

		Ce	ntre	Nu	mber
 <u>,</u>	 				
		Stu	dent	Nu	mber

2015

HSC Term 2 Examination

Assessment Task 3 Task Weighting 15%

Chemistry

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- Use the Data Sheet and Periodic Table provided
- Use the Multiple-Choice Answer Sheet provided
- Write your Centre Number and Student Number at the top of this page, the Multiple-Choice Answer Sheet, and on the booklet for Section II.
- Section II is answered in the booklet.

Total marks - 67

This paper has two Sections, Section I and Section II

Section I (55 marks)

Part A - 20 marks

- Attempt Questions 1-20
- Allow about 35 minutes for this part

Part B - 35 marks

- Attempt Questions 21-27
- Allow about 65 minutes for this part

Section II (12 marks)

- Attempt Question 28 in a booklet
- Allow about 20 minutes for this part

This paper must not be removed from the examination room

Disclaimer

The content and format of this paper does not necessarily reflect the content and format of the HSC examination paper.

BLANK PAGE

2015 YEAR 12 MID-YEAR EXAMINATION CHEMISTRY

Part A – 20 marks Attempt Questions 1-20 Allow about 35 minutes for this part

Use the multiple-choice answer sheet provided for Questions 1-20

Select the completely	alternative A, B,	C or D that best a	nswers the ques	tion. Fill in the 1	response oval		
Sample	2 + 4 = (A) 2	(B) 6	(C) 8	(D) 9			
	$A \subset$) B	$c\bigcirc$	$D\bigcirc$			
If you thin answer.	If you think you have made a mistake, put a cross through the incorrect answer and fill in the new						
	$A \blacksquare$	В	c 🔾	$D \bigcirc$			
If you have changed your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word <i>correct</i> and drawing an arrow as follows:							
	A	В		D 🔘			

An unknown chemical was extracted from a soil sample and sent to your laboratory.

One of the first tests you carried out was to determine the pH of the chemical by using indicators. The results were:

Indicator	Colour	
Phenolphthalein	Colourless	
Methyl orange	Yellow	
Bromothymol blue	Yellow	

How should your laboratory classify the chemical from the soil sample?

- (A) neutral
- (B) slightly alkaline
- (C) highly acidic
- (D) slightly acidic

- 2 Identify the CORRECT statement.
 - (A) Metals tend to form acidic oxides, which react with bases.
 - (B) Non-metals tend to form acidic oxides, which produce aqueous solutions of low pH.
 - (C) Non-metals tend to form basic oxides, which react with water to produce acids.
 - (D) Non-metals tend to form oxides which will neutralise acids.
- 3 An acidic, pollutant gas formed during high temperature combustion in air is:
 - (A) nitrogen monoxide.
 - (B) nitrogen dioxide.
 - (C) carbon monoxide.
 - (D) ammonia.
- 4 According to the Lavoisier's acid theory, an acid is a substance which:
 - (A) contains oxygen atoms.
 - (B) turns blue litmus red.
 - (C) is neutralised by a base.
 - (D) is capable of donating a proton.
- 5 Which of the following species does NOT contain a co-ordinate covalent bond?
 - (A) O_3
 - (B) H_3O^+
 - (C) NH_3
 - (D) NH_4^+

Which of the following lists the CORRECT combination of alcohols and acids used to form an ester?

	Acid	Alcohol	Ester
(A)	pentanoic	ethanol	pentyl ethanoate
(B)	butanoic	1-propanol	1-propyl butanoate
(C)	ethanoic	methanol	methyl methanoate
(D)	methanoic	methanol	ethyl methanoate

A bright, apple-green flame was observed when a flame test was performed on a white solid. Adding a small amount of the white solid to 2.0M HCl solution produced bubbles of a colourless gas.

From these results it is possible to conclude that the unknown solution contained:

- (A) nickel and chloride ions.
- (B) copper and sulfate ions.
- (C) barium and carbonate ions.
- (D) copper and carbonate ions.
- 8 The pH of a sulfuric acid solution is measured at 2.0 by a pH meter.

Which of the following alternatives shows the correct concentrations of hydrogen and sulfate ions in this solution?

	Concentration of hydrogen ions in solution (M)	Concentration of sulfate ions in solution (M)
A	1.0 x 10 ⁻¹	2.0×10^{-1}
В	1.0 x 10 ⁻²	2.0×10^{-2}
С	1.0 x 10 ⁻¹	5.0 x 10 ⁻²
D	1.0×10^{-2}	5.0 x 10 ⁻³

A group of 5 students collected a large bottle of water from a river. Each student evaporated a 100 mL aliquot of the river water to determine the total solids per 100 mL. Their results are tabulated below.

Student number	Mass in grams per 100 mL
1	0.696
2	0.701
3	0.705
4	0.598
5	0.698

The students needed to calculate an average mass/100 mL to determine the total solids in the river. Which value should the students use?

