

YEAR 12 TERM 1 EXAMINATION ASSESSMENT

2 UNIT HSC COURSE 2013

Chemistry

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Board-approved calculators may be used
- Write using blue or black pen
- Draw diagrams using pencil
- A data sheet and formulae sheets are provided at the back of this paper
 - Write your Student Number where indicated

Total marks - 75 There are two parts, Part A and Part B

Part A - 20 marks
Attempt Questions 1 - 20
Leave about 35 minutes for this part

Part B – 55 marks
Attempt Questions 21 – 30
Leave about 1 hour and 25 minutes for this part

THERE IS <u>ONE BOOKLET AND ONE MULTIPLE CHOICE ANSWER SHEET</u> IN THIS EXAMINATION

NO EXTRA PAPER/BOOKLETS ARE REQUIRED IN ADDITION TO THE WRITTEN EXAMINATION BOOKLETS

The content and format of this paper do not necessarily reflect the content and format of the HSC examination paper.

BLANK PAGE

Part A – 20 marks Attempt Questions 1-20 Allow about 35 minutes for this part

Use the multiple-choice answer sheet provided for Questions 1-20

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.								
Sample	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9			
		A	B 🌑	CO	DO			
If you thinl new answe	If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.							
·		A	в 💓	СО	DO			
If you have changed your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word <i>correct</i> and drawing an arrow as follows:								
		A	В	СО	D 🔿			

1 A student was asked to compare the reactions with bromine water of alkanes and alkenes. She decided to use the compound below as one of the two hydrocarbons being investigated.

The other hydrocarbon investigated should be

- (A) hex-1-ene.
- (B) hexane.
- (C) pent-2-ene.
- (D) pentane.

2 The combustion of ethanol can be represented by the following equation:

 $C_2H_6O(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$

The number of moles of water released into the atmosphere from the burning of 100 g of ethanol is closest to

- (A) 117 mol
- (B) 40 mol
- (C) 6.5 mol
- (D) 2.2 mol
- 3 A polymer formed by the addition reaction of chloroethene monomers has a common name of
 - (A) polystyrene.
 - (B) poly(vinyl chloride).
 - (C) cellulose.
 - (D) poly(chloroethene).
- When powdered zinc is warmed with a purple solution containing permanganate ions (MnO₄⁻), the solution changes colour due to the formation of almost colourless Mn²⁺.
 During this reaction, manganese has
 - (A) lost electrons and has reached a lower oxidation state.
 - (B) gained electrons and has reached a lower oxidation state.
 - (C) lost electrons and has reached a higher oxidation state.
 - (D) gained electrons and has reached a higher oxidation state.

5 The diagram below shows the radioactive decay series for uranium-238.

The products of decay of lead-210 are

- (A) bismuth-214 and alpha particles.
- (B) bismuth-210 and beta particles.
- (C) bismuth-214 and beta particles.
- (D) bismuth-84 and alpha particles.

6 The reversible reaction to form ethylene from ethanol is represented:

 $C_2H_6O(l) \iff C_2H_4(g) + H_2O(g) \qquad \Delta H = +45 \text{ kJ mol}^{-1}$

Identify the CORRECT statement.

- (A) The backward reaction is known as dehydration.
- (B) The highest yield of ethylene is achieved at high temperature and high pressure.
- (C) An excess of water favours the formation of ethylene.
- (D) Sulfuric acid acts as a catalyst both for the backward and forward reactions.

7 The diagram shows a galvanic cell set up with zinc and another metal (*M*) as electrodes.

Which of the following metals would you place as M to produce the highest theoretical voltage under standard conditions for this cell?

- (A) Silver
- (B) Iron
- (C) Magnesium
- (D) Lead
- 8 The molar heat of combustion of pentan-1-ol is 3329 kJ mol⁻¹.
 A quantity of pentan-1-ol was combusted, generating 79.5 kJ of heat energy.
 What mass of pentan-1-ol was combusted?
 - (A) 1.44 g
 - (B) 1.77 g
 - (C) 2.11 g
 - (D) 2.45 g
- 9 Some salts when dissolved in water, produce acidic or alkaline solutions, while others produce neutral solutions. Which of the following is the CORRECT statement?
 - (A) when sodium chloride is added to water, the pH increases slightly.
 - (B) when sodium ethanoate is added to water, the concentration of hydrogen ions increases.
 - (C) when sodium carbonate is added to water, the pH decreases.
 - (D) when ammonium nitrate is added to water, the concentration of hydroxide ions decreases.

10 Which of the following substances would form an aqueous solution with a pH above 7?

- (A) Calcium hydroxide
- (B) Ammonium nitrate
- (C) Sodium chloride
- (D) Vinegar
- 11 Which of the following pairs would form a buffer solution?
 - (A) $HNO_3(aq) / NO_3(aq)$
 - (B) $H_2PO_4^-(aq) / HPO_4^{2-}(aq)$
 - (C) $H_3O^+(aq) / H_2O(l)$
 - (D) HCl (aq) / NaOH (aq)
- 12 The models represent compounds of carbon, hydrogen and oxygen.

Which of the following statements about these compounds is INCORRECT?

- (A) All the compounds exist as molecules
- (B) Compound 4 would have a lower boiling point than compound 1
- (C) Compounds 1, 2, 3 and 5 all belong to the same homologous series
- (D) Compounds 1 and 4 have different names and different molecular weights

13 Identify the conjugate base of the acid $HCrO_4$.

- (A) HCrO₃
- (B) CrO_4^{2-}
- $(C) CrO_4$
- (D) H_2CrO_4
- 14 The pH of sulfuric acid was found to be 3.40. Assuming the sulfuric acid to be completely ionised, the concentration of sulfate ions (in mol L^{-1}) in the solution would be closest to
 - (A) 4.0×10^{-4}
 - (B) 8.0 x 10⁻⁴
 - (C) 2.0×10^{-3}
 - (D) 2.0×10^{-4}
- 15 When 25 mL of 0.0858 mol L⁻¹ sodium carbonate solution was titrated with a solution of hydrochloric acid, the volume of the acid needed to reach the equivalence point was 37.8 mL. The concentration of the hydrochloric acid solution, in mol L⁻¹ is
 - (A) 0.0567
 - (B) 0.0284
 - (C) 0.130
 - (D) 0.113

- 16 Definitions of acids have changed over the past two centuries as chemical knowledge developed. Which scientist(s) defined an acid as a compound containing replaceable hydrogen?
 - (A) Davy
 - (B) Lavoisier
 - (C) Arrhenius
 - (D) Lowry and Bronsted
- 17 Sodium hydrogen carbonate was titrated with standardised hydrochloric acid in order to determine the concentration of the sodium hydrogen carbonate solution. Which of the following shows the correct information about the equivalence point of the titration and the most suitable indicator for use in the titration?

	Equivalence point	Suitable indicator
(A)	pH < 7	methyl orange
(B)	pH < 7	phenolphthalein
(C)	pH > 7	methyl orange
(D)	pH > 7	phenolphthalein

18 Which of the following species is the strongest reductant?

- (A) Iron
- (B) Copper
- (C) Iron (III)
- (D) Copper (II)

19 An acidic oxide which dissolves in water to form a strong acid is

- $(A) SO_3$
- (B) CO₂
- $(C) = SO_2$
- (D) NO
- 20 The ester, ethyl ethanoate, can be represented by a structural formula or by a line diagram as shown below.

