GENERAL MATHEMATICS

Half Yearly Examination 2006

Time Allowed: 2 hours plus 5 minutes reading time

Instructions to Students

General Instructions

- Write using black or blue pen
- Calculators may be used
- A formulae sheet is provided
- Write your student number and your teacher's name on each page

Total Marks - 80

Section 1

15 marks

- Attempt all questions
- Answer on the special

Multiple Choice Answer Sheet

Section 2

65 marks

- Attempt all questions
- Answer each question on a new page

Show all working
Content

- All work from year 11
- From year 12
- AM2, Modelling linear functions
- AM3, Algebraic skills and techniques
- PB3, Multistage events
- DA5, Interpreting sets of data
- FM4, Credit and borrowing
- FM5, Annuities and loan repayments

SECTION 1

Total marks (15, 1 mark each)
Attempt all questions.
Allow about 20 minutes for this section.
Use the multiple choice answer sheet provided
1 The radius of a bacteria is 0.00000847 mm . In scientific notation this is equal to:
a) 8.47×10^{5}
b) 8.47×10^{6}
c) 8.47×10^{-5}
d) 8.47×10^{-6}

2 Which of the following is an example of a stratified random sample?
a) The first 50 students to arrive at school are surveyed
b) 50 students names are drawn from a hat and those students are surveyed
c) 10 students from each year are asked to complete the survey
d) One class at the school is asked to complete the survey

3 Sarah invests $\$ 7000$ for 10 years at $6 \cdot 3 \%$ p.a. with interest compounding every 6 months. How much money will Sarah end up with?
a) $\$ 7221$
b) $\$ 9545$
c) $\$ 12895$
d) $\$ 13016$

4 Jasmine is a telephone sales person, and is paid 20% commission on all sales up to and including $\$ 4000$ and 25% on amounts over $\$ 4000$. If Jasmine's total sales were $\$ 7000$, her commission was:
a) $\$ 1400$
b) $\$ 1550$
c) $\$ 1600$
d) $\$ 1750$

5 Naomi graphs the number of strokes per hole required for a round of golf.

The median number of strokes taken was:
a) 4
b) 5
c) 6
d) 8

6 Belinda was giving a series of lectures. The average number of people attending each of the last four lectures was 20 . In order to raise the average attendance to 30 , how many people must attend Belinda's next lecture?
a) 25
b) 50
c) 70
d) 110

7 If a topographical map has a scale of 1:10 000, then two places that are 200 m apart, would on the map be:
a) 0.2 cm apart
b) 2 cm apart
c) 20 cm apart
d) 200 cm apart

8 Which of the following points are on the line $y=2 x+3$
a) $(2,3)$
b) $(1,24)$
c) $(11,4)$
d) $(5,13)$

9 A real estate agent sells a house for $\$ 400000$. From the selling price he earns $\$ 10000$ for his services. Which term is used to describe the money he earns?
a) Commission
b) Income tax
c) Royalty
d) Superannuation

10 Sam draws 4 cards from a standard deck of cards and has four aces. What is the probability the next card drawn is a king?
a) $\frac{1}{4}$
b) $\frac{1}{12}$
c) $\frac{1}{13}$
d) $\frac{1}{52}$

11 Jenny is a security officer and has 3 locks and 3 keys. If one key is placed alongside each lock, the probability that all the keys match the lock with which they have been placed is closest to:
a) 33%
b) 30%
c) 17%
d) 4%

12 Which of the following numbers could not be the answer to a probability calculation?
a) $\sqrt{2}-1$
b) 10^{-7}
c) $\sin 20^{\circ}$
d) $3-\pi$

13 If $5 a=a+120$, then $a=$
a) 20
b) 24
c) 30
d) 125

14 The answer to $\frac{(38 \cdot 21)^{2}-\sqrt[3]{9 \cdot 781}}{13-4 \times 2 \cdot 97}$ is closest to:
a) 1302
b) 478
c) 321
d) 100

15 The cost in dollars of Belinda purchasing g galahs and c canaries and having them delivered is:
a) $23 g+35 c+20$
b) $23 g+35 c+20 g+c$
c) $23 g+35 c+20 \times 58$
d) $23 g+35 c+20(g+c)$

Bird type	Cost per bird (\$)
Galah	23
Canary	35
*	Cost of delivery is $\$ 20$

SECTION 2

Total marks (65)
Attempt all of questions 21-25
Answer each question on a separate page.

