SECTION 1

QUESTIONS 1-20

(20 marks)

Use the answer sheet provided to answer questions 1 to 20. Each question is worth 1 mark.

1. The simple interest for $\$ 1500$ invested at $7 \frac{1}{2} \%$ p.a. for 2 years will be:

A $\quad \$ 112.50$
B $\quad \$ 225.00$
C $\quad \$ 1725.00$
D $\$ 22500.00$
2. Find the value at the end of 7 years of an annuity of $\$ 125$ paid at the end of each month, interest compounded monthly at 0.5% per month.

A $\quad \$ 29600$
B $\quad \$ 6348$
C $\quad \$ 11018$
D $\quad \$ 13009$
3. A home loan for $\$ 120000$ is taken out at an interest rate of 9.6% p.a. with a monthly repayment of $\$ 1100$. What will the balance of the loan be at the end of the first month?

A $\quad \$ 119860$
B $\quad \$ 130420$
C $\quad \$ 120951.20$
D $\quad \$ 131414.40$
4. A helicopter is purchased by a company for $\$ 3.3$ million. The salvage value of the helicopter depreciates in a straight line at a rate of $\$ 240000$ per year. After how many years will the value of the helicopter first be less than $\$ 1$ million?

A 8
B 9
C 10
D 11
5. Cally has a credit card with an interest rate of 0.05% per day and no interest free period. Cally used the credit card to pay for car repairs costing $\$ 480$. She paid the credit card account 16 days later. What is the total amount (including interest) that she paid for the repairs?

A $\quad \$ 480.24$
B $\quad \$ 483.84$
C $\quad \$ 504.00$
D $\quad \$ 864.00$
6. The volume of the given cone (correct to 2 decimal places) is:

A $\quad 28274.33 \mathrm{~cm}^{3}$
B $\quad 9424.78 \mathrm{~cm}^{3}$
C $\quad 37699.11 \mathrm{~cm}^{3}$
D $\quad 18849.56 \mathrm{~cm}^{3}$

7. The length and width of a rectangle an measured to the nearest centimeter and found to be 12 cm and 16 cm . Between what upper and lower values must the actual area of the rectangle lie?

A $\quad 12 \times 16 \mathrm{~cm}^{2}$ (lower) and $13 \times 17 \mathrm{~cm}^{2}$ (upper)
B $\quad 12 \times 16 \mathrm{~cm}^{2}$ (lower) and $12.5 \times 15.5 \mathrm{~cm}^{2}$ (upper)
C $\quad 11.5 \times 15.5 \mathrm{~cm}^{2}$ (lower) and $11 \times 16 \mathrm{~cm}^{2}$ (upper)
D $\quad 11.5 \times 15.5 \mathrm{~cm}^{2}$ (lower) and $12.5 \times 16.5 \mathrm{~cm}^{2}$ (upper)
8. What is the area of the triangle shown? (correct to 2 significant figures)

$\begin{array}{ll}\text { A } & 140 \mathrm{~cm}^{2} \\ \text { B } & 76 \mathrm{~cm}^{2} \\ \text { C } & 280 \mathrm{~cm}^{2} \\ \text { D } & 110 \mathrm{~cm}^{2}\end{array}$
9. Fred measures the length of a piece of wood as 250 mm , correct to the nearest mm . What is the percentage error in his measurement?
A. $\pm 0.002 \%$
B. $\pm 0.004 \%$
C. $\pm 0.2 \%$
D. $\pm 0.4 \%$
10. A sphere has a volume of $360 \mathrm{~cm}^{3}$. Its radius (to one decimal place) is closest to

A $\quad 1.7 \mathrm{~cm}$
B $\quad 4.4 \mathrm{~cm}$
C $\quad 8.1 \mathrm{~cm}$
D $\quad 9.3 \mathrm{~cm}$
11. This is the sketch of a sector of a circle,

Find the value of θ to the nearest degree:

A	47°
B	48°
C	68°
D	69°

12. The owner of the pool below wants to know the capacity of the pool. What is the capacity in kilolitres? $\left(1 \mathrm{~m}^{3}=1 \mathrm{~kL}\right)$

A $\quad 68.5 \mathrm{~kL}$
B $\quad 15.8 \mathrm{~kL}$
C $\quad 50.6 \mathrm{~kL}$
D $\quad 101.2 \mathrm{~kL}$
13. A paddock is bordered by a river as shown below. Use Simpsons Rule to find the area of the paddock. Note the diagram is not drawn to scale.

