Section I

20 marks
Attempt Questions 1-20
Allow about 30 minutes for this section
Use the multiple choice answer sheet

1 The position coordinates of a point 18° north of $\left(12^{\circ} \mathrm{S}, 22^{\circ} \mathrm{W}\right)$ is;
A $\quad\left(30^{\circ} \mathrm{N}, 22^{\circ} \mathrm{W}\right)$
B $\quad\left(12^{\circ} \mathrm{S}, 40^{\circ} \mathrm{W}\right)$

C $\quad\left(12^{\circ} \mathrm{S}, 4^{\circ} \mathrm{W}\right)$
D $\quad\left(6^{\circ} \mathrm{N}, 22^{\circ} \mathrm{W}\right)$

2 In the formula $S=\frac{a}{1-r}$, find the value of S when $a=20$ and $r=\frac{1}{6}$
A $19 \frac{5}{6}$

B 24
C 32

D 48

3 Water is dripping from a tap at a rate of 70 drops per minute. Each drop is 0.4 mL . How many litres drip from the tap in 5 hours?

A $\quad 8.4 \mathrm{~L}$

B $\quad 0.875 \mathrm{~L}$

C $\quad 35 \mathrm{~L}$

D $\quad 52.5 \mathrm{~L}$

4 The speed limit in the Eastern Distributor tunnel is $80 \mathrm{~km} / \mathrm{h}$. This speed expressed in metres per second to one decimal place is;

A $\quad 22.0$
B 2.2
C 0.2
D $\quad 22.2$

5 Find, correct to the nearest degree, the size of angle θ.

A $\quad 27^{\circ}$
B $\quad 30^{\circ}$
C $\quad 60^{\circ}$
D $\quad 63^{\circ}$

6 Anne works at Big-Y Department Store and is paid $\$ 11.20$ per hour for a 38-hour week.

Calculate Anne's pay in a week where she works 5 hours at time-and-half in addition to her regular hours.

A $\quad \$ 425.60$
B $\quad \$ 481.60$
C $\$ 509.60$
D $\quad \$ 722.40$
$7 \quad$ Simplify $12 m^{4} n^{3} \times 4 m n^{2}$
A $\quad 3 m^{5} n^{5}$
B $\quad 48 m^{4} n^{6}$
C $\quad 48 m^{5} n^{5}$
D $\quad 60 m^{8} n^{6}$

8 The value of $\frac{4.6}{\sqrt{2.5+9.8}}$, correct to two significant figures is:
A 0.76
B $\quad 1.3$
C 1.31
D 4.97

9 A Melbourne Council wishes to fertilize one of its AFL grounds which is in the shape of an ellipse, as shown in the diagram.

Fertilizer costs $\$ 1.25$ per square metre.

What will be the cost to fertilise the AFL ground to the nearest $\$ 10$?
A $\quad \$ 73430$
B $\quad \$ 18360$
C $\quad \$ 36720$
D $\quad \$ 36710$

10 The table below is used to calculate the compound value that $\$ 1$ will amount to under a certain investment condition.

	Interest rate per period				
Periods	1%	2%	3%	4%	5%
1	1.010	1.020	1.030	1.040	1.050
2	1.020	1.040	1.061	1.082	1.103
3	1.030	1.061	1.093	1.125	1.158
4	1.041	1.082	1.126	1.170	1.216
5	1.051	1.104	1.159	1.217	1.276
6	1.062	1.126	1.194	1.265	1.340

Mary-Rose plans to invest $\$ 5500$ at 4% p.a. for 2 years, with interest compounded six-monthly.

What will her investment amount to?
A $\quad \$ 5500$
B $\quad \$ 5624.45$
C $\quad \$ 5951$
D $\quad \$ 6200$

11 The solution to the equation $2(4 x-3)-7 x=19$ is
A $\quad x=13$

B $\quad x=16$

C $x=22$
D $x=25$

12 Bob the builder bought building supplies to the value of $\$ 4600$ and then received a trade discount of 15%. If the account is paid within 30 days, a further 3% reduction of the discounted price applies. The account was paid within 30 days.

