
Given $\angle P O R=60^{\circ}$		
To rotate $\overrightarrow{O P}$ clockwise by 60° we need to		
mutliply $\overrightarrow{O P}$ by $\operatorname{cis}\left(-60^{\circ}\right)$.		
i.e.$\overrightarrow{O R} \quad$ $=2 \times \overrightarrow{O P} \times \operatorname{cis}\left(-60^{\circ}\right)$ $=2 \operatorname{cis} 120^{\circ} \operatorname{cis}\left(-60^{\circ}\right)$ $=2 \operatorname{cis} 60^{\circ}$		

(c) (ii)

Suggested solution	CRITERIA/COMMENTS	MARKS
$\overrightarrow{O Q}$	$=\overrightarrow{O R}+\overrightarrow{O P}$	
	$=1+\sqrt{3} i+\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)$	
	$=\frac{1}{2}+\left(\sqrt{3}+\frac{\sqrt{3}}{2}\right) i$	Correct answer in Cartesian form only
$\left(\cup \frac{1}{2}+\frac{3 \sqrt{3}}{2} \mathbf{i}\right)$		$\mathbf{1}$

QUESTION 14 MARKING GUIDELINES
(a) (i)

Suggested solution	CRITERIA/COMMENTS	MARKS
Want $x+1 \geq 0$	Correct answer	
i.e. $\quad D: x \geq-1$		$\mathbf{1}$

(ii)

Suggested solution	CRITERIA/COMMENTS	MARKS
$Y-$ INTERCEPT $: \quad x=0, y=-1$	- Correct answers one y-intercept and two x-intercepts	2
$\begin{gathered} X-\text { INTERCEPT : } \quad \begin{array}{c} y=0, x^{2}-1=0 \text { or } \\ \\ x+1=0 \end{array} \text { i.e. } x= \pm 1 \end{gathered}$	- One x-intercept or y-intercept	1

(iii)

Suggested solution
Given $\frac{d y}{d x}=\frac{5 x^{2}+4 x-1}{2 \sqrt{x+1}}$ and
$\frac{d^{2} y}{d x^{2}}=\frac{3\left(5 x^{2}+8 x+3\right)}{4(x+1) \sqrt{x+1}}$
SP's when $\frac{d y}{d x}=0$
i.e. \quad when $\quad 5 x^{2}+4 x-1=0$
$(5 x-1)(x+1)=0$
$x=\frac{1}{5} \quad$ or $\quad x=-1$

When $x=\frac{1}{5}, y=-\frac{24 \sqrt{30}}{125}(\approx-1.05)$
When $x=-1, y=0$
NATURE USING $y^{\prime \prime}$.
At $x=\frac{1}{5}, y^{\prime \prime}=\frac{3\left(5\left(\frac{1}{5}\right)^{2}+8\left(\frac{1}{5}\right)+3\right)}{4\left(\frac{1}{5}+1\right) \sqrt{\frac{1}{5}+1}}$

$$
>0
$$

$\therefore\left(\frac{1}{5},-\frac{24 \sqrt{30}}{125}\right)$ is a rel. min. $S P$
At $x=-1, y$ " $\& y^{\prime}$ are inconclusive tests.
To establish what is happening at the point $(-1,0)$, note that there is a possible point of inflexion when $5 x^{2}+8 x+3=0$.

That is when $(x+1)(5 x+3)=0$ or at $x=-1 \& x=-\frac{3}{5}$. This suggests that the curve has greatest negative slope at $x=-\frac{3}{5}$, but the slope at $x=-1$ is undefined because it is an endpoint. Given $x \geq-1$, we suspect that the nature to the right of $(-1,0)$ is a 'half' concave down feature to where $x=-\frac{3}{5}$.
For $-1<x<-\frac{3}{5}, y^{\prime \prime}<0$.Verify this by substitution of $x=-\frac{3}{5}$ int o $y^{\prime \prime}$.