A $\quad 115550 \mathrm{~m}^{2}$
B $\quad 38500 \mathrm{~m}^{2}$
C $\quad 143000 \mathrm{~m}^{2}$
D $\quad 71500 \mathrm{~m}^{2}$
14. The coordinates of Hellsville are $25^{\circ} \mathrm{N} 45^{\circ} \mathrm{W}$, Heavenville is 2 hours ahead of Hellsville. The coordinates of Hellsville could be:

A $\quad\left(10^{\circ} \mathrm{N}, 15^{\circ} \mathrm{W}\right)$
B $\quad\left(55^{\circ} \mathrm{N}, 45^{\circ} \mathrm{W}\right)$
C $\quad\left(5^{\circ} \mathrm{S}, 75^{\circ} \mathrm{W}\right)$
D $\quad\left(5^{\circ} \mathrm{S}, 45^{\circ} \mathrm{W}\right)$
15. Which equation should be used to obtain the value of m in the triangle below?

A $\frac{m}{\sin 63}=\frac{8}{\sin 12}$
B $\quad m^{2}=12^{2}+8^{2}-2 \times 12 \times 8 \cos 63^{0}$

8

C $\quad \cos 63^{0}=\frac{x^{2}+12^{2}-8^{2}}{2 \times 12 \times 8}$
D $\quad m^{2}=12^{2}-8^{2}$
16. If $w=\frac{15 y}{y+12}$ and $y=7$, find the value of w (correct to two decimal places)

A 5.53
B 8.26
C $\quad 15.75$
D $\quad 27.00$
17. The formula $s=u t+\frac{a t^{2}}{2}$ is rearranged to make a the subject. The results is:

A $\quad a=\frac{2 s-u t}{t^{2}}$
B $\quad a=\frac{2(s-u t)}{t^{2}}$
C $a=\frac{2 s+2 u t}{t^{2}}$
D $a=t^{2}(2 s-2 u t)$
18. If a garden hose can fill a 5 litre bucket in 10 seconds:

When expressed as a rate of flow in litres per hour this is that's same as :

A $\quad 180 \mathrm{~L} / \mathrm{hr}$
B $\quad 1800 \mathrm{~L} / \mathrm{hr}$
C $\quad 30 \mathrm{~L} / \mathrm{hr}$
D $\quad 200 \mathrm{~L} / \mathrm{hr}$
19. The solution to the equation $4-6(x-3)=-12$

A $x=\frac{17}{3}$
B $\quad x=11$
C $\quad x=5$
D $x=\frac{5}{11}$
20. Evaluate $1.57 \times 10^{-5} \div 8.7 \times 10^{3}$ correct to 3 significant figures

A $\quad 1.80 \times 10^{-9}$
B 0.0000000018045977
C $\quad 1.80 \times 10^{-1}$
D $\quad 1.37 \times 10^{2}$
(a) Solve for x :

$$
\frac{2 x-3}{4}+5=9
$$

(b) Simplify the following expressions:
(i) $(-2 r t)^{2}$
(ii) $\quad 5 a^{4}\left(4 a^{2}-2\right)+a^{3}\left(a^{3}+7\right)$
(iii) $\frac{6 d^{3}}{9 c} \times \frac{c}{2} \times \frac{18 c^{2}}{12 d}$
(c) If $D=\frac{y A}{(y+12)}$, find A if $y=9$ and $D=11$ correct to 2 significant figures.
(d) Using the diagram below, if the perimeter is 91 cm , calculate the value of x.