- (A) 0.6796
- (B) 0.680
- (C) 0.700
- (D) 0.7
- 10 The table below shows the solubility of carbon dioxide in water at various temperatures.

Temperature (°C)	Solubility (g of CO ₂ per 100 g water)
0	0.320
10	0.220
20	0.170
30	0.130
40	0.095

Use Le Chatelier's Principle and the data in the table to determine which is the correct statement.

- (A) $CO_2(g) \rightleftharpoons CO_2(aq)$ is endothermic
- (B) $CO_2(g) \rightleftharpoons CO_2(aq)$ is exothermic
- (C) $CO_2(g) \rightarrow CO_2(aq)$ is endothermic
- (D) $CO_2(aq) \rightarrow CO_2(g)$ is endothermic

- 11 Identify the CORRECT statement about the isomers of C₂F₃Cl₃.
 - (A) There are three isomers: 1,1,1-trichloro-2,2,2-trifluoroethane, 1,2,2-trichloro-1,1,2-trifluoroethane and 1,1,2-trichloro-1,2,2-trifluoroethane.
 - (B) There are two isomers: 1,1,1-trichloro-2,2,2-trifluoroethane, and 1,1,2-trichloro-1,2,2-trifluoroethane.
 - (C) There are two isomers: 1,1,1-trifluoro-2,2,2-trichloroethane, and 1,1,2-trifluoro-1,2,2-trichloroethane.
 - (D) There are three isomers: 1,1,1-trifluoro-2,2,2-trichloroethane, 1,2,2-trifluoro-1,1,2-trichloroethane and 1,1,2-trifluoro-1,2,2-trichloroethane.
- Which of the following lists contains substances which are in order of increasing boiling points?
 - (A) ethanol, ethene, ethane
 - (B) methanol, ethane, propanol
 - (C) propanol, ethanol, methanol
 - (D) methane, methanol, methanoic acid
- 13 Consider the structural formula shown below.

HFC-134a, CH₂FCF₃

Which of the following is the systematic name for this compound?

- (A) 1,1,2-trifluoromethane.
- (B) 1,1,2-trifluoroethane.
- (C) 1,1,1,2-tetrafluoromethane.
- (D) 1,1,1,2-tetrafluoroethane.

14 The graphs below show the fraction of ammonia present at equilibrium when nitrogen and hydrogen react under varying conditions of temperature and pressure.

Use the information from the graphs above to identify the conditions of temperature and pressure which would give the highest yield of ammonia.

- (A) 600°C and 1000atm.
- (B) 200°C and 150atm.
- (C) 600°C and 150atm.
- (D) 200°C and 1000atm.
- 15 Incomplete combustion of petrol may result in the production of undesirable pollutants.

Two such pollutants produced from the incomplete combustion of petrol are:

- (A) carbon and carbon monoxide.
- (B) carbon and carbon dioxide.
- (C) carbon dioxide and water.
- (D) nitrogen oxides and carbon monoxide.

A schematic diagram representing the processes used at a small sewage treatment plant is shown below.

Two water samples from this sewage plant were tested for the biochemical demand (BOD). The following results were obtained:

Water sample	$BOD \ (mg \ L^{-1})$
1	1.2
2	2500

These results indicate that:

- (A) sample 1 is treated sewage while sample 2 is raw sewage.
- (B) both samples were taken from the primary treatment plant.
- (C) sample 2 has more than 2000 times the dissolved oxygen of sample 1.
- (D) both samples were taken from the secondary treatment plant.
- 17 The onset of eutrophication of a river system can be predicted by high levels of:
 - (A) dead and decaying plants and animals.
 - (B) BOD readings.
 - (C) nutrients, especially phosphate and nitrate ions.
 - (D) turbidity.

18 The decomposition of dinitrogen tetroxide (N_2O_4) is represented by the following equilibrium equation:

$$N_2O_4(g) \iff 2NO_2(g)$$
 $\Delta H = 58 \text{ kJ mol}^{-1}$

The graph below shows this equilibrium system undergoing a disturbance and shifting to reestablish a new equilibrium.

The disturbance shown in the above graph was caused by

- (A) a decrease in pressure.
- (B) an increase in temperature.
- (C) the addition of some NO₂ gas.
- (D) the removal of some NO₂ gas.
- Modern refrigerators no longer contain CFCs. A suitable non-CFC refrigerant which does not cause ANY destruction of ozone in the stratosphere is
 - (A) tetrafluoromethane.
 - (B) 1-chloro-1-fluoroethane.
 - (C) trichlorofluoromethane.
 - (D) 1,1,2,2-tetrachloro-1-fluoroethane.

