	1 1	

Student Number

Cranbrook School 2009 YEAR 12 TERM 1 EXAMINATION

Chemistry

General Instructions

3

• Reading time - 5 minutes

- Working time 45 minutes per section
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- Use the Data Sheet and Periodic Table provided
- Use the Multiple-Choice Answer Sheets provided
- Write your Centre Number and Student Number at the beginning of each part

Total marks - 55

Your teacher will instruct you as to which sections of this paper to attempt

Section 1

- Core 1 Parts A and B 26 marks
- Allow 45 minutes for this section

Section 2

- Core 2 Parts A and B 29 marks
- Allow 45 minutes for this section

Disclaimer

Every effort has been made to prepare this Examination in accordance with the Board of Studies documents. No guarantee or warranty is made or implied that the Examination paper mirrors in every respect the actual HSC Examination question paper in this course. This paper does not constitute 'advice' nor can it be construed as an authoritative interpretation of Board of Studies intentions. No liability for any reliance, use or purpose related to this paper is taken. Advice on HSC examination issues is only to be obtained from the NSW Board of Studies. The author does not accept any responsibility for accuracy of papers which have been modified.

Cranbrook School 2009 YEAR 12 TERM 1 EXAMINATION

Chemistry Section 1 – Core 1 Production of Materials

y

Part A – 5 marks Attempt Questions 1-5 Allow about 10 minutes for this part

Use the multiple-choice answer sheet provided.

1 An electrochemical cell was set up as shown in the diagram.

TWO correct OBSERVATIONS for this electrochemical cell are:

	Observation 1	Observation 2
(A)	Electrons moved through the voltmeter	In Beaker 1 the solution became a darker blue
(B)	In Beaker 2 the colour of the solution faded	A reddish solid formed on the copper electrode
(C)	A solid formed on the silver electrode	In Beaker 1 the solution became a darker blue
(D)	Ions moved through the salt bridge	A solid formed on the silver electrode

2 Which of the following lists properties of an isotope which would make it suitable for medical diagnosis?

	Half-life	Emission
(A)	6 hours	Gamma rays only
(B)	6 years	Beta and gamma rays
(C)	1 hour	Alpha and gamma rays
(D)	Thousands of years	Beta rays only

t

1

3 Which of the following is a correct statement about biopolymers?

- (A) Biopolymers are made by living things but are not biodegradable.
- (B) All biopolymers can be manufactured synthetically in the laboratory by condensation reactions.
- (C) Synthetic biopolymers are being produced from living organisms and are replacing polymers made from petrochemicals.
- (D) All natural biopolymers are made by condensation reactions involving glucose monomers.

4 What is the correct systematic name for the following molecule?

- (A) 2-ethyl-1-methylethylene
- (B) 1-ethyl-2-methylethylene
- (C) 2-pentene
- (D) 3-pentene

The reversible reaction to form ethanol from ethylene is represented:

 $C_2H_4(g) + H_2O(g) \stackrel{\text{conc. } H_2SO_4}{\Longrightarrow} C_2H_6O(g) \quad \Delta H = -45 \text{ kJ/mol}$

Identify the INCORRECT statement.

•

5

- (A) Sulfuric acid acts as a catalyst for both the backward and forward reactions.
- (B) The dehydration of ethanol is an endothermic reaction.
- (C) The highest yield of ethanol from ethylene is achieved when excess $H_2O(g)$ is present in the reaction vessel.
- (D) The highest yield of ethanol is achieved at high temperature and high pressure.

End of Section 1 – Part A

Cranbrook School 2009 YEAR TERM 1 EXAMINATION

	L				
C Se Pr Par Att	hemistry ection 1 – Core 1 oduction of Materials (continued) rt B – 21 marks tempt Questions 6-10			Studer	nt Number
All	low about 35 minutes for this part				
Ans Sho	swer the questions in the spaces provided. ow all relevant working in questions involving calculations.				
Qu	estion 6 (8 marks)				Marks
The	e alkanols form a homologous series.				
(a)	Explain why the alkanols show a regular change in their boin number of carbon atoms increases.	ling po	ints as t	he	2

Question 6 continues on the next page

×

4

Que	estion 6 (continued)	Marks
(b)	Students were asked to carry out a first-hand investigation to monitor the progress of fermentation of glucose by making measurements of mass.	
	Write a balanced equation for this fermentation reaction.	1
(c)	"Glucose (derived from sugarcane) is becoming a significant renewable source of energy and of materials, despite the inefficiency of the fermentation process."	5
	Assess this statement.	
	, ⁵⁰	
28		
3		
,		

*

Question 7 (3 marks)

.