(e) Solve for $k: \sqrt{5 k+4}=7$
(a) Subaru is designing an eight cylinder racing engine. Each cylinder has a bore (diameter) of 10.0 cm and a stroke (height) of 7.8 cm as shown below.

i) Calculate the volume of each cylinder, correct to the nearest cubic centimetre
ii) The capacity of the engine is the sum of all the capacities of the 8 cylinders. Does Subaru's engine meet the racing requirements that the capacity should be under 5 litres? Justify your answer with a mathematical calculation. (Note: $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$)
(b) A couple are having an elliptical swimming pool built. They are having a concrete path around the pool 2 metres wide.

i) What is the area of the path around the pool? Answer to 2 decimal places
ii) The concrete will have a depth of 6 cm . What is the volume of concrete needed for the path? Answer to nearest cubic metre.

Question 22 continued
(c) A house brick in the shape of a rectangular prism has dimensions as shown below,

$$
23 \mathrm{~cm}
$$

(i) What is the surface area of one brick?
(ii) The surface area for a stack of these bricks is less than the total surface area of the individual bricks in the stack. Find the formula for the surface area of a stack of N bricks.

QUESTION 23 (19 marks)

Start a new page
Marks
(a) Use Simpsons Rule to find the approximate area of the shaded block of waterfront land.

(b) A radial survey of a small community is drawn. All measurements are in kilometres.

(i) Find the size of $\angle \mathrm{BOC}$.
(ii) Find the length of DC to the nearest kilometre.
(iii) Find the area of $\triangle \mathrm{AOD}\left[\angle \mathrm{AOD}=122^{\circ}\right]$. Answer to one decimal place

Question 23 continued
(c)

In the diagram above, R and U represent points on the equator with longitudes $55^{\circ} \mathrm{W}$ and $35^{\circ} \mathrm{E}$ respectively. L is located on latitude $30^{\circ} \mathrm{N}$.
(i) What is the longitude of L ?
(ii) If it is 11 pm at L what is the time at U ?
(iii) What is $\angle R O U$?
(iv) What is the time difference between R and U ?
(v) Find the distance between R and U along the Earth's surface in Nautical Miles.
(vi) How long does it take a ship travelling at 25 knots to travel from R to U .
(vii) If the ship leaves R at 6 am on $1^{\text {st }}$ August, at what local time and date does the ship arrive at U ?
(d) The position of Brennanville is given by the co-ordinates $\left(34^{\circ} \mathrm{S}, 135^{\circ} \mathrm{E}\right)$ and the position of Wilsontown is given as $\left(34^{0} \mathrm{~N}, 135^{\circ} \mathrm{E}\right)$.
Find the distance to the nearest kilometre between the two towns to the nearest kilometre.
Use may use any or all of the following facts:
radius of the earth $=6400 \mathrm{~km}$ and $/$ or 1 nautical mile $=1.852 \mathrm{~km}$.

QUESTION 24 (13 marks)

Start a new page

Marks
(a) A loan of $\$ 290000$ at 6% p.a. compounded monthly is paid off in equal monthly instalments over a 20 year term.
Calculate: (i) the monthly repayment to the nearest cent
(ii) the total amount repaid.
(b) Jack plans to borrow money to buy a motorbike and considers the following repayment guide.

