HURLSTONE AGRICULTURAL HIGH SCHOOL

GENERAL MATHEMATICS
 2009

YEAR 12

HALF YEARLY EXAMINATION (ASSESSMENT TASK 2)

Examiners ~ S Gee, S Hackett, G Rawson

General Instructions

- Reading Time - 5 minutes.
- Working Time -2 hours.
- Attempt all questions.
- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators may be used.
- This examination paper must NOT be removed from the examination room.
- This paper contains two sections

Section 1-20 multiple choice questions
Use the answer sheet provided (20 marks)

Section 2 - 4 questions worth 15 marks each
Show all necessary working
Answer each question in a separate booklet
(60 marks)

Note: You must hand in an answer booklet for each question, even if the question was not attempted.

Student Name: \qquad
TEACHER: \qquad

SECTION 1

20 questions: 1 mark each

Use the answer sheet provided.

(Total 20 marks)

1. Moranbah has latitude $22^{\circ} \mathrm{S}$ and longitude $148^{\circ} \mathrm{E}$. Mitchell is due South of Moranbah. Which of the following could be the latitude and longitude of Mitchell?
A. $18^{\circ} \mathrm{S} 148^{\circ} \mathrm{E}$
B. $22^{\circ} \mathrm{S} 144^{\circ} \mathrm{E}$
C. $22^{\circ} \mathrm{S} 152^{\circ} \mathrm{E}$
D. $26^{\circ} \mathrm{S} 148^{\circ} \mathrm{E}$
2. Kathmandu is 30° west of Perth. Using the longitude difference, what is the time in Kathmandu when it is noon in Perth.
A. 10:00am
B. 11:30am
C. 12:30pm
D. $2: 00 \mathrm{pm}$
3. The location of Town A is $\left(25^{\circ} \mathrm{N}, 45^{\circ} \mathrm{E}\right)$. The location of Town B is $\left(10^{\circ} \mathrm{N}, 105^{\circ} \mathrm{E}\right)$. Which of the following is true?(Ignore time zones.)
A. Town A is four hours behind Town B.
B. Town A is four hours ahead of Town B.
C. Town A is one hour behind Town B.
D. Town A is one hour ahead of Town B.
4. Makoua and Macapa are two towns on the equator. The longitude of Makoua is $16^{\circ} \mathrm{E}$ and longitude of Macapa is $52^{\circ} \mathrm{W}$. How far apart are these two towns (to the nearest 100 km) if the radius of the of the Earth is approximately 6400 km ?
A. 4000 km
B. 7600 km
C. 1447 600km
D. 2734 400km
5. $\quad P$ and Q are points on the circumference of a circle with centre O and radius 3 cm .

What is the length of the arc PQ , in centimetres, correct to three significant figures?
A. $1 \cdot 57$
B. $3 \cdot 14$
C. 4.71
D. $18 \cdot 8$
6. Simplify: $\quad 8 a-(a-5 b)$
A. $7 a+5 b$
B. $7 a-5 b$
C. $7+5 b$
D. $7-5 b$.
7. Given that $s=u t-\frac{1}{2} a t^{2}$, find the value of s given $u=8, t=4$ and $a=3$.
A. 8
B. 12
C. 48
D. 60
8. The solution to the equation $6 x-4=4 x+12$ is
A. $x=16$
B. $x=8$
C. $x=1 \cdot 6$
D. $x=0 \cdot 8$
9. Expand and simplify $3 x^{2}-10 x y-4 x(2 y-3 x)$
A. $15 x^{2}-18 x y$
B. $-9 x^{2}-18 x y$
C. $15 x^{2}-2 x y$
D. $-9 x^{2}-2 x y$
10. Simplify $\frac{20 M^{8}}{4 M^{2}}$
A. $5 M^{4}$
B. $5 M^{6}$
C. $16 M^{4}$
D. $16 M^{6}$
11. A loan of $\$ 150000$ is repaid in monthly instalments of $\$ 1266$ for 15 years. Calculate the total interest paid.
A. $\$ 3990$
B. $\$ 77880$
C. $\$ 131010$
D. $\$ 227880$
12. Peter buys a car stereo system for $\$ 885$ on interest-free terms over 48 weeks. If he pays 20% deposit first, calculate the size of his weekly repayments.
A. $\$ 14.75$
B. $\$ 18 \cdot 44$
C. $\$ 34 \cdot 04$
D. $\$ 36 \cdot 88$
13. Vanessa has a credit card with a daily interest rate of 0.0438% and no interest-free period. She bought a mobile phone for $\$ 124$ on 9 May using the credit card.
Calculate the interest due on 3 June.
A. $\$ 1 \cdot 25$
B. $\$ 1 \cdot 30$
C. \$1•36
D. $\$ 1 \cdot 41$
14. The following table shows the monthly repayments on a personal loan.