The diagram shows a section of a polymer chain.

(a) Draw the structure of the monomer from which this polymer is made.

(b)	State the preferred name for this polymer.	1
(c)	Identify ONE common use of this polymer and explain how this use is related to a property of the polymer.	1

Marks

Question 8 (4 marks)	Marks
"Galvanic cells are recognised as a suitable source of energy for transport for future decades."	4
By referring EITHER to a dry cell battery OR a lead-acid battery, explain why galvanic cells can be regarded as a source of energy. Include half-equations for any reactions you describe.	
	· .

.

Question 9 (3 marks)

An unstable isotope of uranium is formed by bombarding the nucleus of uranium-238 with a neutron in a nuclear reactor. The unstable isotope then emits beta particles to form a transuranic element.

Marks

Question 10 (3 marks)

V) salt bridge Fe (s) Cu (s) $\mathrm{Fe}^{2^+}(aq)$ $Cu^{2+}(aq)$ Beaker 1 Beaker 2 Outline TWO observations a student would make as the cell was operating. (a) 1 2 (b) Write a balanced ionic equation for the overall cell reaction and predict the cell voltage under standard conditions.

An electrochemical cell was set up as shown in the diagram.

End of Section 1 - Part B

Cranbrook School 2009 YEAR 12 TERM 1 EXAMINATION

Student Number

Chemistry Section 2 – Core 2 The Acidic Environment

Part A – 5 marks Attempt Questions 1-5 Allow about 10 minutes for this part

Use the multiple-choice answer sheet provided.

- 1 Which of the following best describes the equivalence point in a titration between a strong acid and a strong base?
 - (A) The point at which the indicator first changes colour.
 - (B) The point at which equal moles of hydrogen ions and hydroxide ions have been added together.
 - (C) The point at which equal moles of the acid and the base have been added together.
 - (D) The point at which the molecules of the strong acid have completely ionised.
- 2 Which of the aqueous solutions has a pH below 7?
 - (A) Sodium ethanoate
 - (B) Sodium nitrate
 - (C) Ammonium nitrate
 - (D) Ammonia

3 A 0.01 mol/L HCl solution has a pH of 2.0.

What volume of water must be added to 60 mL of this solution to change the pH to 4.0?

- (A) 180 mL
- (B) 240 mL
- (C) 5940 mL
- (D) 6000 mL

4 Acid X and acid Y are both monoprotic, weak acids of equal concentration. Acid X is a stronger acid than acid Y.

Which statement about acid X and acid Y is CORRECT?

- (A) Acid X is completely ionised in solution, whereas acid Y is only partially ionised.
- (B) The solution of acid Y is more ionised than the solution of acid X.
- (C) The solution of acid Y has a higher pH than the solution of acid X.
- (D) 1 mole of acid Y requires a greater number of moles of sodium hydroxide for neutralisation than 1 mole of acid X.
- 5 The compound methyl propanoate is made from the reaction of
 - (A) methanol, propanoic acid and concentrated sulfuric acid.
 - (B) propanol, ethanoic acid and concentrated hydrochloric acid.
 - (C) propene, methanoic acid and concentrated sulfuric acid.
 - (D) propanol, methanoic acid and concentrated sulfuric acid.