Fortnightly Car Loan Repayment Guide

	Length of Loan		
Amount Borrowed (\$)	1 year (\$)	2 years (\$)	3 years (\$)
10500	430	228	161
11000	451	239	168
11500	471	249	176
12000	492	260	183
12500	512	271	191
13000	532	282	199

He decides to borrow $\$ 11000$ and pay the loan back in fortnightly instalments over 3 years. What is the flat rate of interest per annum on this loan? (answer to one decimal place)
(c) Gwen borrows $\$ 53000$ to begin a new business. She has secured a 9% pa interest loan. She makes monthly repayments and intends to complete the loan in 5 years.
(i) She looks up her HSC General Mathematics Formula Sheet and finds the Present Value Formula and hopes to confirm what the Credit Union told her.
$\propto \quad$ What values should Gwen put in for n and r ?
β Gwen is told that her monthly repayment is $\$ 1100$? Is this correct?
Use calculations to support your answer.
(ii) Her financial advisor tells Gwen that the repayments must be less than 40% of her net income. Using the Credit Union's figure of $\$ 1100 /$ month calculate the net income she needs to earn each month to follow the recommendation of the advisor.

End of paper

2012 -Gen Maths $Y_{r} 12$ Mini
Sectoral

$$
\begin{aligned}
I & =\operatorname{Pr} n \\
I & =1500 \times 0.075 \times 2 \\
& =225
\end{aligned}
$$

$$
\begin{array}{rl}
2 \quad & =125\left\{\frac{(1+0.005)^{84}-1}{0.005}\right\} \\
& =13009 \\
3 & 120000+0.008 \times 120000-1100
\end{array}
$$

$4 \quad S=3,300,000-240,000 n$

$$
\begin{aligned}
1,000,000 & =3,300,000-2400000 \mathrm{n} \\
240000 n & =2,300,000 \\
n & =9.58 \\
n & =10 \text { request year }
\end{aligned}
$$

5

$$
\begin{aligned}
& 480+0.05 \% \times 480 \times 16 \\
& =483.84
\end{aligned}
$$

6

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{8}{3} \pi \times 15^{2} \times 40 . \\
& =37699.11
\end{aligned}
$$

7 . 11.5×15.5 and $12.5 \times(6.5$
8

$$
\begin{aligned}
A & =\frac{1}{2} \times 16 \times 18 \times \operatorname{sm} 101 \\
& =141.35 \mathrm{~cm} \\
& =140 \mathrm{~cm}^{2} 25 \mathrm{f}
\end{aligned}
$$

$$
9 \quad \frac{0.5}{250} \times 100=0.2
$$

$10 . \quad 360=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& r^{3}=85.94 \\
& r=4.4
\end{aligned}
$$

$$
\begin{aligned}
11 . \quad & =\frac{\theta}{360} \times 2 \pi \times 10 \\
\theta & =\frac{12 \times 360}{20 \pi} \\
& =6875 \\
& =69 \text { (neoré degnee) }
\end{aligned}
$$

12

$$
\begin{align*}
\text { Vol } & =\frac{1}{2}(2.1+1.0) \times 10.2 \times 3.2 \\
& =50.592 \mathrm{M}^{3} \\
& =50.6 \mathrm{~kL}
\end{align*}
$$

13

$$
\begin{aligned}
A & =\frac{150}{3}(250+4 \times 220+300) \\
& =71500 \mathrm{~m}^{2}
\end{aligned}
$$

14 2hours equates to 30° lougctude
\therefore ahad so furtur Fast
(xurst be $15^{\circ} \mathrm{W}$
$15 \quad M^{2}=12^{2}+8^{2}-2 \times 12 \times 8 \operatorname{\omega os} 6$
(coime ruce)
6

$$
\begin{aligned}
\omega & =\frac{15 \times 7}{7+12} \\
& =5.526 \\
& =5.53(2 \mathrm{dp})
\end{aligned}
$$

A.
7

$$
\begin{align*}
& s=a t+\frac{a t^{2}}{2} \\
& \frac{a t^{2}}{2}=s-u t \\
& a=\frac{2(s-u t)}{t^{2}}
\end{align*}
$$

8. $51 / 10 \mathrm{sec}$
$301 / \mathrm{min}$
$1800 l / \mathrm{h}$.
B
9.

$$
\begin{gathered}
4-6(x-3)=-12 \\
-6(x-3)=-16 \\
6(x-3)=16 \\
x-3=\frac{16}{6} \\
x=2^{2 / 3}+3 \\
=5^{2 / 3}
\end{gathered}
$$