Question 21

Start this question on a new page
Marks
a) What is the simple interest on a loan of $\$ 12000$ for 6 years at $71 / 2 \%$ p.a.?
b) Expand and simplify $2(p+q)-3(p-q)$.
c) The Wilson family had a garage sale one weekend. Michelle recorded the age and sex of the people who attended. This stem-and-leaf plot shows the results.

Males		Females
2	0	455
864	1	2557
874221	2	12246
864	3	24
	4	358

i) How many people attended the garage sale?
ii) What was the age of the youngest person?
iii) What was the modal age of the group?
iv) Indicate which group, males or females, has the greater spread. Justify your answer with appropriate calculations and/or reasoning.
d) Julianne takes 15 mL of cough medicine.
i) What is the absolute error in this measurement?
ii) what is the percentage error in this measurement?
e) Alisha surveys the paddock ABCDE and makes the field diagram to the right. (All measurements are in metres)

(2)				
(2)				
11				
19	17	B		
			94	C
50				

a) Jessica paid instalments totalling \$3 400 to repay a $\$ 2800$ loan. Interest was charged at a flat rate for three years. What was the annual interest rate to 2 decimal places?
b) Eliza was at the top of the Chipping Norton Light House. Find the angle of elevation of Eliza from point A on the ground, to the nearest degree.

c) Solve the equation $\sqrt[3]{\frac{p+3}{7}}=2$.

3
d) Sinead, an engineer, designed a tunnel to take storm water to an ocean outfall. A drawing of the tunnel is to the right.
i) Calculate the cross sectional area of the pipe $(1 \operatorname{dec} \mathrm{pl}) .2$
ii) If water is travelling through the pipe at $7 \cdot 2 \mathrm{~m} / \mathrm{s}$, how much water goes through the pipe in 20s?

e) There are 12 boys and 14 girls in a class. In how many ways can the teacher choose:
i) 2 girls to collect the lunches?
ii) 3 children to sort out the sporting equipment?
f) In a class of 30 students, 20 do commerce, 15 do woodwork and 7 do neither. How many students do both commerce and woodwork?
a) A random sample of matchboxes was taken and the number of matches in each box was recorded. The results are illustrated on the cumulative frequency histogram and polygon.
i) If the company making the matches claimed that at least 50% of boxes contained 50 matches or more, would this be a reasonable claim?

Give reasons for your answer.
(1)
ii) From the graph calculate the interquartile range.
iii) Calculate the median number of matches per sample.
iv) If a box were purchased from a similar batch of boxes, what is the probability that it contains exactly 50 matches?
b) Simplify the following.
i) $4.76 \times 10^{7} \times 7.3 \times 10^{8}$
©
ii) $x^{6} \times x^{5}$
(1)
c) Chantel invested $\$ 7000$ at 6% p.a. compounding annually. She used the formula $A=P(1+r)^{n}$, to show that the amount (A) of money she will have after n years.

Chantel plans to go overseas, using the money from this investment account and needs $\$ 21000$. How many years will it take her investment to reach $\$ 21000$.
d) Christine purchases the Darrell Lea starter pack. The pack contained 6 hard centred and 9 soft centred chocolates. Christine ate 1 chocolate.
i) Christine has correctly started the probability tree diagram. Copy the diagram onto your answer sheet and complete it.
(1)
ii) Christine then ate a second chocolate. Complete the probability tree diagram for the second chocolate.

iii) What is the probability that Christine ate a hard and a soft centre?
a) A teacher, Ms Grover, decides to set aside $\$ 200$ every fortnight to deposit into an investment fund. The fund pays 7.8% p.a. and this is compounded fortnightly.
i) Calculate the fortnightly interest rate.
ii) How much will the annuity be worth after 3 years of deposits?
iii) Ms Grover hoped to have $\$ 200000$ as a retirement lump sum at the end of 7 years. How much would Ms Grover have to invest each fortnight to achieve this target? (2)
b) The Cheetahs played 12 home games and 12 away games. The "home" scores are the scores that the Cheetahs made while playing at their home ground, and the "away" scores are the scores that the Cheetahs made while playing at an opponents ground.
i) Calculate the mean score and standard deviation for the Cheetahs away scores.