Another ester, **X**, is represented by the line diagram below.

Which pair of organic compounds can combine to form compound X?

- (A) butan-1-ol and hexanoic acid
- (B) hexan-1-ol and butanoic acid
- (C) butan-1-ol and pentanoic acid
- (D) hexan-1-ol and propanoic acid

Exam Number:

Part B – 55 marks Attempt Questions 21-30 Allow about 1 hour and 25 minutes for this part

Answer the questions in the spaces provided. Show all relevant working in questions involving calculations.

Question 21 (5 marks)

A student performed a first-hand investigation, to determine the heat of combustion of methanol. The SI data book lists the heat of combustion of methanol as 715 kJ mol⁻¹.

(a) Identify the measurements the student would have recorded.

(b) Write an equation for the combustion of methanol at 25°C, including the energy term. 1

.....

(c) By considering the bonds broken and formed during combustion reactions, explain 2 why the heat of combustion increases as the length of the carbon chain of an alkanol increases.

Marks

Question 22 (6 marks) Marks You have studied the chemistry and construction of a galvanic cell other than a lead-acid battery or a dry cell. Identify the cell you have studied. (a) Describe the construction of the cell. Include a diagram in your response. 3 Write half-equations for the electrode reactions. (b) 1 (c) Outline a use for society and assess the environmental impact associated with use 2 of the identified cell. _____ _____

Question 23 (7 marks)	Marks
(a) Discuss the future use of ethanol as replacements for fossil fuels.	4
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
(b) Compare the suitability of ethanol and cellulose as potential future replacements for fossil fuels.	3
······	

Question 24 (5 marks)

Raw materials such as crude oil and biomass are used in the manufacture of polymers. The chemical reactions involved in the formation of polymers can be classified as addition or condensation reactions.

Explain the difference between addition and condensation reactions by discussing an example of each type of polymerisation to form a polymer. Include equations in your response.

·····
······································
······
· · · · · · · · · · · · · · · · · · ·

Marks

Question 25 (4 marks)

,

Marks

(a) A student classified thorium as a radioactive metal, as an actinide and as a transuranic element. Is the student's classification of thorium correct? Explain your answer.	2
(b) Name an isotope used in medicine. Describe the properties that make it suitable for that application.	2
•••••••••••••••••••••••••••••••••••••••	

This page has intentionally been left blank.

.

Contrast (Contrast

.

Exam Number:

Qu	estion 26 (8 marks)	Marks
(a)	Write an equation for the reaction of potassium oxide with water and explain why potassium oxide is classified as basic.	2
	۰. 	
(b)	Citric acid is a triprotic weak acid. Draw the structural formula for citric acid and explain why it is classified as a triprotic weak acid.	2
(c)	Describe the problems associated with the release of oxides of nitrogen and sulfur into the atmosphere.	4
	,,,	

Question 27 (5 marks)

٤.

Marks

.

.

The terms amphiprotic and amphoteric are used to describe chemicals involved in acid-base reactions.

(a) Explain why the hydrogencarbonate ion is described as amphiprotic.	2
······	
(b) Compare the suitability of sodium hydrogencarbonate as a neutralising agent for both acidic and basic spills.	3
· · · · · · · · · · · · · · · · · · ·	
······	

Question 28 (3 marks)

Marks

3

Calculate the pH of the resulting solution when 75.0 mL of 0.15 mol L^{-1} potassium hydroxide solution and 150 mL of 0.10 mol L^{-1} sulfuric acid are mixed.

Question 29 (5 marks) Marks Oxalic acid dihydrate, H₂C₂O₄.2H₂O, a diprotic acid, can be used to standardise sodium hydroxide solutions. In an experiment, 0.456 g oxalic acid dihydrate was measured out and dissolved in water. One drop of phenolphthalein indicator was added and the solution titrated with the sodium hydroxide solution which needed to be standardised. 38.7 mL was needed to reach the equivalence point. Justify the need for sodium hydroxide to be standardised by the oxalic acid (a) 2 solution. (b) Describe steps you would take to prepare the burette for dispensing the sodium 1 hydroxide solution. (c) Calculate the concentration of the sodium hydroxide solution. 2

.....

Question 30 (7 marks)

Most esters prepared in school laboratories have relatively low boiling points.

(a) Explain the trends in boiling points shown in the graph.

(b)	Explain how this factor impacts on the method of preparation of esters.	2
	······	
	· · · · · · · · · · · · · · · · · · ·	
(c)	Explain how this factor impacts on the method of separation of the ester from an equilibrium mixture containing alkanoic acid, alkanol, water and ester.	1
(c)	Explain how this factor impacts on the method of separation of the ester from an equilibrium mixture containing alkanoic acid, alkanol, water and ester.	
(c)	Explain how this factor impacts on the method of separation of the ester from an equilibrium mixture containing alkanoic acid, alkanol, water and ester.	
(c)	Explain how this factor impacts on the method of separation of the ester from an equilibrium mixture containing alkanoic acid, alkanol, water and ester.	
(c)	Explain how this factor impacts on the method of separation of the ester from an equilibrium mixture containing alkanoic acid, alkanol, water and ester.	
(c)	Explain how this factor impacts on the method of separation of the ester from an equilibrium mixture containing alkanoic acid, alkanol, water and ester.	

End of Paper

,

.

4

è

DATA SHEET

Avogadro constant, N _A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at 100 kPa and	
at 0°C (273.15 K)	22.71 L
at 25°C (298.15 K)	24.79 L
Ionisation constant for water at 25°C (298.15 K), K_w	1.0×10^{-14}
Specific heat capacity of water	$4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$