$20 \quad 1.57 \times 10-8 \cdot 7 \times 10^{3}$

$$
=180 \times 10^{-9}
$$

\qquad

Question 21.
(a)

$$
\begin{aligned}
& \frac{2 x-3}{4}+5=9 \\
& \frac{2 x-3}{4}=4 \\
& 2 x-3=16 \\
& 2 x=19 \\
& \left.x=\frac{19}{2}\left(9 \frac{1}{2}\right) \quad \text { (3 marks if answer arrect con be done } a C\right)
\end{aligned}
$$

$$
\text { (b) (t) }\left(4+t^{4}\right)^{2}=4 r^{2} t^{2}
$$

(ii)

$$
\begin{aligned}
& 5 a^{4}\left(4 a^{2}-2\right)+a^{3}\left(a^{3}+7\right) \\
&= 20 a^{6}-10 a^{4}+a^{6}+7 a^{3} \\
&= 21 a^{6}-10 a^{4}+7 a^{3} \quad \text { (If expewison uncomed } \\
& \text { sill give collectir of }
\end{aligned}
$$

(iii) $\frac{6 d^{2}}{d q} \times \frac{\frac{q}{2}}{d x} \times \frac{x 8 d^{2}}{12 \alpha}=\frac{d^{2} c^{2}}{2}$
(c)

$$
\begin{aligned}
D & =\frac{y A}{(y+12)} \\
H & =\frac{9 \times A}{(9+12)} \\
9 A & =231 \\
A & =25 \cdot 666 \\
A & =26 \quad(25 g(\operatorname{sg})
\end{aligned}
$$

(d)

$$
\begin{gathered}
x+2 x+9+x+2=91 \\
4 x+11=91 \\
4 x=80 \\
x=20
\end{gathered}
$$

(e)

$$
\begin{gathered}
\sqrt{5 k+4}=7 . \\
5 k+4=49 \\
5 k=45 \\
k=9
\end{gathered}
$$

Quention 22.
(a) (i)

$$
\begin{aligned}
V & =\pi r^{2} h \\
V & =\pi \times 5^{2} \times .7-8 \\
& =612 \cdot 61 \\
V & =613 \mathrm{~cm}^{3}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
8 \times 613 & =4904 \mathrm{~cm}^{3} \\
& =4.904 \text { lithes }
\end{aligned}
$$

$$
1 C M^{3}=I m L
$$

yes it does meet to requinmentit
(b) (isAnea of patt $=\pi \times 6 \times 5-\pi \times 4 \times 3$.

$$
=18 \pi
$$

$$
=186.55 \mathrm{~m}^{2}
$$

(ii)

$$
\begin{aligned}
v_{01} & =56.55 \times 6 \\
& =339
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
S A & =2 \times(8 \times 11+8 \times 23+11 \times 23) \\
& =2 \times 525 \\
& =1050 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
&=1050 \mathrm{~cm} \\
& \begin{aligned}
\text { (ii) } I & =n \times 4 \Omega d e r t+\pi p+60(t 8 m \\
& =n \times 2 \times(-8 \times 11+11 \times 23)+2 \times 23 \times 8 \\
S A & =682 n+368
\end{aligned} \\
&
\end{aligned}
$$

Questisin 23.
a)

$$
\begin{aligned}
A & =\frac{90}{3}\{50+4 \times 80+70\} \pm \frac{90}{3}\{140+4 \times 130+150\} \\
& =13200+24300 \\
& =37500 \mathrm{~m}^{2} \quad\left(\begin{array}{l}
\text { if moment frmwion } \\
\text { used gur (mark } \\
\text { for adding to vo areas }
\end{array}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
\hat{B O} \hat{C} & =18+64 \\
& =82
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& D C^{2}=28^{2}-21^{2}-2 \times 28 \times 21 \cos 79 \\
& D C^{2}=1000.608 \\
& D C=\sqrt{1000.608}
\end{aligned}
$$

$$
\begin{aligned}
& =31.63 \\
& =32 \text { (nearest < un) } \quad \text { (wo pounding penalised) }
\end{aligned}
$$