End of Section 2 - Part A

Cranbrook School 2009 YEAR 12 TERM 1 EXAMINATION

								10 million (1997)	
0	(1 • /					Stuc	lent	Nun	ıber
C Se	chemistry ection 2 – Core 2								
TI	he Acidic Environment (continued)								
Pa At Al	rt B – 24 marks tempt Questions 6-9 low about 35 minutes for this part								
An She	swer the questions in the spaces provided. ow all relevant working in questions involving calculation	s.							
Qu	estion 6 (8 marks)						j	Mar	ks
Gas by 1	seous sulfur dioxide (g) can be removed from the exhaust reacting it with calcium oxide to form calcium sulfite.	gases	of po	ower	stati	ons			
(a)	Write a balanced equation for this reaction.								1
						••			
(b)	Determine the mass of calcium oxide needed to absorb 5 dioxide (measured at 25°C and 100.0 kPa).	5.500	x 10 ⁴	L of	sulf	ùr			2
			• • • • • • •	• • • • • • •					
						•••••			
						•••••			

Question 6 continues on the next page

Qu	estion 6 (continued)	Marks
(c)	Is sulfur dioxide classified as an acidic or basic oxide? Explain your answer and include a balanced equation for the reaction of sulfur dioxide with water.	2
(d)	Evaluate the effect of oxides of sulfur on the environment.	3

•

•

Question 7 (9 marks) Consider the bonding and structure of the following molecules:

• HCl (g)

3

- CH₃COOH (*l*)
- CH₄ (g)
- (a) Explain how EACH of these THREE molecules would have been classified according to the theories of acids proposed by Lavoisier AND by Lowry-Brönsted.

(b) Explain why CH₃COOH is classified as a monoprotic, rather than polyprotic, acid.

(c) Write a balanced equation for the reaction between HCl (g) and NH₃ (g).

.....

6

Marks

1

Quest	ion 8 (4 marks)	Marks
100.0 contain	mL of a solution of 0.250 mol/L hydrochloric acid was added to a solution ning 100.0 mL of 0.200 mol/L potassium hydroxide.	
(a)	Would the resulting solution be acidic, alkaline or neutral? Explain your answer.	2
(b)	Calculate the pH of the resulting solution.	2

1.1

Question 9 (3 marks)

.

Esterification involves refluxing to produce the optimal yield of ester. The compounds remaining after the refluxing step need to be separated to obtain a pure sample of the ester.

Discuss the TWO steps needed to separate a pure sample of the ester from the other product(s) and the unreacted species.

End of Section 2 - Part B

Marks

			(()	
 	 			10	
		-			

Student Number

٦

2009 YEAR 12 TERM 1 EXAMINATION

CHEMISTRY – MULTIPLE-CHOICE ANSWER SHEET

CORE 1 – PRODUCTION OF MATERIALS – PART A

Select the a oval compl	alternativ etely.	e A, B, C,	or D that best ar	nswers the q	uestion. Fill in the response	
Sample	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9	
		$A\bigcirc$	В	СО	DO	
If you think new answer	you have	made a m	istake, put a cross	through the	incorrect answer and fill in the	e
		A	В	СО	DO	
If you have answer, ther	changed y n indicate	our mind this by wr	and have crossed iting the word cor	out what you <i>rect</i> and drav	a consider to be the correct wing an arrow as follows:	
		AX	В	СО	D 🔿	

ATTEMPT ALL QUESTIONS

.

ſ

Question	1	$_{\rm A}$ \bigcirc	вО	СО	$_{\rm D}$ \bigcirc
	2	$A \bigcirc$	в	СО	DO
	3	$A \bigcirc$	в	С	DO
	4	АO	вО	С	DO
	5	A ()	В	СО	D〇

Student Number

2009 YEAR 12 TERM 1 EXAMINATION

CHEMISTRY – MULTIPLE-CHOICE ANSWER SHEET CORE 2 – THE ACIDIC ENVIRONMENT – PART A

Select the alternative A, B, C, or D that best answers the question. Fill in the response oval completely.							
Sample	2 + 4 =	(A) 2	(B) 6		(C) 8	(D) 9	
If you think new answer.	you hav	A O e made a m	B 🗲 nistake, put	a cross th	C O prough the inco	D O	er and fill in the
If you have c answer, then	changed indicate	A your mind this by wr	B 🗲 and have cr iting the wo B	rossed ou ord corre	C tt what you cor ct and drawing C C	$D \bigcirc$ nsider to be an arrow a	the correct s follows:
			~ 7			50	
ATTEMPT	ALL Q	UESTION	S				
Ques	tion	1 A	\bigcirc	вO	сO	D	\bigcirc
	2	2 A	\bigcirc	вO	СО	D	\bigcirc
	1	3 A	\bigcirc	вO	СО	D	\bigcirc
	2	4 A	\bigcirc	вО	СО	D	\bigcirc
	5	5 A	\bigcirc	вО	СО	D	\bigcirc