Some	useful	formulae

 $pH = -\log_{10}[H^+] \qquad \Delta H = -m C \Delta T$

$K^+ e^ \rightleftharpoons$ $K(s)$ -2 $Ba^{2+} + 2e^ \rightleftharpoons$ $Ba(s)$ -2 $Ca^{2+} + 2e^ \rightleftharpoons$ $Ca(s)$ -2 $Na^+ + e^ \rightleftharpoons$ $Na(s)$ -2 $Mg^{2+} + 2e^ \rightleftharpoons$ $Mg(s)$ -2 $Al^{3+} + 3e^ \rightleftharpoons$ $Al(s)$ -1 $Ma^{2+} + 2e^ \rightleftharpoons$ $Mn(s)$ -1 $H_2O + e^ \rightleftharpoons$ $\frac{1}{2}H_2(g) + OH^ -C$ $Zn^{2+} + 2e^ \rightleftharpoons$ $Nn(s)$ -1 $H_2O + e^ \rightleftharpoons$ $Zn(s)$ $-C$ $R^{2+} + 2e^ \rightleftharpoons$ $Re(s)$ $-C$ $Ni^{2+} + 2e^ \rightleftharpoons$ $Re(s)$ $-C$ $Ni^{2+} + 2e^ \rightleftharpoons$ $Rn(s)$ $-C$ $Ni^{2+} + 2e^ \rightleftharpoons$ $Rn(s)$ $-C$ $Pb^{2+} + 2e^ \rightleftharpoons$ $Rn(s)$ $-C$ $Pb^{2+} + 2e^ \rightleftharpoons$ $Sn(s)$ $-C$ $Cu^{2+} + 2e^ \rightleftharpoons$ $Re(s)$ $-C$ $I_2 log(g$	
$Ba^{2+} + 2e^{-} \rightleftharpoons Ba(s) -2$ $Ca^{2+} + 2e^{-} \rightleftharpoons Ca(s) -2$ $Na^{+} + e^{-} \rightleftharpoons Na(s) -2$ $Mg^{2+} + 2e^{-} \rightleftharpoons Mg(s) -2$ $Al^{3+} + 3e^{-} \rightleftharpoons Al(s) -4$ $Ma^{2+} + 2e^{-} \rightleftharpoons Mn(s) -4$ $H_2O + e^{-} \rightleftharpoons \frac{1}{2}H_2(g) + OH^{-} -6$ $Zn^{2+} + 2e^{-} \rightleftharpoons Fe(s) -6$ $Fe^{2+} + 2e^{-} \rightleftharpoons Fe(s) -6$ $Fe^{2+} + 2e^{-} \rightleftharpoons Sn(s) -6$ $Fe^{2+} + 2e^{-} \rightleftharpoons Sn(s) -6$ $Fb^{2+} + 2e^{-} \rightleftharpoons Sn(s) -6$ $H^{+} + e^{-} \rightleftharpoons \frac{1}{2}H_2(g) = OH^{-} C$ $Cu^{2+} + 2e^{-} \rightleftharpoons Sn(s) -6$ $H^{+} + e^{-} \rightleftharpoons Sn(s) -6$ $Gu^{2+} + 4H^{+} + 2e^{-} \rightleftharpoons Sn(s) -6$ $Gu^{2+} + 2e^{-} \rightleftharpoons Cu(s) C$ $I^{2}O_{2}(g) + H_{2}O + 2e^{-} \rightleftharpoons Cu(s) C$ $I^{1}_{2}I_{2}(aq) + e^{-} \rightleftharpoons Fe^{2+} Cu(s) C$ $I^{1}_{2}I_{2}(aq) + e^{-} \rightleftharpoons Fe^{2+} Cu(s) C$ $I^{1}_{2}Br_{2}(d) + e^{-} \rightleftharpoons Br^{-} 1$ $I^{2}O_{2}(g) + 2H^{+} + 2e^{-} \rightleftharpoons Cr^{-} 1$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} \rightleftharpoons Mn^{2+} + 4H_{2}O 1$ $I^{2}E_{1}(a) + e^{-} \rightleftharpoons F^{-} C$	-2.94 V
$Ca^{2+} + 2e^{-} \qquad \rightleftharpoons Ca(s) \qquad -2$ $Na^{+} + e^{-} \qquad \rightleftharpoons Na(s) \qquad -2$ $Mg^{2+} + 2e^{-} \qquad \rightleftharpoons Mg(s) \qquad -2$ $Al^{3+} + 3e^{-} \qquad \rightleftharpoons Al(s) \qquad -4$ $Ma^{2+} + 2e^{-} \qquad \rightleftharpoons Mg(s) \qquad -2$ $Ma^{2+} + 2e^{-} \qquad \rightleftharpoons Mg(s) \qquad -4$ $H_2O + e^{-} \qquad \rightleftharpoons \frac{1}{2}H_2(g) + OH^{-} \qquad -6$ $Zn^{2+} + 2e^{-} \qquad \rightleftharpoons Zn(s) \qquad -6$ $Fe^{2+} + 2e^{-} \qquad \rightleftharpoons Fe(s) \qquad -6$ $Ni^{2+} + 2e^{-} \qquad \rightleftharpoons Sn(s) \qquad -6$ $Fe^{2+} + 2e^{-} \qquad \rightleftharpoons Sn(s) \qquad -6$ $H^{+} + e^{-} \qquad \rightleftharpoons \frac{1}{2}H_2(g) \qquad 6$ $SO_4^{2-} + 4H^{+} + 2e^{-} \qquad \rightleftharpoons SO_2(aq) + 2H_2O \qquad 6$ $Cu^{2+} + 2e^{-} \qquad \rightleftharpoons Cu(s) \qquad 6$ $H^{+} + e^{-} \qquad \rightleftharpoons Cu(s) \qquad 6$ $\frac{1}{2}O_2(g) + H_2O + 2e^{-} \qquad \rightleftharpoons Fe^{2+} \qquad 6$ $Ag^{+} + e^{-} \qquad \rightleftharpoons Fe^{2+} \qquad 6$ $Ag^{+} + e^{-} \qquad \rightleftharpoons Fe^{2+} \qquad 6$ $Ag(s) \qquad 6$ $\frac{1}{2}Br_2(aq) + e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}Cr_2O_7^{2-} + 7H^{+} + 3e^{-} \qquad \rightleftharpoons Cr^{3+} + \frac{7}{2}H_2O \qquad 1$ $\frac{1}{4}E_1(a) + e^{-} \qquad \rightleftharpoons Cr^{-} \qquad 1$ $MnO_4^{-} + 8H^{+} + 5e^{-} \qquad \rightleftharpoons Mn^{2+} + 4H_2O \qquad 1$	2.91 V
$Na^{+} + e^{-} \qquad \rightleftharpoons Na(s) \qquad -2$ $Mg^{2*} + 2e^{-} \qquad \rightleftharpoons Mg(s) \qquad -2$ $Al^{3*} + 3e^{-} \qquad \rightleftharpoons Al(s) \qquad -1$ $Mn^{2*} + 2e^{-} \qquad \rightleftharpoons Mn(s) \qquad -1$ $H_2O + e^{-} \qquad \rightleftharpoons \frac{1}{2}H_2(g) + OH^{-} \qquad -2$ $Zn^{2*} + 2e^{-} \qquad \rightleftharpoons Zn(s) \qquad -2$ $Fe^{2*} + 2e^{-} \qquad \rightleftharpoons Fe(s) \qquad -2$ $Ni^{2*} + 2e^{-} \qquad \rightleftharpoons Sn(s) \qquad -2$ $Pb^{2*} + 2e^{-} \qquad \rightleftharpoons Sn(s) \qquad -2$ $Pb^{2*} + 2e^{-} \qquad \rightleftharpoons Sn(s) \qquad -2$ $H^{+} + e^{-} \qquad \rightleftharpoons \frac{1}{2}H_2(g) \qquad 0$ $Cu^{2*} + 2e^{-} \qquad \rightleftharpoons Sn(s) \qquad -2$ $H^{+} + e^{-} \qquad \rightleftharpoons Sn(s) \qquad -2$ $Cu^{2*} + 2e^{-} \qquad \rightleftharpoons Sn(s) \qquad -2$ $Cu^{2*} + 2e^{-} \qquad \rightleftharpoons Cu(s) \qquad 0$ $\frac{1}{2}O_2(g) + H_2O + 2e^{-} \qquad \rightleftharpoons Cu(s) \qquad 0$ $\frac{1}{2}I_2(ag) + e^{-} \qquad \rightleftharpoons Fe^{2+} \qquad 0$ $Ag^{*} + e^{-} \qquad \rightleftharpoons Fe^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Dr^{-} \qquad 0$ $\frac{1}{2}D_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Dr^{-} \qquad 0$ $\frac{1}{2}D_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Dr^{-} \qquad 0$ $\frac{1}{2}D_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Dr^{-} \qquad 0$ $\frac{1}{2}D_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Dr^{-} \qquad 0$ $\frac{1}{2}D_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Dr^{-} \qquad 0$ $\frac{1}{2}D_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Dr^{-} \qquad 0$ $\frac{1}{2}D_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Dr^{-} \qquad 0$ $\frac{1}{2}D_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Dr^{-} \qquad 0$ $\frac{1}{2}D_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Dr^{-} \qquad 0$ $\frac{1}{2}D_2(aq) + e^{-} \qquad \rightleftharpoons Dr^{-} \qquad 0$	-2.87 V