Home Scores	Away Scores	
	10	10
12	12	
12	12	
16	16	
18	16	
26	18	
34	22	
36	24	
40	26	
Mean:	44	30
Standard Deviation:	45	40

The information from the table is represented in the following bow-and-whisker plot.

ii) Write down the interquartile range for the Cheetahs home scores.
iii) Compare and contrast the Cheetahs home and away scores. In your answer, comment on the shape and skewness of the distributions, measures of location and measures of spread.
c) Change the subject of the formula $E=\frac{1}{2} m v^{2}$ to v.
a) Rachel's new sailing boat has a main sail that is 5 m wide and an angle of 58° is made between the horizontal and sloping edge of the sail. How high is the sail?

b) Tania borrows $\$ 350000$ from Eastpac to purchase a house. She takes the loan over 30 years at 6.48% pa.
i) Show that her monthly payment is $\$ 2$ 207.64.
ii) How much does Tania repay over the 30 years to Eastpac?
iii) How much interest does she pay over the 30 years?
iv) Tania gets a big promotion and decides to pay the loan off over 15 years. How much interest does she save by paying the loan off over 15 years?
c) The cost of hiring a car from two different rental companies, Mavis Rentals and Fudget Hire, are shown in the graph to the right.
i) Using d to represent the total distance travelled and C to represent the total hiring cost, write the equation which represents the costs of hiring a car from Mavis Rentals.

ii) Explain why the line for Fudget Hire is horizontal.
d) Sarah is thinking about what to serve her guests when they come to lunch. She is deciding between soup or fruit or oysters followed by veal or chicken and finishing up with tiramisu or pastries.
i) How many different menus is Sarah considering?
ii) How many of the possible menus include veal?

MSI VR12 General + Yearly 2006
v D
25
(6) C
7) B
(ii) C
12) D
3) D
4. B
5) B
C) D
13) C
7) A
10) B
(14) A
15) A

Question 21
A)

$$
\begin{aligned}
I & =P R N \\
& =12,000 \times 0.075 \times 6 \\
& =\$ 5400
\end{aligned}
$$

B)

$$
\begin{aligned}
2(p+q)-3(p-q) & =2 p+2 q-3 p+3 q \\
& =5 q-p
\end{aligned}
$$

(I) $13 M+17 F=30$ people
III) 2 (male)
III) 22
IV) Males 38-2 $=36$ Females $48-4=44$
\therefore Females have largest range
Dj) 0.5 mL
II) $0.5 / 15 \times 100=3 \frac{1}{3} \%$

II)

$$
\begin{aligned}
B C^{2} & =8^{2}+15^{2} \\
& =64+225 \\
& =289 \\
B C & =\sqrt{289} \\
& =17 m
\end{aligned}
$$

Question 22
A) Int

$$
\begin{aligned}
& 3400-2800=600 \\
& I=P R N \\
& 60 \theta=2800 \times R \times 3 \\
& 600=8400 \wedge R \\
& R=0.0714 \\
&=7.14 \%
\end{aligned}
$$

B)

$$
\begin{aligned}
\sin 6 & =\frac{23}{42} \\
\sigma & =33^{\circ} 12^{\prime}
\end{aligned}
$$

c)

$$
\begin{aligned}
\sqrt[3]{\frac{p+3}{7}} & =2 \\
\frac{p+3}{7} & =8 \\
p+3 & =56 \\
P & =53
\end{aligned}
$$

DI)

$$
\begin{aligned}
A & =\pi\left(R^{2}-r^{2}\right) \\
& =\pi\left(2 \cdot 33^{2}-0.9^{2}\right) \\
& =14.1 \mathrm{~m}^{2}
\end{aligned}
$$

II)

$$
\begin{aligned}
V & =14.1 \times 7.2 \times 20 \\
& =2,030.4 \mathrm{~m}^{3}
\end{aligned}
$$

EA) ${ }^{14} c_{2}=91$
II) ${ }^{26} c_{3}=2600$
F)

$20+15+7=42$
$42-30=12$
Both $=12$ students

Question 23
AI) 19 boxes contain less than 50 matches
$\therefore 62 \%$ contain 50 or more
\therefore the claim is reasonable
II) 50 sees $\therefore Q_{1}=12 \frac{1}{2}, Q_{3}=37 \frac{1}{2}$ (1)

$$
\begin{align*}
I Q R & =50-49 \\
& =1 \tag{0}
\end{align*}
$$

III) median av $25^{\text {th }}$ and $26^{\text {th }}$ scares
\therefore median $=50$ (1)
IV) \# with $50 \quad 40-19=21$

$$
P(50)=21 / 50 \text { (1) }
$$

B I) 3.4748×10^{16} (1)
II) $x^{\prime \prime}$ (1)
c)

$$
\begin{aligned}
& \quad A=P(1+r)^{n} \\
& 21,000=7.000(1+0.06)^{n}(1) \\
& 1.06^{n}=3^{3}
\end{aligned}
$$

let

$$
n=18, \quad 1.06^{18}=2.8540
$$

$$
n=19 \quad 1.06^{19}=3.026
$$

\therefore after 19 year (1)
DI)
II)
III)

$$
\begin{aligned}
P(H \text { and } S) & =\frac{54}{210} \times 2 \\
& =\frac{108}{210} \\
& =\frac{18}{35}
\end{aligned}
$$