How much did Bob pay?
A $\quad \$ 828$
B $\quad \$ 3772$
C $\quad \$ 3792.70$
D $\quad \$ 4579.30$

13 A rectangle has dimensions 18 cm by 12 cm correct to the nearest centimetre. The area of the rectangle will lie between;

A $\quad 212.75 \mathrm{~cm}^{2}$ and $231.25 \mathrm{~cm}^{2}$
B $\quad 201.25 \mathrm{~cm}^{2}$ and $231.25 \mathrm{~cm}^{2}$
C $\quad 201.25 \mathrm{~cm}^{2}$ and $218.75 \mathrm{~cm}^{2}$
D $\quad 212.75 \mathrm{~cm}^{2}$ and $218.75 \mathrm{~cm}^{2}$

14 Brian invested $\$ 6000$ for 5 years compounding annually. At the end of that time his investment had compounded to $\$ 10500$. The interest rate correct to 1 decimal place was;

A 15.0%
B 11.8%
C 35.0%
D 9.4%

15 When it is noon in Greenwich, the local time in $\operatorname{Vancouver}\left(49^{\circ} \mathrm{N}, 123^{\circ} \mathrm{W}\right)$ is;

A $\quad 8: 12 \mathrm{pm}$
B $\quad 3: 48 \mathrm{am}$
C $\quad 3: 16 \mathrm{pm}$
D $\quad 8: 44 \mathrm{am}$

16 The radius of a sphere of volume $695 \mathrm{~m}^{3}$, correct to one decimal place is;
A $\quad 11.8 \mathrm{~cm}$
B $\quad 40.5 \mathrm{~cm}$
C $\quad 51.5 \mathrm{~cm}$
D $\quad 5.5 \mathrm{~cm}$

17 In triangle $\mathrm{ABC}, \mathrm{AB}=32 \mathrm{~m}, \mathrm{AC}=50 \mathrm{~m}$ and angle $\mathrm{A}=25^{\circ}$. The area of the triangle to the nearest square metre is;

A $\quad 25 \mathrm{~m}^{2}$
B $\quad 47 \mathrm{~m}^{2}$

C $\quad 338 \mathrm{~m}^{2}$
D $\quad 800 \mathrm{~m}^{2}$

18 The bearing of S from P is 110° and Q is NW of P . The angle QPR is 89°. The bearing or R from P is;

A 134°
B 244°
C 155°
D $\quad 226^{\circ}$

19 Using Simpson's Rule, the nearest approximation to the area of the field drawn is;

A $\quad 600 \mathrm{~m}^{2}$
B $\quad 700 \mathrm{~m}^{2}$
C $\quad 800 \mathrm{~m}^{2}$
D $\quad 900 \mathrm{~m}^{2}$

20 Peter calculates the present value (N) of an annuity. The interest rate is 4% p.a compounded monthly. In 5 years the future value will be $\$ 100000$.

Which of the calculations below will result in the correct answer?

A $\quad N=\frac{100000}{(1+0.04)^{5}}$

B $\quad N=\frac{100000}{(1+0.04 \div 12)^{5}}$
C $\quad N=\frac{100000}{(1+0.04)^{60}}$
D $\quad N=\frac{100000}{(1+0.04 \div 12)^{60}}$
Blank Page

Section II

60 Marks
Attempt Questions 21-23
Allow about 1.5 hours for this section
Answer each question in a separate answer booklet, clearly labelled with your student number.

All necessary working should be shown in every question.
\qquad

Question 21 (20marks) Use a SEPARATE answer booklet.
(a) Evaluate $\frac{4.8 \times 10^{5}}{6.4 \times 10^{-2}}$, giving your answer in scientific notation.
(b) Solve the equation $4(2 y-2)=5 y+19$
(c) A computer system is purchased for $\$ 5800$. Its depreciation can be calculated using a straight line depreciation of $\$ 1200$ p.a. or by using a declining balance rate of 30% p.a.
(i) Find the value of the system after 3 years using the declining balance method.
(ii) Which method will give the system the greater value after 3 years?