$Mg^{2+} + 2e^{-} \qquad \rightleftharpoons Mg(s) \qquad -2$ $Al^{3+} + 3e^{-} \qquad \rightleftharpoons Al(s) \qquad -1$ $Mn^{2+} + 2e^{-} \qquad \rightleftharpoons Mn(s) \qquad -1$ $H_2O + e^{-} \qquad \rightleftharpoons \frac{1}{2}H_2(g) + OH^{-} \qquad -0$ $Zn^{2+} + 2e^{-} \qquad \rightleftharpoons Zn(s) \qquad -0$ $Fe^{2+} + 2e^{-} \qquad \rightleftharpoons Fe(s) \qquad -0$ $Ni^{2+} + 2e^{-} \qquad \rightleftharpoons Fe(s) \qquad -0$ $Ni^{2+} + 2e^{-} \qquad \rightleftharpoons Sn(s) \qquad -0$ $Fb^{2+} + 2e^{-} \qquad \rightleftharpoons Sn(s) \qquad -0$ $H^{+} + e^{-} \qquad \rightleftharpoons Pb(s) \qquad -0$ $H^{+} + e^{-} \qquad \rightleftharpoons Pb(s) \qquad -0$ $H^{+} + e^{-} \qquad \rightleftharpoons SO_2(aq) + 2H_2O \qquad 0$ $Cu^{2+} + 2e^{-} \qquad \rightleftharpoons Cu(s) \qquad 0$ $\frac{1}{2}O_2(g) + H_2O + 2e^{-} \qquad \rightleftharpoons Cu(s) \qquad 0$ $\frac{1}{2}I_2(aq) + e^{-} \qquad \rightleftharpoons Fe^{2+} \qquad 0$ $Ag^{s} + e^{-} \qquad \rightleftharpoons Ag(s) \qquad 0$ $\frac{1}{2}Br_2(aq) + e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + e^{-} \qquad \rightleftharpoons Cr^{-} \qquad 1$ $\frac{1}{2}O_2(g) + e^{-} \qquad \rightleftharpoons Cr^{-} \qquad 1$ $\frac{1}{2}O_2(aq) + e^{-} \qquad \rightleftharpoons Cr^{-} \qquad 1$	-2.71 V
$Al^{3+} + 3e^{-} \qquad \Leftrightarrow \qquad Al(s) \qquad -4$ $Mn^{2+} + 2e^{-} \qquad \Leftrightarrow \qquad Mn(s) \qquad -3$ $H_2O + e^{-} \qquad \Leftrightarrow \qquad \frac{1}{2}H_2(g) + OH^{-} \qquad -6$ $Zn^{2+} + 2e^{-} \qquad \Leftrightarrow \qquad Zn(s) \qquad -6$ $Fe^{2+} + 2e^{-} \qquad \Leftrightarrow \qquad Fe(s) \qquad -6$ $Ni^{2+} + 2e^{-} \qquad \Leftrightarrow \qquad Fe(s) \qquad -6$ $Ni^{2+} + 2e^{-} \qquad \Leftrightarrow \qquad Sn(s) \qquad -6$ $Pb^{2+} + 2e^{-} \qquad \Leftrightarrow \qquad Sn(s) \qquad -6$ $H^{+} + e^{-} \qquad \Leftrightarrow \qquad \frac{1}{2}H_2(g) \qquad 6$ $SO_4^{-2} + 4H^{+} + 2e^{-} \qquad \Leftrightarrow \qquad SO_2(aq) + 2H_2O \qquad 6$ $Cu^{2+} + 2e^{-} \qquad \Leftrightarrow \qquad Cu(s) \qquad 6$ $L^2O_2(g) + H_2O + 2e^{-} \qquad \Leftrightarrow \qquad Cu(s) \qquad 6$ $\frac{1}{2}O_2(g) + H_2O + 2e^{-} \qquad \Leftrightarrow \qquad Cu(s) \qquad 6$ $\frac{1}{2}I_2(aq) + e^{-} \qquad \Leftrightarrow \qquad Fe^{2+} \qquad 6$ $Ag^{s} + e^{-} \qquad \Leftrightarrow \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \Leftrightarrow \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \Leftrightarrow \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \Leftrightarrow \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \Leftrightarrow \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \Leftrightarrow \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \Leftrightarrow \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \iff \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \iff \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \iff \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \iff \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \iff \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \iff \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \iff \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \iff \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \iff \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \iff \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \iff \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \iff \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \iff \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \iff \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \qquad \implies \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + e^{-} \qquad \qquad \qquad \Rightarrow \qquad Cr^{-} \qquad 1$ $\frac{1}{2}O_2(g) + e^{-} \qquad \qquad \qquad \qquad \qquad \Rightarrow \qquad F^{-} \qquad 0$	2.36 V