DATA SHEET

٢

Avogadro constant, NA	$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at 100 kPa and	
at 0°C (273.15 K)	22.71 L
at 25°C (298.15 K)	24.79 L
Ionisation constant for water at 25°C (298.15 K), K _w	1.0×10^{-14}
Specific heat capacity of water	$4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$

Some useful formulae

 $\mathbf{p}\mathbf{H} = -\log_{10}[\mathbf{H}^+] \qquad \Delta H = -m\,C\,\Delta T$

Some standard potentials									
K+ + e-	⇒	K(s)	-2.94 V						
$Ba^{2+} + 2e^{-}$	6.9	Ba(s)	-2.91 V						
$Ca^{2+} + 2e^{-}$	~	Ca(s)	-2.87 V						
$Na^+ + e^-$	<u> (1</u>	Na(s)	-2.71 V						
$Mg^{2+} + 2e^{-}$	~	Mg(s)	-2.36 V						
$Al^{3+} + 3e^{-}$	1003	Al(s)	-1.68 V						
$Mn^{2+} + 2e^{-}$		Mn(s)	-1.18 V						
$H_{2}O + e^{-}$	7 -7	$\frac{1}{2}$ H ₂ (g) + OH ⁻	-0.83 V						
$Za^{2+} + 2e^{-}$	$\overline{\epsilon}$	Zn(s)	-0.76 V						
$Fe^{2+} + 2e^{-}$	(max)	Fe(s)	-0.44 V						
$Ni^{2+} + 2e^{-}$	~^	Ni(s)	-0.24 V						
$Sn^{2+} + 2e^{-}$	~``	Sn(s)	-0.14 V						
$Pb^{2+} + 2e^{-}$	1.000 × 1000	Pb(s)	-0.13 V						
H ⁺ + e [−]	~	$\frac{1}{2}H_2(g)$	0.00 V						
$SO_4^{2-} + 4H^+ + 2e^-$	Say.	$SO_2(aq) + 2H_2O$	0.16 V						
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V						
$\frac{1}{2}O_2(g) + H_2O + 2e^-$	any.	20H-	0.40 V						
Cu ⁺ + e ⁻	\rightleftharpoons	Cu(s)	0.52 V						
$\frac{1}{2}I_2(s) + e^{-1}$	60	Г	0.54 V						
$\frac{1}{2}I_2(aq) + e^-$	~~	i-	0.62 V						
$Fe^{3+} + e^{-}$	~ `	Fe ²⁺	0.77 V						
$Ag^{+} + e^{-}$	The second secon	Ag(s)	0.80 V						
$\frac{1}{2}Br_2(l) + e^-$	in the	Br ⁻	1.08 V						
$\frac{1}{2}Br_2(aq) + e^-$		Br ⁻	1.10 V						
$\frac{1}{2}O_2(g) + 2H^+ + 2o^-$	end	Н ₂ О	1.23 V						
$\frac{1}{2}Cl_2(g) + e^{-1}$	72	CIT	1.36 V						
$\frac{1}{2}Cr_2O_7^{2-} + 7H^+ + 3e^-$	1	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V						
$\frac{1}{2}Cl_2(aq) + e^-$	ers.	CI-	1.40 V						
$MnO_4^{-} + 8H^{+} + 5e^{-}$	69	$Mn^{2+} + 4H_2O$	1.51 V						
$\frac{1}{2}F_2(g) + e^{-1}$	T	F-	2.89 V						