	Rate of Interest		
Amount Borrowed	5%	6%	$\mathbf{7 \%}$
$\$$	$\$$	$\$$	$\$$
5000	126	89	$\mathbf{7 9}$
10000	252	177	$\mathbf{1 5 8}$
15000	377	266	$\mathbf{2 3 7}$
$\mathbf{2 0 0 0 0}$	$\mathbf{5 0 3}$	$\mathbf{3 5 4}$	$\mathbf{3 1 5}$

The total interest paid on a loan of $\$ 10000$ over 20 years at 6% p.a. is:
A. $\$ 2124$
B. $\$ 3540$
C. $\$ 32480$
D. $\$ 42480$
15. A loan of $\$ 5000$ is taken over 3 years. The flat rate of interest is 7% p.a. The amount of each monthly instalment is closest to:
A. $\$ 168$
B. $\$ 140$
C. $\$ 1189$
D. $\$ 431$
16. The box and whisker plots shown below compare the marks of students in two classes.

Which of the following is correct?
A. The median of Class B is greatest.
B. Class A is positively skewed
C. The range of Class B is smallest.
D. Class A is negatively skewed
17. The back to back stem-and-leaf plots have the same median.

The value of \square is:

11	4	34		
74432	5	135	A. 4	B. 64
75431	6	$113 \square$		
9972	7	C. 5	D. 65	
321	8			
123				

18. Which is true for the set of scores?
$1,4,4,6,9,11,13,15,15,15$
A. The mode is 4 and the median is 9 .
B. The mode is 4 and the median is 10 .
C. The mode is 15 and the median is 9 .
D. The mode is 15 and the median is 10 .
19. The scores gained by two contestants A and B, in a competition over 12 rounds are shown in two box and whisker plots.

Which of the following statements is not true ?
A. Contestant B had the highest interquartile range.
B. Contestant B had the highest median.
C. Contestant B had the highest range.
D. Contestant B had the highest score.
20. The radar chart below shows the water level in two identically shaped tanks over a 24 hour period.

Water Level in Two Tanks

The greatest total volume of the two tanks taken together occurred at
A. 21:00:00
B. 18:00:00
C. 3:00:00
D. 15:00:00

Question 21 (15 marks) (start a new booklet)
(a) An aircraft flies directly above the equator from a longitudinal position of $030^{\circ} \mathrm{W}$ to longitude $054^{\circ} \mathrm{E}$.
(i) Assuming that the radius of the Earth is 6400 km , find the distance of the aircraft's flight, correct to the nearest ten kilometres.
(ii) The speed of the aircraft was $650 \mathrm{~km} / \mathrm{h}$. How long did the flight last?
(Answer to the nearest minute)
(iii) The wind-speed indicator in the aircraft is marked in both kilometres per hour and knots (1 knot $=1$ nautical mile per hour).
If 1.852 kilometres $=1$ nautical mile, calculate a wind speed of 45 knots in km / h.
(iv) If the plane flew into a headwind of 45 knots, determine the actual speed of the plane in kilometres per hour and hence calculate the time now for the flight.
(Answer to the nearest minute)
(b) Cassie flew from London $\left(52^{\circ} \mathrm{N}, 0^{\circ} \mathrm{E}\right)$ to Manila $\left(15^{\circ} \mathrm{N}, 120^{\circ} \mathrm{E}\right)$.

Her plane left London at 9.30 am Monday (London time), stopped for 5 hours in Singapore and arrived in Manila at 4.00 pm Tuesday (Manila time).
What was the total flying time? (Ignore time zones.)
(a) The capacity of a spherical water tank can be approximated by the formula $C=500 D^{3}$.