$Mn^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Mn(s) \qquad -1$ $H_2O + e^{-} \qquad \rightleftharpoons \qquad \frac{1}{2}H_2(g) + OH^{-} \qquad -0$ $Zn^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Zn(s) \qquad -0$ $Fe^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Fe(s) \qquad -0$ $Ni^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Sn(s) \qquad -0$ $Pb^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Sn(s) \qquad -0$ $H^+ + e^{-} \qquad \rightleftharpoons \qquad Sn(s) \qquad -0$ $H^+ + e^{-} \qquad \rightleftharpoons \qquad Sn(s) \qquad -0$ $H^+ + e^{-} \qquad \rightleftharpoons \qquad Sn(s) \qquad -0$ $H^+ + e^{-} \qquad \rightleftharpoons \qquad Sn(s) \qquad -0$ $Cu^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad So_2(aq) + 2H_2O \qquad 0$ $Cu^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Cu(s) \qquad 0$ $\frac{1}{2}O_2(g) + H_2O + 2e^{-} \qquad \rightleftharpoons \qquad Cu(s) \qquad 0$ $\frac{1}{2}I_2(aq) + e^{-} \qquad \rightleftharpoons \qquad Fe^{2+} \qquad 0$ $Ag^+ + e^{-} \qquad \rightleftharpoons \qquad Fe^{2+} \qquad 0$ $Ag^+ + e^{-} \qquad \rightleftharpoons \qquad Fe^{2+} \qquad 0$ $Ag^+ + e^{-} \qquad \rightleftharpoons \qquad Fe^{2+} \qquad 0$ $Ag^+ + e^{-} \qquad \rightleftharpoons \qquad Fe^{2+} \qquad 0$ $Ag^+ + e^{-} \qquad \rightleftharpoons \qquad Fe^{2+} \qquad 0$ $Ag^+ + e^{-} \qquad \rightleftharpoons \qquad Br^{} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^+ + 2e^{-} \qquad \rightleftharpoons \qquad Br^{} \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$	1.68 V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.18 V
$Zn^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Zn(s) \qquad -(C)$ $Fe^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Fe(s) \qquad -(C)$ $Ni^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Fe(s) \qquad -(C)$ $Sn^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Sn(s) \qquad -(C)$ $Pb^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Sn(s) \qquad -(C)$ $H^{+} + e^{-} \qquad \rightleftharpoons \qquad Pb(s) \qquad -(C)$ $H^{+} + e^{-} \qquad \rightleftharpoons \qquad SO_{2}(aq) + 2H_{2}O \qquad (C)$ $Cu^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Cu(s) \qquad (C)$ $Cu^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Cu(s) \qquad (C)$ $\frac{1}{2}O_{2}(g) + H_{2}O + 2e^{-} \qquad \rightleftharpoons \qquad Cu(s) \qquad (C)$ $Cu^{+} + e^{-} \qquad \rightleftharpoons \qquad Cu(s) \qquad (C)$ $Fe^{3+} + e^{-} \qquad \rightleftharpoons \qquad Fe^{2+} \qquad (C)$ $Ag^{+} + e^{-} \qquad \rightleftharpoons \qquad Fe^{2+} \qquad (C)$ $Ag^{+} + e^{-} \qquad \rightleftharpoons \qquad Br^{-} \qquad 1$ $\frac{1}{2}Br_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Br^{-} \qquad 1$ $\frac{1}{2}Cl_{2}(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons \qquad Br^{-} \qquad 1$ $\frac{1}{2}Cl_{2}(g) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}Cl_{2}(q) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}Cl_{2}(q) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}Cl_{2}(q) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}Cl_{2}(q) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad C1^{-} \qquad 1$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} \qquad \rightleftharpoons \qquad Mn^{2+} + 4H_{2}O \qquad 1$	0.83 V
$Fe^{2+} + 2e^ \rightleftharpoons$ $Fe(s)$ $-C$ $Ni^{2+} + 2e^ \rightleftharpoons$ $Ni(s)$ $-C$ $Sn^{2+} + 2e^ \rightleftharpoons$ $Sn(s)$ $-C$ $Pb^{2+} + 2e^ \rightleftharpoons$ $Sn(s)$ $-C$ $H^+ + e^ \rightleftharpoons$ $\frac{1}{2}H_2(g)$ C $SO_4^{2-} + 4H^+ + 2e^ \rightleftharpoons$ $SO_2(aq) + 2H_2O$ C $Cu^{2+} + 2e^ \rightleftharpoons$ $Cu(s)$ C $\frac{1}{2}O_2(g) + H_2O + 2e^ \rightleftharpoons$ $2OH^ C$ $cu^+ + e^ \rightleftharpoons$ $Cu(s)$ C $\frac{1}{2}I_2(s) + e^ \rightleftharpoons$ $I^ C$ $\frac{1}{2}I_2(aq) + e^ \rightleftharpoons$ $I^ C$ $Ag^+ + e^ \rightleftharpoons$ Re^{2+} C $Ag^+ + e^ \rightleftharpoons$ $Ag(s)$ C $\frac{1}{2}Br_2(d) + e^ \rightleftharpoons$ $Br^ I$ $\frac{1}{2}O_2(g) + 2H^+ + 2e^ \rightleftharpoons$ $CI^ I$ $\frac{1}{2}Cl_2(g) + e^ \rightleftharpoons$ $CI^ I$ $\frac{1}{2}Cl_2(aq) + e^ \rightleftharpoons$ $CI^ I$ $\frac{1}{2}Cl_2(aq) + e^ \rightleftharpoons$ $CI^ I$ $\frac{1}{2}Cl_2(aq) + e^ \rightleftharpoons$ $CI^ I$ $MnO_4^- + 8H^+ + 5e^ \rightleftharpoons$ $Mn^{2+} + 4H_2O$ I	-0.76 V
$Ni^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Ni(s) \qquad -0$ $Sn^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Sn(s) \qquad -0$ $Pb^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Pb(s) \qquad -0$ $H^{+} + e^{-} \qquad \rightleftharpoons \qquad \frac{1}{2}H_2(g) \qquad 0$ $SO_4^{2-} + 4H^{+} + 2e^{-} \qquad \rightleftharpoons \qquad SO_2(aq) + 2H_2O \qquad 0$ $Cu^{2+} + 2e^{-} \qquad \rightleftharpoons \qquad Cu(s) \qquad 0$ $\frac{1}{2}O_2(g) + H_2O + 2e^{-} \qquad \rightleftharpoons \qquad Cu(s) \qquad 0$ $Cu^{+} + e^{-} \qquad \rightleftharpoons \qquad Cu(s) \qquad 0$ $\frac{1}{2}I_2(s) + e^{-} \qquad \rightleftharpoons \qquad I^{-} \qquad 0$ $Fe^{3+} + e^{-} \qquad \rightleftharpoons \qquad Fe^{2+} \qquad 0$ $Ag^{+} + e^{-} \qquad \rightleftharpoons \qquad Br^{-} \qquad 1$ $\frac{1}{2}Br_2(dq) + e^{-} \qquad \rightleftharpoons \qquad Br^{-} \qquad 1$ $\frac{1}{2}D_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons \qquad Br^{-} \qquad 1$ $\frac{1}{2}C_1(qq) + e^{-} \qquad \rightleftharpoons \qquad Cu^{-} \qquad 1$ $\frac{1}{2}C_1(qq) + e^{-} \qquad \rightleftharpoons \qquad Cu^{-} \qquad 1$ $MnO_4^{-} + 8H^{+} + 5e^{-} \qquad \rightleftharpoons \qquad Mn^{2+} + 4H_2O \qquad 1$	0.44 V