Justify your answer with calculations
(d) A radio transmission tower stands on level ground. A surveyor, at B, sights the top of the tower (A) and notes its angle of elevation is 18°. He then walks 50 m towards the tower to C and notes its angle of elevation is 21° as illustrated in the diagram.

(i) Determine the size of $\angle \mathrm{BAC}$.
(ii) Use the Sine rule to find the length of AC correct to the nearest metre.
(iii) Hence find the height AD of the radio transmission tower correct to the nearest metre.
(e) Allan is a surveyor for Valley Heights Council and his scale survey drawing is shown below.

Fig 1

Scale: $1 \mathrm{~mm}=1 \mathrm{~m}$

(i) The park, $A X B Y$, is to have a 1.8 m high fence placed around its perimeter.

By accurate measurement determine how much fencing is required, to the nearest metre?
(ii) As part of a government grant the park is to be planted with native trees. If a tree can be planted for every $12 \mathrm{~m}^{2}$ of space, how many trees can be planted in the park?
(Note: we must assume there are NO trees in the park at present)
(f) A plane leaves Chicago ($42^{\circ} \mathrm{N}, 88^{\circ} \mathrm{W}$) at 8 am and flies to Rome ($42^{\circ} \mathrm{N}, 12^{\circ} \mathrm{E}$) If the flying time is 5 hours 30 minutes at what local time did the plane arrive in Rome.

End of Question 21

Question 22 (20 marks) Use a SEPARATE answer booklet.
(a) A cylindrical can has a diameter of 6.5 cm and a height of 11 cm . The curved surface area of the can is covered completely with a label, without any overlapping.

Find, to one decimal place, the
(i) circumference of the base of the can. $\mathbf{2}$
(ii) area of the label.
(iii) volume of the can.
(b) If $V=\frac{h}{2(r+h)}$, find h if $r=8$ and $V=0.1$
(c) Given that $A=\frac{Y}{B}$, find A when $Y=300$ and $B=3.81 \times 10^{-4}$.

Express your answer in scientific notation correct to 2 significant figures.
(d)

(i) Show that the perimeter $P \mathrm{~cm}$ of this quadrilateral is given by

$$
P=4 x+11
$$

(ii) If the perimeter is 91 cm , determine the longest side length.
(e) Given the radius of the Earth is approximately 6400 km , find the distance between the two points on the equator, $\left(0^{0}, 20^{\circ} \mathrm{W}\right)$ and $\left(0^{0}, 8^{0} \mathrm{E}\right)$. (Give your answer to the nearest kilometre.)
(f) Calculate the distance, in nautical miles, between $\left(20^{\circ} \mathrm{N}, 85^{\circ} \mathrm{W}\right)$ and $\left(35^{\circ} \mathrm{N}, 85^{\circ} \mathrm{W}\right)$.
(g) Given $1 \mathrm{M}=1.852 \mathrm{~km}$, calculate the average speed, in knots for a journey of 865 km in 6 hours and 54 minutes. (Give your answer to the nearest knot.)
(h) Ruby needs to have a sum of $\$ 5000$ in 3 years. She invests in an annuity that earns 5.4% p.a compounding quarterly. How much should she deposit each quarter to achieve her required sum?

End of Question 22

Question 23 (20 marks) Use a SEPARATE answer booklet.
(a) A rectangular shaped park with dimensions 400 m by 300 m has a lake within its boundaries with dimensions as illustrated in the diagram. (Diagram not to scale.)

400 m

(i) Using Simpsons rule twice calculate the area of the lake to the nearest 10 square metres.
(ii) If the lake has an average depth of 1.5 m , calculate the amount of water in the lake in Kilolitres
(iii) What percentage of the park is occupied by the lake. Answer to 1 decimal place.

Question 23 Continued.
(b) The diagram below represents a sailing course.

(i) Show that $\angle \mathrm{ABC}=75^{\circ}$.
(ii) Find the distance AC to one decimal place.
(iii) Find $\angle \mathrm{BAC}$ to the nearest degree.
(iv) Find the bearing of A from C .

1
(c) A home loan of \$350 000 is taken out and repaid monthly over 25 years.
(i) Determine the monthly repayment if interest is calculated at 8.4% p.a.
(ii) Determine the total amount repaid.
(iii) Determine the amount saved on the loan if repayments are made fortnightly at a rate of 7.8% p.a. over 25 years.