- $\quad C$ is the capacity of the tank in litres
- D is the diameter of the tank in metres.
(i) The spherical pressure tank on top of a bore has diameter $0 \cdot 4 \mathrm{~m}$. What is its capacity?
(ii) A larger spherical storage tank has a capacity of 4000 litres. What is its diameter?
(iii) How many of the bore pressure tanks could be filled from the larger storage tank?
(iv) Re-write the formula so that D is the subject.
(v) Re -write the formula so that R is the subject, where R is the radius of the tank.
(b) Solve $\frac{2 x-3}{4}+5=9$
(c) The graph below shows the heights in metres of a rocket and a plane which take off at the same time, for the first 6 seconds of their flights.

(i) After how many seconds are the plane and the rocket at the same height, and what is this height?
(ii) Which has climbed the greater distance in the first 2 seconds and in the first 6 seconds? What does this tell you about the speed of the rocket?
(d) Find the linear function for this table of values.

x	4	7	12	20
y	10	31	66	122

(a) Miguel borrows $\$ 50000$ to buy a new truck. The interest rate is 6% p.a. and the monthly repayment is $\$ 650$.

Amount borrowed	$\$ 50000$
Interest rate p.a.	6%
Monthly repayment (R)	$\$ 650$

No. of months (n)	Principal (P)	Interest (\boldsymbol{I})	$\boldsymbol{P}+\boldsymbol{I}$	$\boldsymbol{P}+\boldsymbol{I}-\boldsymbol{R}$
1	$\$ 50000$	$\$ 250$	$\$ 50250$	$\$ 49600$
2	$\$ 49600$	$\$ 248$	$\$ 49848$	$\$ 49198$
3	$\$ 49198$	$\$ 246$	$\$ 49444$	$\$ 48794$
4			$\$ 49038$	$\$ 48388$
5	$\$ 48388$	$\$ 242$		A

(i) How much of the loan has been paid off after 4 months?
(b) The table below shows the monthly repayments for loans with a term of 20 years.

Amount borrowed	5\% p.a.	$\mathbf{6 \%}$ p.a.	7\% p.a.	$\mathbf{8 \%}$ p.a.
$\$ 10000$	$\$ 66.00$	$\$ 71.64$	$\$ 77.53$	$\$ 83.64$
$\$ 15000$	$\$ 98.99$	$\$ 107.46$	$\$ 116.29$	$\$ 125.47$
$\$ 20000$	$\$ 131.99$	$\$ 143.29$	$\$ 155.06$	$\$ 167.29$
$\$ 25000$	$\$ 164.99$	$\$ 179.11$	$\$ 193.82$	$\$ 209.11$

Pam borrowed $\$ 25000$ at 7\% p.a. over 20 years.
(i) Calculate how much she paid in total over the term of the loan.
(ii) Hence calculate the interest she paid.
(c) Phillip bought a $\$ 2495$ computer using the deferred payment method.

There was no deposit, nothing to pay for 6 months, then 18 monthly payments of $\$ 185$. Calculate:
(i) the total amount paid for the computer $\quad 1$
(ii) the interest charged $\quad 1$
(iii) the equivalent flat rate interest rate p.a.
(d) When Mitchell borrowed $\$ 80000$ at 7.2% p.a. monthly compounding interest over 10 years, his monthly repayments were $\$ 937.13$.
This table summarises his loan. All entries are correct to the nearest dollar.

Time	Total Mitchell has repaid	Total amount of interest Mitchell has paid	Balance still owing
End of the $1^{\text {st }}$ year	$\$ 11246$	$\$ 5575$	$\$ 74330$
End of the $2^{\text {nd }}$ year	$\$ 22491$	$\$ 10729$	$\$ 68237$
End of the $3^{\text {rd }}$ year	X	$\$ 15428$	$\$ 61692$
End of the $4^{\text {th }}$ year	$\$ 44982$	$\$ 19641$	$\$ 54659$
End of the $5^{\text {th }}$ year	$\$ 56228$	$\$ 23330$	$\$ 47102$
End of the $6^{\text {th }}$ year	$\$ 67473$	$\$ 26457$	$\$ 38984$
End of the $7^{\text {th }}$ year	$\$ 78719$	$\$ 28980$	Y
End of the $8^{\text {th }}$ year	$\$ 89964$	$\$ 30854$	$\$ 20889$
End of the $9^{\text {th }}$ year	$\$ 101210$	$\$ 32030$	$\$ 10820$
End of the $10^{\text {th }}$ year	$\$ 112455$	$\$ 32455$	$\$ 0$