Some standard potentials

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

2 He 1.003	SO 18 Nea Nea	18 Ar 39.95 Mga	36 Kr 83.80 83.80	S4 Xe I31.3 Xecon	86 Rn 222.03 Rusn				
	0.01 19.00 Terms	17 C1 35,45 Cuanter	35 Br 79.90 Branie	1 State 1 Sea False	A Realized A	CALL BACK & AN IN THE REAL PROPERTY.	71 Lu 175.0 Leetinn	103 Lr [262] Lrrencium	
	8 0 16.09 037 16.09	16 S 32.07 satter	34 Se 78,96 Sebutan	52 Tè 127.6 Péturiam	84 Po Manual Manual		70 76 173.0 Утеления	102 No Section	
	7 N 14.01 Nurgets	15 P 30.97 Pauspeone	33 As 74.02 Areaic	51 Sb 121.8 Auteory	83 Bi 209.0 Bissub		69 Tan 168.9 Thusan	JØI Md [258] Mentervan	
	6 C 12.01 Cartes	14 28.09 8866	32 Ge 72.64 Gemaan	888 88	28.53 292		68 Er 167.3 Liation	100 F00 [257] Feature	
	S B 10.81 Listen	13 A1 26.98 Atmatian	31 Ga 69.72 Gattern	40 In 114.8 Indian	2614 2644		67 Ho 164.9 Nationali	90 Es [252] Envertaion	
SLX			80 20 152 14 20 152	48 Cd 112.4 Octive	80 Hg 200.6 Mercury		66 Dy 162.5 Cysposius	98 CT C1(formuus	100 T
ELEME	8		Cu 61.55 Capter	47 Ag 107.9 Saver	79 Au 197.0 197.0	111 Rg [272] Econjection	65 16 158.9 16589	97 BK [247] Beeelun	
	lymbol of cient. Yace of a knew		28 Ni 58.69 Sactel	46 Pd 106.4 Paladonn	78 Pr 1951	110 DS [271] Dumentium	64 Gd 157.3 0adieum	96 Cm 247] oten	
BLE OF Rey	70 Au 197.0 198.0		27 Co 58.93 Seat	45 Rh 102.9 Rhedure	77 K 192.2 Rissen	[(6) MI [268] Meteorica	63 Ed 152.0 Earspinn	65 Ant [243] autoriant	
	ski Muther ank Vegte	1	26 Fie 55,85	44 Ru 101.1 Ruboutan	76 190.2 Gentura	108 HS [277] Hastun	62 500.4 150.4 502	94 PU [244] Plucentem	
PERIOI	Note: No.		25 Ma 54.94 Mageree	43 Tc [97.91] Technolum	75 Re 1862 Renew	165 Bh 1264] Petronn	61 Pm [145] Maarmaan	93 Np [237] Napunum	
			24 Cr 52.00 Chronius	42 Nio 95.94 Maryhtenan	74 W 183.8 Tungas	106 Sg [266] Sentorpisan	00 Nd 1412 Nacionation	92 U 10238.0	
			23 V 50.04 Vaeadam	41 Nb 92.91 Section	73 Ta 180,9 Tarsaun	105 Dfb [262] Denatur	59 Pr 140.9 Frazodyadue	91 Pa 231.0 Protectionin	
			22 76 47.87 Taxann	40 Zr 91_22 Zerosiun	1785 HH 1785 Manual	104 RJ [261] Purterfoolium	LS 58 CP 140.1 Crean	90 Th 132.0 Therein	
			21 Sc 44.96 station	30 Y SS 91 Yucian	5771 Luttersis	89103 Actions	Lanthenook 57 La 138.9 Lanthenea	Actisouds 89 AC 11227] um	
	4 Be 9.012 Brsyttean	12 Mg 24.31 Mapacaan	20 Ca 40.08 Ca	NS Sr 87.62 Sunden	56 83 137.3 Rutua	88 R.a [226] feature			
I H S(N) S S(P)	3 L1 6.041 Difeero	11년 11년 11년 11년 11년 11년 11년 11년 11년 11년	19 K 30.10 Russian	37 Rb 85.47 Protisum	SS CS Determ	87 14 [223] Faucania			

The International Union of Pare and Applied Chemistry Periodic Table of the Elements (Oktober 2005 version) is the principal searce of data. Some data may have been modified.

•