END OF PAPER

Section I - Multiple Choice

Answer sheet

$$
\begin{aligned}
& \frac{4.8 \times 10^{5}}{6.4 \times 10^{-2}} \\
M & =7500000 \\
& =7.5 \times 10^{6}
\end{aligned}
$$

b)

$$
\begin{aligned}
& 4(2 y-2)=5 y+19 \\
& 8 y-8=5 y+19
\end{aligned}
$$

9

$$
\begin{aligned}
& 3 y=27 \\
& y=9
\end{aligned}
$$

ci) $A=p(1-r)^{n}$

$$
\begin{aligned}
A & =p(1-r)^{n} \\
\text { Value } & =5800(1-0.3)^{3} \\
& =\$ 1989.40
\end{aligned}
$$

ii) Straight Line Value $=5800-1200 \times 3$

$$
=\$ 2200
$$

\therefore Straight line method gives greater value
di) $\angle B A C=3^{\circ}$
(ii)

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\operatorname{Sin} B} \\
& \frac{A C}{\operatorname{Sin} 18}=\frac{50}{\operatorname{Sin} 3} \\
& A C=\frac{50}{\operatorname{Sin} 3} \times \sin 18
\end{aligned}
$$

a) i) $c=\pi d$

$$
=\pi \times 6.5 \mathrm{~cm}
$$

$$
=20.42035225 \quad 1
$$

$$
=20.4 \mathrm{~cm} \quad 1
$$

ii)

$$
\begin{array}{rl}
A & =2 \pi r h \\
& =20.4 \times 11 \\
& =224.4 \mathrm{~cm}^{2} \\
O R & 224.6 \mathrm{~cm}^{2}
\end{array}
$$

c) $A=\frac{Y}{B}$

$$
A=300 \div\left(3.81 \times 10^{-4}\right)
$$

$$
A=787401 \cdot 5748
$$

$$
A=790000 \quad \text { (2 sig figs) }
$$

$$
A=7.9 \times 10^{5}
$$

iii)

$$
\begin{aligned}
v & =\pi r^{2} h \\
& =\pi \times(3.25)^{2} \times 11 \\
& =365.0137964 \\
& =365.0 \mathrm{~cm}^{3}
\end{aligned}
$$

d) i)

$$
\begin{aligned}
P & =x+9+2 x+(x+2) \\
& =4 x+11
\end{aligned}
$$

ii)

$$
91=4 x+11
$$

$$
4 x=80
$$

$$
x=20
$$

\therefore Longest side $=2(20)=40 \mathrm{~cm}$

$$
\begin{aligned}
& \text { 8) Angular } \begin{aligned}
D_{1} f f & =20^{\circ}+8^{\circ} \\
& =28^{\circ} \\
\therefore \text { Distare }^{\circ} & =\frac{28^{\circ}}{360^{\circ}} \times 2 \times \pi \times 6400 \\
& =3127.63002 \\
& =3127.63 \mathrm{~km}
\end{aligned} \quad \begin{aligned}
\end{aligned}
\end{aligned}
$$

f)

$$
\text { f) } \begin{aligned}
865 \mathrm{kn} & =865 \div 1.852 \\
& =467.062635 \text { naut. mi ls } 1 \\
\text { A Average } & \text { Speed } \\
& =467.062635 \div 6 \text { hours } 54 \mathrm{~min} \\
& =67.69023695 \\
& =68 \text { knots } \quad 1
\end{aligned}
$$

$$
\text { f) } \begin{aligned}
\text { Angular } A_{1} f f & =35^{\circ}-20^{\circ} \\
& =15^{\circ} 1 \\
\therefore D_{1 s t a n c e} & =15 \times 60 \\
& =900 \text { nautical miles i }
\end{aligned}
$$

b)

$$
\begin{aligned}
& n=12 \\
& I=1.35 \\
& P V=0 \\
& P M T=0 \\
& F V=5000 \\
& P / Y=1 \\
& C / Y=1
\end{aligned}
$$

