

Cranbrook School 2009
 YEAR 12
 TERM 1 EXAMINATION

Chemistry

General Instructions

- Reading time - 5 minutes
- Working time -45 minutes per section
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- Use the Data Sheet and Periodic Table provided
- Use the Multiple-Choice Answer Sheets provided
- Write your Centre Number and Student Number at the beginning of each part

Total marks - 55

Your teacher will instruct you as to which sections of this paper to attempt

Section 1

- Core 1 - Parts A and B-26 marks
- Allow 45 minutes for this section

Section 2

- Core 2 - Parts A and B - 29 marks
- Allow 45 minutes for this section

[^0]
Cranbrook School 2009 YEAR 12 TERM 1 EXAMINATION

Student Number

Chemistry

Section 1 - Core 1
Production of Materials

Part A-5 marks

Attempt Questions 1-5
Allow about 10 minutes for this part
Use the multiple-choice answer sheet provided.

1 An electrochemical cell was set up as shown in the diagram.

TWO correct OBSERVATIONS for this electrochemical cell are:

	Observation 1	Observation 2
(A)	Electrons moved through the voltmeter	In Beaker 1 the solution became a darker blue
(B)	In Beaker 2 the colour of the solution faded	A reddish solid formed on the copper electrode
(C)	A solid formed on the silver electrode	In Beaker 1 the solution became a darker blue
(D)	Ions moved through the salt bridge	A solid formed on the silver electrode

2 Which of the following lists properties of an isotope which would make it suitable for medical diagnosis?

	Half-life	Emission
(A)	6 hours	Gamma rays only
(B)	6 years	Beta and gamma rays
(C)	1 hour	Alpha and gamma rays
(D)	Thousands of years	Beta rays only

3 Which of the following is a correct statement about biopolymers?
(A) Biopolymers are made by living things but are not biodegradable.
(B) All biopolymers can be manufactured synthetically in the laboratory by condensation reactions.
(C) Synthetic biopolymers are being produced from living organisms and are replacing polymers made from petrochemicals.
(D) All natural biopolymers are made by condensation reactions involving glucose monomers.

4 What is the correct systematic name for the following molecule?

(A) 2-ethyl-1-methylethylene
(B) 1-ethyl-2-methylethylene
(C) 2-pentene
(D) 3-pentene

The reversible reaction to form ethanol from ethylene is represented:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \stackrel{\text { conc. } \mathrm{H}_{2} \mathrm{SO}_{4}}{\rightleftharpoons} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}(\mathrm{~g}) \quad \Delta H=-45 \mathrm{~kJ} / \mathrm{mol}
$$

Identify the INCORRECT statement.
(A) Sulfuric acid acts as a catalyst for both the backward and forward reactions.
(B) The dehydration of ethanol is an endothermic reaction.
(C) The highest yield of ethanol from ethylene is achieved when excess $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is present in the reaction vessel.
(D) The highest yield of ethanol is achieved at high temperature and high pressure.

End of Section 1-Part A

Cranbrook School 2009 YEAR TERM 1 EXAMINATION

Student Number

Chemistry
 Section 1 - Core 1
 Production of Materials (continued)

Part B-21 marks
Attempt Questions 6-10
Allow about 35 minutes for this part
Answer the questions in the spaces provided.
Show all relevant working in questions involving calculations.

Question 6 (8 marks) Marks
The alkanols form a homologous series.
(a) Explain why the alkanols show a regular change in their boiling points as the number of carbon atoms increases.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Students were asked to carry out a first-hand investigation to monitor the progress of fermentation of glucose by making measurements of mass.

Write a balanced equation for this fermentation reaction.
\qquad
(c) "Glucose (derived from sugarcane) is becoming a significant renewable source of energy and of materials, despite the inefficiency of the fermentation process."

Assess this statement.
\qquad

Question 7 (3 marks)

The diagram shows a section of a polymer chain.

(a) Draw the structure of the monomer from which this polymer is made.
(b) State the preferred name for this polymer.
(c) Identify ONE common use of this polymer and explain how this use is related to 1 a property of the polymer.
\qquad
\qquad
\qquad
\qquad
Question 8 (4 marks)"Galvanic cells are recognised as a suitable source of energy for transport for future4 decades."
By referring EITHER to a dry cell battery OR a lead-acid battery, explain why galvanic cells can be regarded as a source of energy. Include half-equations for any reactions you describe.
\qquad

An unstable isotope of uranium is formed by bombarding the nucleus of uranium- 238 with a neutron in a nuclear reactor. The unstable isotope then emits beta particles to form a transuranic element.
(a) Define the term "transuranic element". 1
\qquad
\qquad
\qquad
\qquad
(b) Write TWO balanced nuclear equations for the reactions described above.