CRITERIA/COMMENTS

MARKS

- Correct solution/justification and establishing the nature and/or feature at
$\left(\frac{1}{5},-\frac{24 \sqrt{30}}{125}\right)$ using Calculus or equivalent method
- Correctly solves $\frac{d y}{d x}=0$ giving the two x-values
- Correctly finds the coordinates
- Correctly solves $\frac{d y}{d x}=0$ giving one x-value (either
$\left(\frac{1}{5},-\frac{24 \sqrt{30}}{125}\right)$ or equivalent

$$
\left.x=-\frac{1}{5} \text { or } x=-1\right)
$$

(iv)

(v)

Suggested solution	CRITERIA/COMMENTS	MARKS
$A=\left\|\int_{-1}^{1}\left(x^{2}-1\right) \sqrt{x+1} d x\right\|$ Let $u=x+1, \frac{d u}{d x}=1$, when $x=-1, u=0$ when $x=1, u=2$ $\begin{aligned} \therefore A & =\left\|\int_{0}^{2}\left(u^{2}-2 u\right) \sqrt{u} d u\right\| \\ & =\left\|\int_{0}^{2} u^{2} \sqrt{u}-2 u \sqrt{u} d u\right\| \\ & =\left\|\int_{0}^{2} u^{\frac{5}{2}}-2 u^{\frac{3}{2}} d u\right\| \\ & =\left\|\frac{2}{7} u^{3} \sqrt{u}-\frac{4}{5} u^{2} \sqrt{u}\right\|_{0}^{2} \\ & =\left\|\frac{16}{7} \sqrt{2}-\frac{16}{5} \sqrt{2}\right\| \\ & =\frac{32}{35} \sqrt{2} \text { sq.units } \end{aligned}$	- Correct solution in the form $\frac{a \sqrt{b}}{c}$	4
	- A correct primitive of $\left(x^{2}-1\right) \sqrt{x+1}$, using a substitution such as $u=x+1$ or $u^{2}=x+1$ or any appropriate method leading to the correct answer (if $u^{2}=x+1$ is chosen then $x^{2}-1=\left(u^{2}-1\right)^{2}-1$ - A correct primitive of their incorrect definite integral and an attempt to evaluate this definite integral but makes an error along the way (the integral expression must not be easier than intended, otherwise award a maximum of 2 marks)	3
	- A correct definite integral expression with/without the absolute value sign, for example $\begin{aligned} & A=\left\|\int_{-1}^{1}\left(x^{2}-1\right) \sqrt{x+1} d x\right\| \\ & \int_{0}^{2}\left(u^{2}-2 u\right) \sqrt{u} d u \end{aligned}$	2
	- An attempt to use integration to find the area of the region specified	1

(b) (i)

Suggested solution	CRITERIA/COMMENTS	MARKS
$\cos (A+B)-\cos (A-B)=-2 \sin A \sin B$	\bullet Correct answer	$\mathbf{1}$

(ii)

Suggested solution	CRITERIA/COMMENTS	MARKS
$\begin{gathered} \cos x-\cos 3 x=-2 \sin \left(\frac{x+3 x}{2}\right) \sin \left(\frac{x-3 x}{2}\right) \\ =-2 \sin 2 x \sin (-x) \end{gathered}$	- Correct solution using any appropriate method; answer must be in general form (but it is not unique)	2
i.e. $\sin 2 x=0 \quad$ or $\quad \sin x=0$ $\therefore x=\frac{n \pi}{2} \quad x=n \pi$ Since the solution $x=n \pi$ is generated in the solution $x=\frac{n \pi}{2}$, for some integer value of n, then $x=\frac{n \pi}{2}$ only.	- Simplifying $\cos x-\cos 3 x$ to $2 \sin x \sin 2 x$ or equivalent. - Stating without working $x=\frac{n \pi}{2}$ or $x=n \pi$ - An attempt to solve the given equation	1

QUESTION 15

MARKING GUIDELINES
(a)