$Sn^{2+} + 2e^{-} \qquad \rightleftharpoons Sn(s) \qquad -0$ $Pb^{2+} + 2e^{-} \qquad \rightleftharpoons Pb(s) \qquad -0$ $H^{+} + e^{-} \qquad \rightleftharpoons \frac{1}{2}H_2(g) \qquad 0$ $SO_4^{2-} + 4H^{+} + 2e^{-} \qquad \rightleftharpoons SO_2(aq) + 2H_2O \qquad 0$ $Cu^{2+} + 2e^{-} \qquad \rightleftharpoons Cu(s) \qquad 0$ $\frac{1}{2}O_2(g) + H_2O + 2e^{-} \qquad \rightleftharpoons Cu(s) \qquad 0$ $\frac{1}{2}O_2(g) + H_2O + 2e^{-} \qquad \rightleftharpoons Cu(s) \qquad 0$ $\frac{1}{2}I_2(s) + e^{-} \qquad \rightleftharpoons I^{-} \qquad 0$ $Fe^{3+} + e^{-} \qquad \rightleftharpoons Fe^{2+} \qquad 0$ $Ag^{+} + e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}Br_2(d) + e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons H_2O \qquad 1$ $\frac{1}{2}C_1(aq) + e^{-} \qquad \rightleftharpoons Ct^{-} \qquad 1$ $\frac{1}{2}Cr_2O_7^{-2} + 7H^{+} + 3e^{-} \qquad \rightleftharpoons Ct^{-} \qquad 1$ $MnO_4^{-} + 8H^{+} + 5e^{-} \qquad \rightleftharpoons Ft^{-} \qquad 2$	0.24 V
$Pb^{2+} + 2e^ \rightleftharpoons$ $Pb(s)$ -0 $H^+ + e^ \rightleftharpoons$ $\frac{1}{2}H_2(g)$ 0 $SO_4^{2-} + 4H^+ + 2e^ \rightleftharpoons$ $SO_2(aq) + 2H_2O$ 0 $Cu^{2+} + 2e^ \rightleftharpoons$ $Cu(s)$ 0 $\frac{1}{2}O_2(g) + H_2O + 2e^ \rightleftharpoons$ $2OH^ 0$ $Cu^+ + e^ \rightleftharpoons$ $Cu(s)$ 0 $\frac{1}{2}I_2(s) + e^ \rightleftharpoons$ $Cu(s)$ 0 $\frac{1}{2}I_2(aq) + e^ \rightleftharpoons$ $I^ 0$ $\frac{1}{2}I_2(aq) + e^ \rightleftharpoons$ $I^ 0$ $\frac{1}{2}Br_2(l) + e^ \rightleftharpoons$ $Br^ 1$ $\frac{1}{2}D_2(g) + 2H^+ + 2e^ \rightleftharpoons$ $Br^ 1$ $\frac{1}{2}Cl_2(g) + e^ \rightleftharpoons$ $CI^ 1$ $\frac{1}{2}Cl_2(g) + e^ \rightleftharpoons$ $CI^ 1$ $\frac{1}{2}Cl_2(aq) + e^ \rightleftharpoons$	0.14 V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.13 V
$SO_4^{2-} + 4H^+ + 2e^- \iff SO_2(aq) + 2H_2O$ $Cu^{2+} + 2e^- \iff Cu(s)$ $\frac{1}{2}O_2(g) + H_2O + 2e^- \iff 2OH^-$ $Cu^+ + e^- \iff Cu(s)$ $\frac{1}{2}I_2(s) + e^- \iff I^-$ $I^- \qquad I^-$ $Fe^{3+} + e^- \iff Fe^{2+}$ $Ag^+ + e^- \iff Fe^{2+}$ $Ag^+ + e^- \iff Br^-$ $\frac{1}{2}Br_2(dq) + e^- \iff Br^-$ $\frac{1}{2}Br_2(aq) + e^- \iff Br^-$ $\frac{1}{2}Cl_2(g) + 2H^+ + 2e^- \iff H_2O$ $\frac{1}{2}Cl_2(g) + e^- \iff Cr^-$ $\frac{1}{2}Cl_2(aq) + e^- \iff Cr^-$ $MnO_4^- + 8H^+ + 5e^- \iff Mn^{2+} + 4H_2O$ $\frac{1}{2}E_1(aq) + e^- \iff Fr^-$	0.00 V
$Cu^{2+} + 2e^{-} \rightleftharpoons Cu(s) \qquad (0)$ $\frac{1}{2}O_{2}(g) + H_{2}O + 2e^{-} \bowtie 2OH^{-} \qquad (0)$ $Cu^{+} + e^{-} \qquad \rightleftharpoons Cu(s) \qquad (0)$ $\frac{1}{2}I_{2}(s) + e^{-} \qquad \rightleftharpoons I^{-} \qquad (0)$ $\frac{1}{2}I_{2}(aq) + e^{-} \qquad \rightleftharpoons I^{-} \qquad (0)$ $Fe^{3+} + e^{-} \qquad \rightleftharpoons Fe^{2+} \qquad (0)$ $Ag^{+} + e^{-} \qquad \rightleftharpoons Fe^{2+} \qquad (0)$ $Ag^{+} + e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}Br_{2}(l) + e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}Br_{2}(aq) + e^{-} \qquad \rightleftharpoons Br^{-} \qquad 1$ $\frac{1}{2}D_{2}(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons H_{2}O \qquad 1$ $\frac{1}{2}Cl_{2}(g) + e^{-} \qquad \rightleftharpoons Cl^{-} \qquad 1$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons Cl^{-} \qquad 1$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} \qquad \rightleftharpoons Mn^{2+} + 4H_{2}O \qquad 1$	0.16 V
$\frac{1}{2}O_{2}(g) + H_{2}O + 2e^{-} \qquad \rightleftharpoons \qquad 2OH^{-} \qquad OH^{-}$ $Cu^{+} + e^{-} \qquad \rightleftharpoons \qquad Cu(s) \qquad OH^{-}$ $\frac{1}{2}I_{2}(s) + e^{-} \qquad \rightleftharpoons \qquad I^{-} \qquad OH^{-}$ $\frac{1}{2}I_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad I^{-} \qquad OH^{-}$ $Fe^{3+} + e^{-} \qquad \rightleftharpoons \qquad Fe^{2+} \qquad OH^{-}$ $Ag^{+} + e^{-} \qquad \rightleftharpoons \qquad Fe^{2+} \qquad OH^{-}$ $Ag^{+} + e^{-} \qquad \rightleftharpoons \qquad Ag(s) \qquad OH^{-}$ $\frac{1}{2}Br_{2}(h) + e^{-} \qquad \rightleftharpoons \qquad Br^{-} \qquad H^{-}$ $\frac{1}{2}Br_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Br^{-} \qquad H^{-}$ $\frac{1}{2}O_{2}(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons \qquad H_{2}O \qquad H^{-}$ $\frac{1}{2}Cl_{2}(g) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad H^{-}$	0.34 V
$Cu^+ + e^ \rightleftharpoons$ $Cu(s)$ O $\frac{1}{2}I_2(s) + e^ \rightleftharpoons$ $i^ O$ $\frac{1}{2}I_2(aq) + e^ \rightleftharpoons$ $i^ O$ $Fe^{3+} + e^ \rightleftharpoons$ Fe^{2+} O $Ag^+ + e^ \rightleftharpoons$ $Ag(s)$ O $\frac{1}{2}Br_2(l) + e^ \rightleftharpoons$ $Br^ I$ $\frac{1}{2}Dr_2(aq) + e^ \rightleftharpoons$ $Br^ I$ $\frac{1}{2}O_2(g) + 2H^+ + 2e^ \rightleftharpoons$ H_2O I $\frac{1}{2}Cl_2(g) + e^ \rightleftharpoons$ $CI^ I$ $\frac{1}{2}Cr_2O_7^{2-} + 7H^+ + 3e^ \rightleftharpoons$ $Cr^{-3+} + \frac{7}{2}H_2O$ I $\frac{1}{2}Cl_2(aq) + e^ \rightleftharpoons$ $CI^ I$ $MnO_4^- + 8H^+ + 5e^ \rightleftharpoons$ $Mn^{2+} + 4H_2O$ I $\frac{1}{4}E_1(e) + e^ \rightleftharpoons$ $E^ O$	0.40 V