Question 10 (3 marks)

An electrochemical cell was set up as shown in the diagram.

(a) Outline TWO observations a student would make as the cell was operating.
\qquad
\qquad
\qquad
(b) Write a balanced ionic equation for the overall cell reaction and predict the cell 2 voltage under standard conditions.
\qquad
\qquad

$$
\text { End of Section } 1 \text { - Part B }
$$

Cranbrook School 2009 YEAR 12 TERM 1 EXAMINATION

Student Number

Chemistry
Section 2 - Core 2
The Acidic Environment
Part A-5 marks
Attempt Questions 1-5
Allow about 10 minutes for this part

Use the multiple-choice answer sheet provided.

1 Which of the following best describes the equivalence point in a titration between a strong acid and a strong base?
(A) The point at which the indicator first changes colour.
(B) The point at which equal moles of hydrogen ions and hydroxide ions have been added together.
(C) The point at which equal moles of the acid and the base have been added together.
(D) The point at which the molecules of the strong acid have completely ionised.

2 Which of the aqueous solutions has a pH below 7?
(A) Sodium ethanoate
(B) Sodium nitrate
(C) Ammonium nitrate
(D) Ammonia

A $0.01 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ solution has a pH of 2.0 .
What volume of water must be added to 60 mL of this solution to change the pH to 4.0?
(A) 180 mL
(B) 240 mL
(C) 5940 mL
(D) 6000 mL
$4 \quad$ Acid X and acid Y are both monoprotic, weak acids of equal concentration. Acid X is a stronger acid than acid Y.

Which statement about acid X and acid Y is CORRECT?
(A) Acid X is completely ionised in solution, whereas acid Y is only partially ionised.
(B) The solution of acid Y is more ionised than the solution of acid X .
(C) The solution of acid Y has a higher pH than the solution of acid X .
(D) 1 mole of acid Y requires a greater number of moles of sodium hydroxide for neutralisation than 1 mole of acid X .

The compound methyl propanoate is made from the reaction of
(A) methanol, propanoic acid and concentrated sulfuric acid.
(B) propanol, ethanoic acid and concentrated hydrochloric acid.
(C) propene, methanoic acid and concentrated sulfuric acid.
(D) propanol, methanoic acid and concentrated sulfuric acid.

End of Section 2 - Part A

Cranbrook School
 2009 YEAR 12 TERM 1 EXAMINATION

Student Number

Chemistry

Section 2 - Core 2

The Acidic Environment (continued)

Part B-24 marks
Attempt Questions 6-9
Allow about 35 minutes for this part

Answer the questions in the spaces provided. Show all relevant working in questions involving calculations.
Question 6 (8 marks)
Marks

Gaseous sulfur dioxide (g) can be removed from the exhaust gases of power stations by reacting it with calcium oxide to form calcium sulfite.
(a) Write a balanced equation for this reaction.
(b) Determine the mass of calcium oxide needed to absorb $5.500 \times 10^{4} \mathrm{~L}$ of sulfur 2 dioxide (measured at $25^{\circ} \mathrm{C}$ and 100.0 kPa).
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 continues on the next page

Question 6 (continued)

(c) Is sulfur dioxide classified as an acidic or basic oxide? Explain your answer and include a balanced equation for the reaction of sulfur dioxide with water.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Evaluate the effect of oxides of sulfur on the environment.
\qquad

Question 7 (9 marks)

Consider the bonding and structure of the following molecules:

- $\mathrm{HCl}(\mathrm{g})$
- $\mathrm{CH}_{3} \mathrm{COOH}$ (l)
- CH_{4} (g)
(a) Explain how EACH of these THREE molecules would have been classified according to the theories of acids proposed by Lavoisier AND by LowryBrönsted.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Explain why $\mathrm{CH}_{3} \mathrm{COOH}$ is classified as a monoprotic, rather than polyprotic, acid.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Write a balanced equation for the reaction between $\mathrm{HCl}(\mathrm{g})$ and $\mathrm{NH}_{3}(\mathrm{~g})$.
100.0 mL of a solution of $0.250 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid was added to a solution containing 100.0 mL of $0.200 \mathrm{~mol} / \mathrm{L}$ potassium hydroxide.
$\begin{array}{ll}\text { (a) Would the resulting solution be acidic, alkaline or neutral? } \\ \text { Explain your answer. } & \mathbf{2}\end{array}$
\qquad
\qquad
\qquad
\qquad
(b) Calculate the pH of the resulting solution.
\qquad
\qquad
\qquad
\qquad
\qquad
Question 9 (3 marks)Esterification involves refluxing to produce the optimal yield of ester. The3compounds remaining after the refluxing step need to be separated to obtain a puresample of the ester.

Discuss the TWO steps needed to separate a pure sample of the ester from the other product(s) and the unreacted species.
\qquad
\square
Student Number

2009 YEAR 12 TERM 1 EXAMINATION

CHEMISTRY - MULTIPLE-CHOICE ANSWER SHEET

CORE 1 - PRODUCTION OF MATERIALS - PART A

Select the alternative A, B, C, or D that best answers the question. Fill in the response oval completely.
Sample $\quad 2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
A
B
$\mathrm{C} \bigcirc$
D

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B
$\mathrm{C} \bigcirc$
D

If you have changed your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:
A>
B
$\mathrm{C} \bigcirc$
D

ATTEMPT ALL QUESTIONS

B
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
2

A

B
C

D \bigcirc
3

B

C

D \bigcirc
4
A

B
$\mathrm{C} \bigcirc$
D
5
A
B
C \bigcirc
D \bigcirc

Student Number

2009 YEAR 12 TERM 1 EXAMINATION

CHEMISTRY - MULTIPLE-CHOICE ANSWER SHEET

CORE 2 - THE ACIDIC ENVIRONMENT - PART A

Select the alternative A, B, C, or D that best answers the question. Fill in the response oval completely.
Sample
$2+4=(\mathrm{A}) 2$
(B) 6
(C) 8
(D) 9
$A \bigcirc$
B
$\mathrm{C} \bigcirc$
D

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B ζ^{2}
$\mathrm{C} \bigcirc$
D

If you have changed your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:
$A>$
B
 correc
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$

ATTEMPT ALL QUESTIONS

Question 1
A

B

C

D

2

B

C
D \bigcirc
3
A
B
$\mathrm{C} \bigcirc$
D \bigcirc
4
A

B

C
D \bigcirc
A

B

$\mathrm{C} \bigcirc$
D \bigcirc

DATA SHEET

Avogadro constant, N_{A} $6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Volume of 1 mole ideal gas: at 100 kPa and

Ionisation constant for water at $25^{\circ} \mathrm{C}(298.15 \mathrm{~K}), K_{w} \ldots \ldots \ldots \ldots \ldots1 .0 \times 10^{-14}$
Specific heat capacity of water ... $4.18 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
Some useful formulae

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] \quad \Delta H=-m C \Delta T
$$