$$
\therefore P M T=\$ 386.63
$$

$$
\begin{aligned}
& A=\frac{M\left[(1+r)^{n}-1\right] \quad O R}{r} \\
& 5000=\frac{M\left[(1+0.0135)^{12}-1\right]}{0.0135} 1 \\
& M=\frac{5000 \times 0.0135}{(1+0.0135)^{12}-1} \quad 1 \\
& \therefore \text { Payment }=\$ 386.63 \quad 1
\end{aligned}
$$

a)

$$
\begin{aligned}
& \text { Area }=\frac{h}{3}\left\{d_{f}+4 d_{m}+d_{l}\right\} \\
& =\frac{50}{3}\{0+4 \times 75+70+70+4 \times 84+0\} \\
& 0 \text { or } 2 \text { sep. Areas } \\
& =\frac{50}{3} \times 776 \text { or } \frac{50}{3} \times 370+\frac{50}{3} \times 406 \\
& =12933-3 \ldots(\text { Ca lc) } \\
& =12930 \mathrm{~m}^{2}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\text { Volume } & =\text { A } \times \mathrm{h} \\
& =12930 \times 1.5 \\
& =19395 \mathrm{~m}^{3} \\
& =19395 \mathrm{KL}
\end{aligned}
$$

$$
\text { iii) } \begin{aligned}
\% \text { Lake Occupres } & \left.=\frac{12930}{(400 \times 300}\right) \times 100 \\
& =\frac{12930}{120000} \times 100 \\
& =10.775 \\
& =10.8 \%
\end{aligned}
$$

bi) $\angle A B C+160+(180-55)=360$

$$
\angle A B C+160+125=360
$$

$$
\therefore \angle A B C=75^{\circ}
$$

ii)

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \operatorname{Cos} A \\
A C^{2} & =45^{2}+6.4^{2}-2 \times 4.56 .4 \operatorname{Cos} 75^{\circ} \\
& =46.302 \ldots \text { (Galc) } \\
\therefore A C & =6.804 \ldots \text { (Galc) } \\
& =6.8 \mathrm{~cm}
\end{aligned}
$$

iii) $\frac{\operatorname{Sin} A}{a}=\frac{\operatorname{Sin} B}{b}$

$$
\frac{\sin A}{6.4}=\frac{\sin 75}{6.8}
$$

$$
\operatorname{Sin} A=\frac{\operatorname{Sin} 75}{6.8} \times 6.4
$$

$$
=0.9090 \ldots(\text { calc })
$$

$$
\angle B A C=\operatorname{Sin}^{-1}(0.9091 \ldots)
$$

$$
=65.38 \ldots
$$

$$
=65^{\circ}
$$

iii)

$$
\begin{aligned}
\text { Beaing of A fom } C & =360-40-20 \\
& =300^{\circ} \mathrm{T}
\end{aligned}
$$

\therefore Monthly Paymat $=\$ 2794.75$
cii)

$$
\begin{aligned}
\text { Total Repaid } & =2794.75 \times 300 \\
& =\$ 838425
\end{aligned}
$$

(iii)

Using $\begin{aligned} r & =7.8 \div 26 \div 100 \\ & =0.003\end{aligned}$

	$=0.003$	$n=650$ $I=7.8$ and n
aV	$=2650000$	
	$=650$	$F V=0$
	$0 / Y=26$	
	$C Y=26$	

$$
\begin{aligned}
M & =35000000.003 \times 1 \cdot 003^{650} \div\left[5003^{650}-7\right] \\
& =1224.76 / \mathrm{m}(\mathrm{G} / \mathrm{c})
\end{aligned}
$$

Fortaightly Payments $=\$ 1224.76$
Amount Saved $=[(2794.75 \times 12)-(1224.16 \times 26)]_{875}$

$$
=[33537-31843.76] \times 25
$$

$$
=1693.24 \times 25
$$

$$
=\$ 42331
$$

$$
\begin{aligned}
& \begin{aligned}
: M & =350000 \times 0.007 \times 1.007^{300}=\left[1.007^{300}-1\right] \\
& =2794.747 \ldots(\text { (a) } 16)
\end{aligned}
\end{aligned}
$$