$\frac{1}{2}I_{2}(s) + e^{-} \qquad \rightleftharpoons \qquad i^{-} \qquad i^{-} \qquad 0$ $\frac{1}{2}I_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad i^{-} \qquad 0$ $Fe^{3+} + e^{-} \qquad \rightleftharpoons \qquad Fe^{2+} \qquad 0$ $Ag^{+} + e^{-} \qquad \rightleftharpoons \qquad Fe^{2+} \qquad 0$ $Ag^{+} + e^{-} \qquad \rightleftharpoons \qquad Ag(s) \qquad 0$ $\frac{1}{2}Br_{2}(l) + e^{-} \qquad \rightleftharpoons \qquad Br^{-} \qquad 1$ $\frac{1}{2}Br_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Br^{-} \qquad 1$ $\frac{1}{2}O_{2}(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons \qquad H_{2}O \qquad 1$ $\frac{1}{2}Cl_{2}(g) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad 1$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad 1$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} \qquad \rightleftharpoons \qquad Mn^{2+} + 4H_{2}O \qquad 1$ $\frac{1}{2}E_{1}(e) + e^{-} \qquad \rightleftharpoons \qquad F^{-} \qquad 2$	0.52 V
$\frac{1}{2}I_2(aq) + e^- \qquad \rightleftharpoons \qquad I^- \qquad O$ $Fe^{3+} + e^- \qquad \rightleftharpoons \qquad Fe^{2+} \qquad O$ $Ag^+ + e^- \qquad \rightleftharpoons \qquad Ag(s) \qquad O$ $\frac{1}{2}Br_2(aq) + e^- \qquad \rightleftharpoons \qquad Br^- \qquad I$ $\frac{1}{2}Dr_2(aq) + e^- \qquad \rightleftharpoons \qquad Br^- \qquad I$ $\frac{1}{2}O_2(g) + 2H^+ + 2e^- \qquad \rightleftharpoons \qquad Br^{} \qquad I$ $\frac{1}{2}Cl_2(g) + e^- \qquad \rightleftharpoons \qquad CI^- \qquad I$ $\frac{1}{2}Cl_2(aq) + e^- \qquad \rightleftharpoons \qquad CI^{} \qquad I$ $MnO_4^{} + 8H^+ + 5e^- \qquad \rightleftharpoons \qquad Mn^{2+} + 4H_2O \qquad I$ $\frac{1}{2}E_1(a) + e^- \qquad \rightleftharpoons \qquad F^- \qquad I$	0.54 V
$Fe^{3+} + e^{-} \qquad \rightleftharpoons \qquad Fe^{2+} \qquad (0)$ $Ag^{+} + e^{-} \qquad \rightleftharpoons \qquad Ag(s) \qquad (0)$ $\frac{1}{2}Br_2(l) + e^{-} \qquad \rightleftharpoons \qquad Br^{-} \qquad 1$ $\frac{1}{2}Br_2(aq) + e^{-} \qquad \rightleftharpoons \qquad Br^{} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^{+} + 2e^{-} \qquad \rightleftharpoons \qquad H_2O \qquad 1$ $\frac{1}{2}Cl_2(g) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad 1$ $\frac{1}{2}Cl_2(q) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad 1$ $\frac{1}{2}Cl_2(aq) + e^{-} \qquad \rightleftharpoons \qquad Cl^{-} \qquad 1$ $MnO_4^{-} + 8H^{+} + 5e^{-} \qquad \rightleftharpoons \qquad Mn^{2+} + 4H_2O \qquad 1$ $\frac{1}{2}E_1(e) + e^{-} \qquad \rightleftharpoons \qquad E^{-} \qquad 2$	0.62 V
$Ag^+ + e^ \rightleftharpoons$ $Ag(s)$ O $\frac{1}{2}Br_2(l) + e^ \rightleftharpoons$ $Br^ 1$ $\frac{1}{2}Br_2(aq) + e^ \rightleftharpoons$ $Br^{}$ 1 $\frac{1}{2}O_2(g) + 2H^+ + 2e^ \rightleftharpoons$ $Br^{}$ 1 $\frac{1}{2}Cl_2(g) + e^ \rightleftharpoons$ $Cl^ 1$ $\frac{1}{2}Cr_2O_7^{2-} + 7H^+ + 3e^ \rightleftharpoons$ $Cr^{3+} + \frac{7}{2}H_2O$ 1 $\frac{1}{2}Cl_2(aq) + e^ \rightleftharpoons$ $Cl^ 1$ $\frac{1}{2}Cl_2(aq) + e^ \rightleftharpoons$ $Cl^ 1$ $\frac{1}{2}Cl_2(aq) + e^ \rightleftharpoons$ $Cl^ 1$ $\frac{1}{2}E_1(e) + e^ \rightleftharpoons$ $E^ 2$	0.77 V
$\frac{1}{2}Br_2(l) + e^- \qquad \rightleftharpoons \qquad Br^- \qquad 1$ $\frac{1}{2}Br_2(aq) + e^- \qquad \rightleftharpoons \qquad Br^- \qquad 1$ $\frac{1}{2}D_2(g) + 2H^+ + 2e^- \qquad \rightleftharpoons \qquad H_2O \qquad 1$ $\frac{1}{2}Cl_2(g) + e^- \qquad \rightleftharpoons \qquad Cl^- \qquad 1$ $\frac{1}{2}Cr_2O_7^{2-} + 7H^+ + 3e^- \qquad \rightleftharpoons \qquad Cr^{-3+} + \frac{7}{2}H_2O \qquad 1$ $\frac{1}{2}Cl_2(aq) + e^- \qquad \rightleftharpoons \qquad Cl^- \qquad 1$ $MnO_4^- + 8H^+ + 5e^- \qquad \rightleftharpoons \qquad Mn^{2+} + 4H_2O \qquad 1$ $\frac{1}{2}E_1(e) + e^- \qquad \rightleftharpoons \qquad E^- \qquad 2$	0.80 V
$\frac{1}{2}Br_2(aq) + e^- \iff Br^{} \qquad 1$ $\frac{1}{2}O_2(g) + 2H^+ + 2e^- \iff H_2O \qquad 1$ $\frac{1}{2}Cl_2(g) + e^- \iff Cl^- \qquad 1$ $\frac{1}{2}Cr_2O_7^{2-} + 7H^+ + 3e^- \iff Cr^{3+} + \frac{7}{2}H_2O \qquad 1$ $\frac{1}{2}Cl_2(aq) + e^- \iff Cl^- \qquad 1$ $MnO_4^- + 8H^+ + 5e^- \iff Mn^{2+} + 4H_2O \qquad 1$ $\frac{1}{2}E_1(g) + e^- \implies E^- \qquad 2$	1.08 V
$\frac{1}{2}O_{2}(g) + 2H^{+} + 2e^{-} \rightleftharpoons H_{2}O \qquad 1$ $\frac{1}{2}Cl_{2}(g) + e^{-} \rightleftharpoons Cl^{-} \qquad 1$ $\frac{1}{2}Cr_{2}O_{7}^{2-} + 7H^{+} + 3e^{-} \rightleftharpoons Cr^{3+} + \frac{7}{2}H_{2}O \qquad 1$ $\frac{1}{2}Cl_{2}(aq) + e^{-} \rightleftharpoons Cl^{-} \qquad 1$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} \rightleftharpoons Mn^{2+} + 4H_{2}O \qquad 1$ $\frac{1}{2}E_{1}(g) + e^{-} \rightleftharpoons E^{-} \qquad 2$	1.10 V
$\frac{1}{2}Cl_2(g) + e^- \iff Cl^- \qquad l$ $\frac{1}{2}Cr_2O_7^{2-} + 7H^+ + 3e^- \iff Cr^{3+} + \frac{7}{2}H_2O \qquad l$ $\frac{1}{2}Cl_2(aq) + e^- \iff Cl^- \qquad l$ $MnO_4^- + 8H^+ + 5e^- \iff Mn^{2+} + 4H_2O \qquad l$ $\frac{1}{2}E_1(g) + e^- \implies E^- \qquad 2$	1.23 V
$\frac{1}{2}Cr_2O_7^{2-} + 7H^+ + 3e^- \rightleftharpoons Cr^{3+} + \frac{7}{2}H_2O \qquad 1$ $\frac{1}{2}Cl_2(aq) + e^- \rightleftharpoons Cl^- \qquad 1$ $MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O \qquad 1$ $\frac{1}{2}F_1(q) + e^- \rightleftharpoons F^- \qquad 2$	1.36 V
$\frac{1}{2}Cl_2(aq) + e^- \iff Cl^- \qquad 1$ $MnO_4^- + 8H^+ + 5e^- \iff Mn^{24} + 4H_2O \qquad 1$ $\frac{1}{2}F_1(q) + e^- \implies F^- \qquad 2$	1.36 V
$MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O \qquad 1$ $\frac{1}{2}F_1(e) + e^- \qquad \Longrightarrow F^- \qquad 2$	1.40 V
$\frac{1}{2}F_{1}(a) + e^{-} \qquad \Rightarrow F^{-} \qquad 2$	1.51 V
2.52,201	2.89 V