(iii) $A=\frac{1}{2} a b s \mathrm{sm} C$

$$
=\frac{-}{2} \times 34 \times 21 \times \sin 122
$$

$=302.75 \mathrm{~km}^{2} \quad$ (no rounding penalued)
c) (i) $35^{\circ} E$
(ii) 11 pm (same thrice)
(iii) $55+35=90^{\circ}$
(iv) hue difference $=\frac{90}{15}$
$=6$ hours.
(v) $10^{\circ} \Rightarrow 60$ nautical mb e surface
$90^{\circ} \Rightarrow 5400 \mathrm{NM}$.
(vi) $s=\frac{d}{\epsilon}$

$$
\begin{aligned}
t & =\frac{d}{s} \\
t & =\frac{5400}{25} \\
& =216 \text { hours } .
\end{aligned}
$$

(vii) At 6 am on Mon. Ist August at R it is $6+6=12$ midday at U
frovel tine is 216 horrs or 9 days.
\therefore Wordd amive on $10^{\text {th }}$ August at midday.
(d) 68°
didhe is $68 \times 60=4080 \mathrm{NM}$

$$
\begin{aligned}
& =4080 \times 1.852 \mathrm{~km} \\
& =7556 \% \\
& =7556 \mathrm{~km} \text { (nearel } \mathrm{km})
\end{aligned}
$$

\qquad

Questosn 24.

$$
\begin{aligned}
(\text { a) (1) } 290000 & =M\left\{\frac{(1+0.005)^{120}-1}{\left.0.005(11+0.005)^{120}\right\}}\right\} \\
290000 & =m \times 90.073 \ldots \\
M & =3219.59 \text { per moith }
\end{aligned}
$$

(ii) Total $\$ 386350.8, \quad(3219-59 \times 120)$.
(b) repayment per fortight $=168$

$$
\begin{aligned}
\text { Tat repard } & =168 \times 3 \times 26 \\
& =\$ 13104
\end{aligned}
$$

Total cuterest $=13104-11000$

$$
=\$ 2104
$$

Interest per annum $=2104 \div 3$

$$
=\$ 701 \cdot 33
$$

Flat werest rate $=\frac{701.33}{11000}$

$$
=6.3757 \ldots \%
$$

$$
=6 \cdot 4 \%
$$

$$
\text { (c) } \begin{aligned}
& =240 \times 3 \times 12 \\
& =8640 .
\end{aligned}
$$

Iutare $=8640-5000$

$$
=3640
$$

$$
\begin{aligned}
\text { Therest og ofnum } & =3640 \div 3 \\
& =81213.33 \ldots \\
\text { Simple rate } & =\frac{1213-33}{5000} \\
& =24.26 \ldots \% \\
& =24.3 \%
\end{aligned}
$$

(no sonding negurened)
(d)(i) (x)

$$
\begin{aligned}
n & =5 \times 12 \\
& =60 . \\
r & =\frac{9}{12} \% \\
& =0.0075 .
\end{aligned}
$$

(β)

$$
\begin{aligned}
N & =11.00\left\{\frac{(1+0.0075)^{60}-1}{0.0675(1+0.0075)^{60}}\right\} \\
& =52990
\end{aligned}
$$

yes it is correct.
(ii) let Income be I

$$
\begin{aligned}
0.4 \times I & =\frac{1100}{1} \\
& \frac{1100}{0-4}
\end{aligned}
$$

$$
\begin{aligned}
& \$ \$ 4 \\
& =\$ 2750 \text { f } \\
& \text { ara at lean } \$ 2750 \text { per mut. }
\end{aligned}
$$

she must earn at lean $\$ 2750$ per moult.