Some standard potentials

$\mathrm{K}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{K}(\mathrm{s})$	-2.94V
$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{*}$	$\mathrm{Bu}(s)$	$-2.91 \mathrm{~V}$
$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ca}(\mathrm{s})$	$-2.97 \mathrm{~V}$
$\mathrm{Na}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Na}(\mathrm{s})$	$-2.71 \mathrm{~V}$
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mg}(\mathrm{s})$	$-2.36 \mathrm{~V}$
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-}$	\rightleftharpoons	Al(s)	$-1.68 \mathrm{~V}$
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mn}(\mathrm{s})$	$-1.18 \mathrm{~V}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{2}$	$\frac{1}{2} \mathrm{H}_{2}(g)+\mathrm{OH}^{-}$	-0.83v
$\mathrm{Za}^{3+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Zn}(\mathrm{s})$	$-0.76 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$	\cdots	Felsi	$-0.44 \mathrm{~V}$
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$	${ }^{\sim}$	Ni(s)	$-0.24 \mathrm{~V}$
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Sn}(\mathrm{s})$	-0.14v
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{2}$	$\mathrm{Pb}(\mathrm{s})$	$-0.13 \mathrm{~V}$
$\mathrm{H}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})$	0.00 V
$\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	\cdots	$\mathrm{SO}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$	0.16 V
$\mathrm{Cu}^{2+}+2 \mathrm{c}^{-}$	\rightleftharpoons	$\mathrm{Cu}(\mathrm{s})$	0.34 V
$\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$,	$2 \mathrm{OH}^{-}$	0.40 V
$\mathrm{Cu}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cu}(\mathrm{s})$	0.52 V
$\frac{1}{2} \mathrm{I}_{2}(s)+e^{-}$	*	Γ^{-}	0.54 V
$\frac{1}{2} L_{2}(a q)+e^{-}$	\rightleftharpoons	1^{-}	0.62 V
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}$	\rightleftharpoons	Fe^{2+}	0.77 V
$\mathrm{Ag}^{+}+\mathrm{c}^{-}$	$\stackrel{ }{\sim}$	Ag(s)	0.30 V
$\frac{1}{2} \mathrm{Br}_{2}\left(\frac{l}{}\right)+e^{-}$	$\stackrel{\rightharpoonup}{2}$	Br^{-}	1.08 V
$\frac{1}{2} \mathrm{Br}_{2}(\omega q)+\mathrm{e}^{-}$	\rightleftharpoons	Br^{-}	1.10 V
$\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}+20^{-}$	$\stackrel{\rightharpoonup}{*}$	$\mathrm{H}_{2} \mathrm{O}$	1.23 V
$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})+0^{-}$	\rightleftharpoons	Cr^{-}	1.36 V
$\frac{1}{2} \mathrm{CH}_{2} \mathrm{O}_{7}^{2-}+7 \mathrm{H}^{+}+3 \mathrm{c}^{-}$	\rightleftharpoons	$\mathrm{Cr}^{3+}+\frac{7}{2} \mathrm{H}_{2} \mathrm{O}$	1.36 V
$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{aq})+\mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{*}$	Cl^{-}	1.40 V
$\mathrm{MnO}_{4}^{-}+\mathrm{SH}^{+}+\mathrm{Se}^{-}$	\rightleftharpoons	$\mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}$	1.51 V
$\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{c}^{-}$	$\stackrel{\rightharpoonup}{*}$	F^{-}	2.59 V

Aylwad and Findlay, SI Chemical Data (5h Editiont is the primipal sotmee of data for this exammation paper: Some data may have been modified for examination purposes.