Some standard potentials

Aylward and Findlay, *SI Chemical Data* (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

,

						PERIO	DIC TA	BLE O	F THE	ELEMI	ENTS					,	
l H 1.008 Hydrogen		KEY										2 He 4.003 Hellum					
3 Li 6.941 1,104m	4 Be 9.012 Berythum	Alternic Number 79 Au 59 6 7 8 9 Au Symbol of nictureat B C N O F Atomic Weight 197.0 i0.81 12.01 14.01 16.00 19.00 Gold Name of element Boxon Caston Natorian Caston Natorian										10 Ne 20.18 Nean					
11 Na 22.99 Socture	12 Mg 24.31 Magnesium		13 14 15 16 17 Al Si P S C1 26.98 28.09 30.97 32.07 35.45 3 Aluminian Sultron Pheophoneut Sultron Choose 4							18 Ar 39.95 Argos							
19 K 39.10 Polasiem	20 Ca 40.08 Catting	21 Sc 44.96 Scandian	22 Ti 47.87 Trans	23 V 50.94 Vanadilaan	24 Cr 52.00	25 Ma 54.94 Magazetz	26 Fe 55.85 Inn	27 Co 58.93 Colum	28 Ni 58.69 Nichel	29 Cu 63.55 Cupper	30 Za 65.41 zac	31 Ga 69.72 Geillion	32 Ge 72.64 Germanium	33 As 74.92 Amenik	34 Se 78.96 selentum	35 Br 79.90 Brunice	36 Kr 83.80 Krypton
37 Rb 85.47 Rabidiym	38 Sr 87.62 Strontium	39 Y 88.91 Yuruun	40 7r 91.22 Zerrendom	41 Nb 92.91 Nicotam	42 Mo 95.94 Motybdenam	43 Tc [97.91] Technolom	44 Ru 101.1 Enthenium	45 Rh 102.9 Rhodan	46 Pd 106.4 Folladiam	47 Ag 107.9 suiver	48 Cd 112.4 Cadmium	49 In 114.8	50 Sn 118.7 In	51 Sb 121.8 Antimicay	52 Te 127.6 Tellorium	53 I 126.9 Iodiae	54 Xe 131.3 Xenna
55 Cs 132.9 Caestram	56 Ba 137.3 Badum	57–71 Lanimacida	72 Hf 178.5 Hathian	73 Ta 180.9 Tantatum	74 W 183.8 Juageten	75 Re 186.2 Rhenham	76 Os 190.2 • Osminus	77 Ir 192.2 Iriddan	78 Pt 195.1 Pintinum	79 Au 197.0 Gals	80 Hg 200.6 Mexwy	81 Tl 204.4 Tasilam	82 Pb 207.2 Lets	83 Bi 209.0 Bisanta	84 Po [209.0] Polculan	85 At [210.0] Astallar	86 Rn [222.0] Ratos
87 Fr [223] Francium	88 Ra [226] Radiaon	89–103 Actinoids	104 Rf [261] Ruthectardium	105 Db [262] Dubulan	106 Sg [266] Sestorgiann	107 Bh [264] Balaine	108 His [277] Hassium	109 Mt [268] Metorium	110 Ds [271] Decession(free	111 Rg [272] Romtynian							
	Lastbanoids																
		57 La 138.9 Lottaum	58 Ce 140.1 Certana	59 Pr 140.9 Prosecolymium	60 Nd 144.2 Neodymian	61 Pm [145] Prosethian	62 Srn 150.4 Somarism	63 Eu 152.0 Earophan	64 Gd 157.3 Gadeilainno	65 Tb 158.9 Tertion	66 Dy 162.5 Dysprastaan	67 Ho 164.9 Holesium	68 Er 167.3 Entimes	69 Tm 168.9 Thatian	70 Yb 173.0 Yterfian	71 Lu 175.0 Lutetian	

Actinoids														
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
[72,7]	2.32.0	231.0	238.0	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]
Jum	Thorium	Protactinium	Uranium	Nepunium	Finicolum	Americana	Cadam	Bettelion	Culifornium	Endendum	Fermine	Mendelevium	Nobelinat	Lawonncium

For elements that have no stable or long-lived nuclides, the mass number of the nuclide with the longest confirmed half-life is listed between square brackets. The International Union of Pure and Applied Chemistry Periodic Table of the Elements (October 2005 version) is the principal source of data. Some data may have been modified.

1