(i) Show that Mitchell paid $\$ 1176$ interest during the 9th year.
(ii) Why did he pay over $\$ 5000$ more interest in the first year than he did in the 9 th year?
(iii) Two values in the table are missing. What values should be in the positions marked X and Y ?
(iv) If interest rates increase and Mitchell leaves his repayments the same, describe how the values in the Balance still owing column will change and give a reason for your answer.
(v) Is it true that even though the interest rate is only 7.2% p.a., almost 30% of Mitchell's repayments will be interest? Use a calculation to support your answer.
(a) The following box and whisker plot shows the results that a class of 20 students achieved on their English test.

(i) What is the range of the scores?
(ii) Calculate the interquartile range.

The results from the same class of students on a mathematics test are displayed in the following stem and leaf plot.

4	6	9			
5	1	5	7	9	
6	2	3	6	8	
7	0	2	5	7	7
8	1	4	7		
9	4	7			

(iii) Find the median, lower quartile, upper quartile and the interquartile range for these results.
(iv) If James scored 75 in Maths and 70 in English, which is the better mark, relative to the class results? Explain your answer.
(b) The mean of 5, -1, 4 and x is 6 . Find the value of x.
(c) The maximum temperature in Emu Springs for each day in April is illustrated in the dot plot:

Make a five-number summary of this data set and hence construct a box-and-whisker plot.
(d) The area chart below shows information about Australia's population

(i) In 1961, approximately what percentage of the population was aged under 15years?
(ii) Approximately what percentage of Australia's population is expected to be over 60 in 2021?
(ii) What does this area chart show about Australia's age groups in the future?

Name \qquad

Completely fill the response oval representing the most correct answer

1.	A \bigcirc	$B \bigcirc$	C \bigcirc	D \bigcirc
2.	A \bigcirc	$B \bigcirc$	$\mathrm{C} \bigcirc$	D \bigcirc
3.	A \bigcirc	B \bigcirc	$\mathrm{C} \bigcirc$	D \bigcirc
4.	A \bigcirc	B \bigcirc	C \bigcirc	D \bigcirc
5.	A \bigcirc	B \bigcirc	C \bigcirc	D \bigcirc
6.	A \bigcirc	$B \bigcirc$	$\mathrm{C} \bigcirc$	D \bigcirc
7.	A \bigcirc	B \bigcirc	C \bigcirc	D \bigcirc
8.	A \bigcirc	B \bigcirc	C \bigcirc	D \bigcirc
9.	A \bigcirc	B \bigcirc	$\mathrm{C} \bigcirc$	$\mathrm{D} \bigcirc$
10.	A \bigcirc	B \bigcirc	C \bigcirc	D \bigcirc
11.	A \bigcirc	B \bigcirc	$\mathrm{C} \bigcirc$	D \bigcirc
12.	A \bigcirc	B \bigcirc	$\mathrm{C} \bigcirc$	D \bigcirc
13.	A \bigcirc	B \bigcirc	$\mathrm{C} \bigcirc$	D \bigcirc
14.	A \bigcirc	B \bigcirc	$\mathrm{C} \bigcirc$	D \bigcirc
15.	A \bigcirc	B \bigcirc	$\mathrm{C} \bigcirc$	$\mathrm{D} \bigcirc$
16.	A \bigcirc	B \bigcirc	$\mathrm{C} \bigcirc$	$\mathrm{D} \bigcirc$
17.	A \bigcirc	B \bigcirc	$\mathrm{C} \bigcirc$	$\mathrm{D} \bigcirc$
18.	A \bigcirc	B \bigcirc	C \bigcirc	D \bigcirc
19.	A \bigcirc	B \bigcirc	$\mathrm{C} \bigcirc$	D \bigcirc
20.	A \bigcirc	B \bigcirc	$\mathrm{C} \bigcirc$	D \bigcirc