Suggested solution	CRITERIA/COMMENTS	MARKS
$\text { Let } t=\tan \frac{\theta}{2}, \frac{d t}{d \theta}=\frac{1}{2} \sec ^{2} \frac{\theta}{2} \& d \theta=\frac{2 d t}{1+t^{2}}$	- Correct solution (must use the given substitution up to $2^{\text {nd }}$ last step at least)	3
Also, $\quad \cos \theta=\frac{1-t^{2}}{1+t^{2}}, \sin \theta=\frac{2 t}{1+t^{2}}$ $\begin{aligned} & \therefore \int_{0}^{\frac{\pi}{2}} \frac{2}{1+\cos \theta+\sin \theta} d \theta \\ & \quad=\int^{1} \frac{2}{1-t^{2}} 2 t \\ & 1+t^{2} d t \end{aligned}$	- Substantial evidence of using the substitution method on a correct integrand but made an error along the way (if limits are incorrect or if no change of limits or if answer is left as an indefinite answer award a maximum of 1 mark)	2
$\begin{aligned} & \int_{0} 1+\frac{t}{1+t^{2}}+\frac{1}{1+t^{2}} \\ = & 2 \int_{0}^{1} \frac{1}{1+t} d t \\ = & 2 \ln \|1+t\|_{0}^{1} \\ = & 2 \ln 2-2 \ln 1 \\ = & 2 \ln 2(\text { or } \ln 4) \end{aligned}$	- Correct change of limits or variable(s) or finding in terms of t, $d u, \frac{d \theta}{d t}$ Attempt to use the given substitution	1

(b) (i)

Construct $O M, O N$ and $O S$ as shown in the diagram above

Suggested solution	CRITERIA/COMMENTS	MARKS
$\begin{aligned} & \angle O T N=90^{\circ}(N T \text { is a tangent to circle at } T) \\ & \angle O P N=90^{\circ}(O P \text { is } \perp \text { bisector of chord } A B) \end{aligned}$	- Correct solution including complete reasons	2
$\Rightarrow \angle O T N+\angle O P N=180^{\circ}$ $\therefore O P N T$ is a cyclic quadrilateral (opposite angles of a quadrilateral are supp.) (or both are angles in a semi-circle on $O N$)	- $\angle O T N=90^{\circ}$ or $\angle O P N=90^{\circ}$ without reasons - $\angle M P O=\angle O T N=90^{\circ}$ exterior angle of cyclic quad equals int. opp. angle	1

(ii)

Suggested solution	CRITERIA/COMMENTS	MARKS
Construct $O M$ and $O S$ $\angle O S M=90^{\circ}(M S$ is a tangent to circle at $S)$	\bulletCorrect solution including complete reasons	$\mathbf{2}$
$\angle O P M=90^{\circ}(O P$ is \perp bisector of chord $A B)$ $\Rightarrow \angle O S M=\angle O P M$ (equal angles standing		
on same line $O M$) $\therefore O P S M$ is a cyclic quadrilateral (opposite angles of a quadrilateral are supp.) (i.e. $O M$ is a diameter)	$\angle O S M=90^{\circ}$ or $\angle O P M=90^{\circ}$ without reasons	$\mathbf{1}$

(iii)

Suggested solution	CRITERIA/COMMENTS	MARKS
OPNT is a cyclic quadrilateral $\angle O N P=\angle O T P=\alpha$ (angles on same chord $O P$) $\angle O S P=\angle O T S=\alpha$ (base angles in isosceles $\triangle O S T$)	- Correct solution including complete reasons (must refer to the cyclic quads. established in in (i) and (ii) in some way and a link made) Paraphrased reasons or in-concise reasons are unacceptable.	2
OPSM is a cyclic quadrilateral $\therefore \angle O M P=\angle O S P=\alpha$ (angles on same chord OP) $\therefore \angle O M P=\angle O N P$	- Noting at least one other angle equivalent to $\angle O T S$ with or without reasons	1

(iv)

Suggested solution	CRITERIA/COMMENTS	MARKS
$\triangle O M N$ is isosceles (base angles equal) $O P$ is an altitude of $\triangle O M N$ $\therefore M P=P N$	- Correct solution including complete reasons - Proving $\triangle O P N \equiv \triangle O P M$	2
$\begin{aligned} A M & =M P-A P \\ & =P N-P B \\ & =B N \end{aligned}$	- $O P$ is an altitude of isosceles triangle $O M N$	1

(c) (i)

