18/3/14

THE KING'S SCHOOL

HALF YEARLY EXAMINATION

2014

BIOLOGY YEAR 12

INSTRUCTIONS

- Time allowed 1½ hours
- DO NOT REMOVE this paper from the examination room
- Answer ALL questions in the spaces provided
- Write your Student number in ALL the spaces provided
- TOPICS: Maintaining a Balance Blueprint of Life
- SECTION A 10 multiple choice questions 1 mark each = 10 marks SECTION B - short answer questions = 40 marks

TOTAL = 50 marks

Performance outcome	Demonstrates knowledge and understanding of scientific
for reporting	principles and concepts.

Student Number	
Mudelli Mullibel.	

SECTION A

Questions 1 - 10 - multiple choice

Attempt ALL questions

Choose the best answer and indicate your choice by placing a cross (X) in the appropriate space on the Answer grid.

- 1. Marine fish living in seawater regulate their salt and water balance by:
 - A producing concentrated urine and excreting salts
 - B producing dilute urine and excreting salts
 - C producing concentrated urine and absorbing salts
 - D producing dilute urine and absorbing salts
- 2. Renal dialysis is necessary in patients whose kidneys do not function effectively. Dialysis fluid consists of a mixture of water, glucose, sodium, magnesium chloride ions, potassium and calcium.

Why are these substances intentionally included in the dialysis fluid?

- A to prevent the loss of valuable substances from the bloodstream to the dialysis fluid by diffusion across the porous membrane
- B to assist the movement of urea molecules from the bloodstream to the dialysis fluid by diffusion across the porous membrane
- C to reduce the need for active transport in the distal tubule of the nephron during dialysis
- D to ensure that the osmotic pressure of the dialysis fluid is as close to normal urine as possible
- 3. Which of the following correctly outlines the scientist's contribution to determining the structure of DNA?

A	Franklin	determined that the DNA molecule was a double helix
В	Crick	discovered that the complimentary bases were T–C and G–A
С	Watson	produced X-ray diffraction pictures which assisted in
		determining the DNA structure
D	Wilkins	passed on an unpublished X-ray diffraction picture of DNA to
		Watson and Crick

4. You will have carried out investigations into xylem and phloem. A simplified cross-section of vascular tissue is shown below.

Which of the following statements is true?

- A the diagram above shows a longitudinal section of xylem and phloem
- B the xylem transports glucose to cells throughout the plant for respiration
- C the xylem transports water and dissolved nutrients absorbed from the roots to the leaves
- D the phloem transports glucose absorbed through the roots to the leaves of the plants for respiration
- 5. The diagram below is a model showing how a heavy metal like lead can affect enzyme activity.

What is the most likely outcome of heavy metals in the body?

- A the active site of the enzyme will change shape to better fit the poison
- B substrates will be forced to combine with the heavy metal to form products
- C the substrate will change shape to better fit into the remaining space of the active site
- D substrates will no longer be able to bind to the enzyme and products will not be formed

6. Which theories of evolution are shown by X and Y respectively?

	X	Y
A	Lamarckism	gradualism
В	Lamarckism	punctuated equilibrium
С	punctuated equilibrium	gradualism
D	gradualism	punctuated equilibrium

7. The Punnett square below represents a genetic cross for two parents who have normal colour vision.

N represents the allele for normal colour vision

n represents the allele for colour blindness

P2 P1	X ^N	Y
X ^N	$X^{N}X^{N}$	$X^{N}Y$
X ⁿ	$X^N X^n$	X ⁿ Y

Using the information what percentage of their sons could be colour blind?

- A 0
- B 25
- C 50
- D 100

Ctudont Numban	
Student Number:	

8. The following pedigree illustrates the pattern of inheritance for a mutation on chromosome 7.

What type of inheritance is shown in this disease?

- A co-dominant
- B dominant
- C recessive
- D sex-linked

9. In some types of plants, when a red-flowered plant (R) is crossed with a white-flowered plant (W), the resulting offspring have white flowers with red spots. This is an example of co-dominant inheritance and is shown in the following Punnett square.

	W	W
R	RW	RW
R	RW	RW

Choose the option that correctly identifies the genotype and the phenotype of the offspring.

	Genotype	Phenotype
A	pink	RW
В	white flowers with red spots	RW
С	RW	white flowers with red spots
D	RW	pink

Year 12 Biology: Half-Yearly Exam 2014

10. The diagram represents one pair of homologous chromosomes during meiosis. Crossing-over occurs and random segregation takes place.

What genotypes are produced?

- A ABG, abG, ABg, abg
- B ABG, aBG, Abg, abg
- C ABG, ABG, abg, abg
- D ABG, aBg, Abg, abg

C 1 1 NT 1	
Student Number:	

SECTION B

Questions 11 - 23 - 40 marks

Attempt ALL questions

Write your answers in the space provided after each question. Show all working where relevant.

11.	Defi	ne the term <i>enantiostasis</i> .	[1]
	•••••		
	•••••		
12.	(a)	The majority of carbon dioxide is carried in the blood in what form?	[1]
	(b)	Explain why its removal is important.	[2]

13.	During your course you investigated how changing the pH alters enzyme activity. Outline the procedure that you used and explain how you made sure your investigation was reliable.	[4]
14.	Describe an adaptation of a named Australian plant that assists it to minimise water loss. State briefly how the adaptation works. You may draw a labelled diagram to assist your explanation.	[3]

Student Number:

• • • • • • • • • • • • • • • • • • • •	••••••	•••••		••••••	••••••
					•••••
	•••••				•••••
•••••	•••••		•••••		
	•••••				
	••••••	•••••	•••••	•••••	•••••
	•••••		•••••	•••••	•••••
Explain the	adaptive adva	ntage of haemog	lobin.		
Explain the	adaptive adva	ntage of haemog	lobin.		
Explain the	adaptive adva	ntage of haemog	lobin.		
Explain the	adaptive adva	ntage of haemog	lobin.		
Explain the	adaptive adva	ntage of haemog	lobin.		
Explain the	adaptive adva	ntage of haemog	lobin.		
Explain the	adaptive adva	ntage of haemog	lobin.		
Explain the	adaptive adva	ntage of haemog	lobin.		
		ntage of haemog			
Justify con	inued research		ood.		
Justify con	inued research	into artificial blo	ood.		
Justify con	inued research	into artificial blo	ood.		

Student Number:

Ctudont Numbon	
Student Number.	

BLANK PAGE

	on phenotype. Include how you ensured that your results were valid at any safety precautions you carried out.	
		•••••
		•••••
		• • • • • •
		• • • • • •
		• • • • • •
•••••		•••••
•••••		•••••
•••••		•••••
	E advance in technology that you have studied and outline how it has change to scientific thinking about evolutionary relationships.	
	change to scientific thinking about evolutionary relationships.	
	change to scientific thinking about evolutionary relationships.	

Student Number:

	Student Number:			
(;	a)	Define the term <i>mutagen</i> .		
(1	b)	In the space below construct a flow chart that shows how one change in the DNA sequence can result in changes in cell activity.		
		ing is a current reproductive technique that results in offspring which are identical parent. Describe a methodology used in cloning.		

			Student Number:	
22.			emical conditions in the environment can impact on the evolution of . Complete the table below.	[3]
	poss	e ONE sible chemical dition change		
	Describe how this change in the environment has impacted on EITHER a specific plant		Plant/animal:	
	anin	a specific nal		
23.	(a)	Explain the v	vork of Beadle and Tatum which led to the one gene-one enzyme	[2]
	(b)	Discuss why	this was changed to the one gene-one protein hypothesis.	[1]

End of paper