	kEY																
$\begin{gathered} \frac{3}{4} \\ \frac{6}{6.941} \\ \text { kuturan } \end{gathered}$	$\begin{gathered} 4 \\ \text { Be } \\ \text { nein } \\ \text { nexyman } \end{gathered}$						\% why	$\begin{gathered} 70 \\ \substack{70.0 \\ 1090 \\ \text { chen }} \end{gathered}$	nest			$\begin{gathered} 5 \\ 10.81 \\ 10.81 \\ \text { wise } \end{gathered}$	$\begin{gathered} \stackrel{8}{8} \\ 12.01 \\ \text { chatot } \end{gathered}$	$\begin{gathered} 7 \\ \substack{1401 \\ 1.0 n c t o} \end{gathered}$			$\begin{gathered} 10 \\ \hline 10 \\ 20.18 \\ \text { Nena } \end{gathered}$
$\begin{gathered} 11 \\ \stackrel{11}{2} \\ 2299 \\ \text { simpum } \end{gathered}$												$\begin{gathered} 13 \\ \text { A1 } \\ 26.98 \\ \text { ALembutu } \end{gathered}$		$\begin{gathered} 15 \\ p \\ \text { Bo.97 } \\ \text { comscons } \end{gathered}$	$\begin{gathered} 16 \\ \hline \mathbf{S} \\ 32.07 \\ \text { sumtat } \end{gathered}$	$\begin{gathered} 17 \\ \text { C1 } \\ 35.45 \\ \text { cuxiuin } \end{gathered}$	
$\begin{gathered} 19 \\ K \\ \text { No. } 10 \\ \text { Buncuan } \end{gathered}$				$\begin{gathered} \frac{23}{v} \\ \text { sol. } \\ \text { sude } \end{gathered}$	$\begin{gathered} \frac{24}{C_{6}} \\ 5200 \\ 5 \times 200 \end{gathered}$			$\begin{gathered} 27 \\ c^{589} \\ \text { cran } \\ \text { canal } \end{gathered}$		$\begin{gathered} 29 \\ C 0 \\ \text { Ci.55 } \\ \text { c.ppe } \end{gathered}$	$\begin{gathered} 301 \\ 750 \\ 65.41 \\ 250 \end{gathered}$	$\begin{gathered} 31 \\ \text { Ga } \\ 69.72 \\ \text { Coltum } \end{gathered}$		$\begin{gathered} 33 \\ A 8 \\ 74.92 \\ \text { A.praick } \end{gathered}$		$\begin{gathered} 35 \\ \hline \text { Br } \\ \substack{30.90 \\ \text { Brautren }} \end{gathered}$	
	$\begin{gathered} 38 \\ 87 \\ 87.62 \\ \hline \text { searem } \\ \hline \end{gathered}$	$\begin{gathered} \substack{79 \\ Y \\ \text { s8.9: } \\ \text { nutian }} \end{gathered}$		$\begin{gathered} +1 \\ \text { Nb } \\ \text { y2.94 } \\ \text { nibinum } \end{gathered}$			$\begin{gathered} 44 \\ \text { Run } \\ \text { Ru1. } \\ \text { Rumizan } \end{gathered}$				$\begin{gathered} 48 \\ \mathrm{CJ} \\ 112.4 \\ \text { casius } \end{gathered}$		$\begin{gathered} 50 \\ 50 \\ 5118.7 \\ 1 \pi \end{gathered}$	$\begin{gathered} 51 \\ 581 \\ 121.8 \\ \text { Ancosens } \end{gathered}$	$\begin{gathered} 52 \\ \text { Te } \\ 127.6 \\ \text { 121uxam } \end{gathered}$	$\begin{gathered} 53 \\ 1 \\ 126.9 \\ \text { 1zant } \\ \text { tast } \end{gathered}$	
$\begin{gathered} 55 \\ c_{5}^{529} \\ 1320 \end{gathered}$		57.71	$\begin{gathered} 72 \\ \hline 1785 \\ 178 \\ \text { nimain } \end{gathered}$		$\begin{gathered} 74 \\ \hline 18.8 \\ \hline \end{gathered}$	$\begin{aligned} & 78 \\ & \hline \end{aligned}$	$\begin{gathered} 76 \\ 0 . \\ 1962 \\ 1020 \end{gathered}$	$\begin{gathered} 77 \\ 18 \\ 19.9 \end{gathered}$	$\begin{gathered} 78 \\ \hline \\ \hline 1951 \\ \text { nesuman } \end{gathered}$	$\begin{gathered} 79 \\ \text { Au } \\ \text { 179.0. } \\ \text { bxs. } \end{gathered}$		$\begin{gathered} 81 \\ 71 \\ 3 \\ 7 \end{gathered}$			$\begin{gathered} 84 \\ \text { Po } \\ \text { Poig } \\ \text { rexion } \end{gathered}$		
		89-103		$\begin{gathered} 105 \\ 105 \\ 12561 \\ 12500 \\ \hline \end{gathered}$													

Lanthwous														
$\begin{gathered} 57 \\ \text { La } \\ \text { Lis. } \\ \text { Luvenum } \end{gathered}$	$\begin{gathered} 58 \\ c \\ 1+01 \end{gathered}$													$\begin{gathered} 71 \\ \text { Lut } \\ \text { Lus.0 } \\ \text { 17,wiun } \end{gathered}$
Actiouds														
			$\begin{gathered} 92 \\ 29.6 \\ 238.6 \\ \text { craver } \end{gathered}$		$\begin{gathered} 94 \\ \text { fut } \\ \text { rive } \\ \text { nusulum } \end{gathered}$									

[^1]
[^0]: Disclaimer
 Every effort has been made to prepare this Examination in accordance with the Board of Studies documents. No guarantee or warranty is made or implied that the Examination paper mirrors in every respect the actual HSC Examination question paper in this course. This paper does not constitute 'advice' nor can it be construed as an authoritative interpretation of Board of Studies intentions. No liability for any reliance, use or purpose related to this paper is taken. Advice on HSC examination issues is only to be obtained from the NSW Board of Studies. The author does not accept any responsibility for accuracy of papers which have been modified.

[^1]:
 The Internatienal Dinion of Raxe and Applied Chemistry Periodie Tatle of the Elements (Cxtober 2005 versions is the principed searse of data. Scene data may have teen moditiod.