Suggested solution	CRITERIA/COMMENTS	MARKS
$f(x)=2 \cos ^{-1} \frac{x}{\sqrt{2}}-\sin ^{-1}\left(1-x^{2}\right)$	- Correct simplified derivatives of $\cos ^{-1} \frac{x}{\sqrt{2}}$ and $\sin ^{-1}\left(1-x^{2}\right)$	2
$\begin{aligned} f^{\prime}(x) & =-2\left[\frac{\frac{a}{d x}\left(\frac{x}{\sqrt{2}}\right)}{\sqrt{1-\left(\frac{x}{\sqrt{2}}\right)^{2}}}\right]-\frac{\frac{d}{d x}\left(1-x^{2}\right)}{\sqrt{1-\left(1-x^{2}\right)^{2}}} \\ & =\frac{-2\left(\frac{1}{\sqrt{2}}\right)}{\frac{1}{\sqrt{2}} \sqrt{2-x^{2}}}+\frac{2 x}{\sqrt{1-\left(1-2 x^{2}+x^{4}\right)}} \\ & =-\frac{2}{\sqrt{2-x^{2}}}+\frac{2 x}{\sqrt{2 x^{2}-x^{4}}} \\ & =-\frac{2}{\sqrt{2-x^{2}}}+\frac{2 x}{x \sqrt{2-x^{2}}} \\ & =0 \end{aligned}$	- Correct derivative of either $\cos ^{-1} \frac{x}{\sqrt{2}}$ or $\sin ^{-1}\left(1-x^{2}\right)$ unsimplified	1

(ii)

Suggested solution	CRITERIA/COMMENTS	MARKS
$f^{\prime}(x)=0, \therefore f(x)$ is a constant function. For $0 \leq x \leq 1$, let $x=1$, $\begin{aligned} f(1) & =2 \cos ^{-1} \frac{1}{\sqrt{2}}-\sin ^{-1}(1-1) \\ & =\frac{\pi}{2} \end{aligned}$	- Correct solution (may or may not include a graph) but including establishment that $f(x)=\frac{\pi}{2}, \text { in } 0 \leq x \leq 1$ Integration by parts is acceptable but not necessary.	2
$\begin{aligned} \therefore \int_{0} f(x) d x & =\int_{0} \frac{\pi}{2} d x \\ & \left.=\frac{\pi x}{2}\right]_{0}^{1} \\ & =\frac{\pi}{2} \end{aligned}$	- Explanation that $f(x)$ is a constant function - $f(x)=\frac{\pi}{2}$, in $0 \leq x \leq 1$ - $\int_{0}^{1} f(x) d x=\int_{0}^{1} \frac{\pi}{2} d x$	1

QUESTION 16 MARKING GUIDELINES

(a)

3 = correctly drawn graphs of $y=|3 x+3|+|x-1| \& y=4 x+3$
2 = correctly drawn graphs of $y=4 x+3$ and $y=|3 x+3|$ or $y=|x-1|$
1 = correctly drawn graphs of $y=4 x+3$ or $y=|3 x+3|$ or $y=|x-1|$
(ii)

Suggested solution	CRITERIA/COMMENTS	MARKS
correctly drawn graphs of $\|3 x+3\|+\|x-1\| \leq 4 x+3$ Consider the intersection of $y=4 x+3$ and $\begin{aligned} y & =(3 x+3)-(x-1) \Rightarrow \text { see graph } \\ & =2 x+4 \end{aligned}$	- Correct solution from their graphs in (i) provided they are well labelled and distinguished from one another and the problem has not been made easier than intended	2
$\begin{aligned} & \text { Solving } \begin{array}{l} 2 x+4=4 x+3 \\ \\ \qquad x=\frac{1}{2} \end{array} \\ & \therefore x \geq \frac{1}{2} \text { only } \end{aligned}$	- Establishing the graphs of $\begin{aligned} & y=4 x+3 \text { and } \\ & y=(3 x+3)-(x-1) \text { intersect at } \\ & x=1 / 2 . \end{aligned}$ - Solving appropriate equations for the following cases, $x \geq 1,-1 \leq x \leq 1, x<-1$	1

(b) (i)

Suggested solution	CRITERIA/COMMENTS	MARKS
$I_{0}=\int_{0}^{1} e^{-x} d x=-\left[e^{-x}\right]_{0}^{1}=1-\frac{1}{e}$	• Correct answer only	$\mathbf{1}$

(ii)