MSS YR12General Yearly 2006 loge 2 Question 25
Question 24
AI) $r=0.078 \div 26$
Mr

$$
=0.003
$$

II)

$$
\begin{aligned}
n & =26 \times 3 \quad A=M\left[\frac{(1+r)^{n}-1}{r}\right] \\
& =78 \\
A & =200\left[\frac{1.003^{78}-1}{0.003}\right] \\
& =\$ 17,546.79
\end{aligned}
$$

III) $200,000=M\left[\frac{1.003^{152}-1}{0.003}\right] \quad \begin{aligned} n & =26 \times 7 \\ & =\end{aligned}$

$$
\begin{aligned}
200,000 & =M \times 241.6 \\
M & =\$ 827.67
\end{aligned}
$$

BI)

$$
\begin{aligned}
\bar{x} & =22 \\
\sigma_{n} & =9.56
\end{aligned}
$$

II) $42-14=28$
III) Both sets of scores are
skewed
The home scores have a higher median The heme scores have both o higher range and IQR
C)

$$
\begin{aligned}
E & =\frac{1}{2} m v^{2} \\
2 E & =m V^{2} \\
V^{2} & =\frac{2 E}{m} \\
V & =\sqrt{\frac{2 E}{m}}
\end{aligned}
$$

(I)
3)

$$
\begin{array}{rlrlrl}
r=6.3 \div 2 & n=10 \times 2 & A & =P(1+r)^{n} \\
& =3.15 \% & =20 & & =7000 \times 1.0315^{20} \\
& & & & \$ 13,016.15
\end{array}
$$

4) $4000 \times 0.2+3000 \times 0.25=\$ 1550$
5) 18 holes, \therefore av of $9^{\text {th }}$ and $10^{\text {th }}$ sores

$$
\therefore(5+5) \div 2=5
$$

c) $30+4 \times 10=70$
7) $\mathrm{km}: 10,000 \mathrm{~cm}$
$200 \div 100=2 \mathrm{~cm}$
$1 \mathrm{~cm}: 100 \mathrm{~m}$
8)

$$
\begin{aligned}
y & =2 \times 5+3 \quad \therefore(5,13) \\
& =13
\end{aligned}
$$

(0) 4 aces taken $\therefore 48$ cords left

$$
P(k)=4 / 48
$$

III) $350,000=M\left[\frac{1.0054^{182}-1}{0.0054 \times 1.0054^{180}}\right] \begin{aligned} n & =15 \times 12 \\ & =180\end{aligned}$

$$
=y_{12}
$$

$350,000=m \times 114.9$
$M=\$ 3045.03$

$$
\begin{array}{rlrl}
m & =\frac{\text { rise }}{\text { run }} \\
& =20 / 40 & y=m x+b \\
& =y_{2} & & =\frac{1}{2} d+40
\end{array}
$$

(i)

$$
1 / 3 \times 1 / 2 \times 1=1 / 6
$$

$$
\approx 17 \%
$$

$$
\begin{aligned}
\text { Repay } & =3045,03 \times 12 \times 15 \\
& =548,105.4 \theta \\
& =794,750.40-548,105.40 \\
& =\$ 246,645
\end{aligned}
$$

12) $\sqrt{2}-1=0.4 \quad 10^{-7}=0.0000007$
$\sin 20=0.34 \quad 3-\pi=-0.14$
as $P(E)>0$, only D
13)

$$
\begin{aligned}
5 a & =a+120 \\
4 a & =120 \\
a & =30
\end{aligned}
$$

14) $\frac{1457.87}{1.12} \approx 1301.6$
II) You play a flat rate, no matter how far you travel
DI) $3 \times 2 \times 2=12$
II) $3 \times 1 \times 2=6$
15) $23 \times g+35 \times c+20=23 g+35 c+20$