Suggested solution	CRITERIA/COMMENTS	MARKS
Let $\quad I_{n}=\int_{0}^{1} x^{n} e^{-x} d x$ Let $u=x^{n} \quad d v=e$	- Correct proof	2
$\begin{aligned} & \quad d u=n x^{n-1} v=-e^{-x} \\ & I_{n}=u v-\int v d u \\ & =-\left[x^{n} e^{-x}\right]_{0}^{1}+n \int_{0}^{1} x^{n-1} e^{-x} d x \\ & \text { i.e. } \quad I_{n}=-\left[e^{-1}\right]+n I_{n-1} \\ & \quad=n I_{n-1}-\frac{1}{e} \end{aligned}$	- Correct primitive of their $d v$ - Correct derivative of their u - Correct evaluation of either $-\left[x^{n} e^{-x}\right]_{0}^{1}$ or $n \int_{0}^{1} x^{n-1} e^{-x} d x$	1

(iii)

(c) (i)

Construct diagonals $O Q$ and $P R$ of rhombus $O P Q R$. They intersect at right-angles (property of a rhombus) at S (see diagram)

Suggested solution
$\angle Q O P=\frac{\theta}{2}$ (diagonals of a rhombus bisect

the angles through which they pass)
$\therefore z_{2}=\overrightarrow{O Q}=|\overrightarrow{O Q}|$ cis $\frac{\theta}{2}$
But $|\overrightarrow{O Q}|=2|\overrightarrow{O S}| \&|\overrightarrow{O P}|=1$ (given)
In right $-\triangle S O P, \frac{|\overrightarrow{O S}|}{|\overrightarrow{O P}|}=\cos \frac{\theta}{2}$
$\therefore|\overrightarrow{O S}|=\cos \frac{\theta}{2}$
$\&|\overrightarrow{O Q}|=2 \cos \frac{\theta}{2}$
Hence, $z_{2}=2 \cos \frac{\theta}{2} \operatorname{cis} \frac{\theta}{2}$

$$
=2 \cos \frac{\theta}{2}\left[\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right]
$$

Can use the facts that
$1+\cos \theta=2 \cos ^{2}\left(\frac{\theta}{2}\right)$

$$
\sin \theta=2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)
$$

and just simplify the given expression
CRITERIA/COMMENTS MARKS

- Correct proof including all three of
$\angle Q O P=\frac{\theta}{2} \&$
$z_{2}=\overrightarrow{O Q}=|\overrightarrow{O Q}| \operatorname{cis} \frac{\theta}{2} \&$
$|\overrightarrow{O S}|=\cos \frac{\theta}{2}$ or equivalent notation and fact(s)
- Identifying a minimum of two facts from $\angle Q O P=\frac{\theta}{2}$ or
$z_{2}=\overrightarrow{O Q}=|\overrightarrow{O Q}|$ cis $\frac{\theta}{2}$ or
$|\overrightarrow{O S}|=\cos \frac{\theta}{2}$ or equivalent notation and fact(s)
- Identifying only one of
$\angle Q O P=\frac{\theta}{2}$ or
$z_{2}=\overrightarrow{O Q}=|\overrightarrow{O Q}| \operatorname{cis} \frac{\theta}{2}$ or
$|\overrightarrow{O S}|=\cos \frac{\theta}{2}$ or equivalent notation and fact(s)
(ii)

Suggested solution	CRITERIA/COMMENTS	MARKS
From (i) $\quad z_{2}=2 \cos \frac{\theta}{2} \operatorname{cis} \frac{\theta}{2}$ $\therefore \underline{1}=\left[\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right]^{-1}$	- Correct proof including a clear indication of the splitting of terms (see second last line of suggested solution) - Can realise the denominator	2
$\begin{array}{rl} z_{2} & 2 \cos \frac{\theta}{2} \\ & =\frac{\left[\cos \frac{\theta}{2}-i \sin \frac{\theta}{2}\right]}{2 \cos \frac{\theta}{2}}(\text { de Moivre's } T h) \\ & =\frac{1}{2}\left[\frac{\cos \frac{\theta}{2}}{\cos \frac{\theta}{2}}-i \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\right] \\ & =\frac{1}{2}-\frac{i}{2} \tan \frac{\theta}{2} \end{array}$	- Statement $\begin{aligned} & \frac{1}{z_{2}}=\frac{\left[\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right]^{-1}}{2 \cos \frac{\theta}{2}} \text { or } \\ & \frac{\left[\cos \frac{\theta}{2}-i \sin \frac{\theta}{2}\right]}{2 \cos \frac{\theta}{2}} \text { from de Moivre's } \end{aligned}$ Theorem	1