A chemist analysed a sample of soil for lead contamination. A 10.0 g sample of soil was treated with a mixture of nitric and hydrochloric acids to dissolve all the lead in the soil sample. The resulting solution was diluted to 1.00 L and the concentration of lead was determined using AAS. The absorbance of a series of lead standard solutions was measured and the results plotted to give the graph below.

The absorbance of the 1.00 L soil sample was found to be 0.200. The concentration, in ppm, of lead in the soil sample is:

- (A) 0.130
- (B) 13.0
- (C) 130
- (D) 300

Chemistry				<u> </u>				
one mistry					Stud	lent	Nun	nber
Part B – 35 marks Attempt Questions 21-27 Allow about 65 minutes for this part								
Answer the questions in the spaces provided. Show all relevant working in questions involving calculation	ıs.	<u> </u>						
Question 21 (3 marks)								
A student was provided with two colourless solutions, each labelled X and Y. They were informed that one solution wa acid, the other 0.10M ethanoic acid.		-						
The student performed two tests on the solutions:								
Test 1: The pH was determined by inserting a pH probe int	o each	solu	tion.					
Test 2: The volume of 0.10M sodium hydroxide solution reach end-point with the acids was determined with			ndica	ator.				
Compare the effectiveness of the two tests in determining to Justify your answer.	he idei	ntity (of ea	ch a	cid.			4
		•••••	•••••	•••••	•••••			
		••••••	•••••	•••••	•••••	••••		
	•••••	• • • • • • • •	•••••	•••••	•••••			
	•••••	••••••	•••••	•••••	•••••	••••		
	•••••	• • • • • • •	•••••	•••••	•••••	••••		

1

(4 marks) **Question 22**

The daily recommended intake for Vitamin C (ascorbic acid) is 60 mg.

The label on a brand of orange juice claims the juice contains over half the daily requirement of Vitamin C (ascorbic acid) in every 100 mL of the juice.

The concentration of ascorbic acid in juice can be determined by titration method. A sample of juice is titrated against a standard solution of iodine using starch as an indicator.

The following reaction takes place as the iodine is added to the juice sample:

$$C_6H_8O_6 (aq) + I_2 (aq) \rightarrow 2I^-(aq) + C_6H_6O_6 (aq) + 2H^+(aq)$$

The starch remains colourless as the iodine is added until all of the ascorbic acid present has reacted with the iodine. As soon as any excess iodine is present, a blueblack colour is observed, as the starch reacts with the iodine. This is the end-point of the titration.

In an experiment to determine the vitamin C content in the above juice, a 25.0 mL sample of juice was added to a conical flask, along with 5 drops of starch solution. This sample was titrated with 5.00 x 10⁻³ mol/L iodine solution. An average of 9.15 mL of iodine was needed to reach end-point.

(a)	Identify the piece of glassware which would be used to accurately deliver 25mL of orange juice into conical flask.	1
(b)	Calculate the mass (in mg) of ascorbic acid present in the 25 mL sample of orange juice. Show your working	2
(c)	Determine if the claim made on the label of the juice is valid. Show your working.	1

Question 23 (4 marks)

The sleepy little town of Snug has a river flowing through it, which begins in the nearby mountains and discharges into an ocean bay. The town has a poor quality sewage treatment plant, and a large area of agricultural land.

The following data were collected at various places along the river.

Site	Dissolved O ₂ (ppm)	BOD (ppm)	рН	[NO ₃ ·] (ppm)	[Cl ⁻] (ppm)
A	9	1	6.9	0.1	50
В	8	2	6.8	3.3	62
С	3	16	5.2	3.8	10,000

(a)	Identify the site closest to the source of the river, justifying your answer.	2
(b)	Justify the locals' decision not to swim in the bay near the mouth of the river.	2

Question 24 (5 marks)

Ammonia production has remained one of the most important processes since its industrialization in 1913.

explain how the conditions used in the process maximize rate and yield, and assess the importance of the catalyst.

Ques	stion 25 (6 marks)	Mark
Lea	d is regarded as a heavy metal. The levels of lead in soil and water supplies d to be monitored as lead has been found to be detrimental to health.	
(a)	Describe how lead ions in a sample can be identified in a laboratory using precipitation reactions. Write equations for the reactions you describe.	3
(b)	Assess the effectiveness of atomic absorption spectroscopy (AAS) and precipitation reactions as methods for detection of lead ions in water or soil samples.	3
	••••••	

Quest	ion 26 (7 marks)	Marks
	ident prepared an ester by heating methanol and propanoic acid, using concentrated ric acid as a catalyst under reflux.	
(a)	Name the ester formed.	1
	······································	
(b)	Draw an expanded structural formula for this ester.	1
(c)	Draw the structure of an acid which is an isomer of the ester you have drawn in part (b) above.	n 1
(d)	Justify TWO reasons for the use of heating under reflux during this experiment.	2

Question 26 continues on the next page

Question 26 (continued)

(e)	Explain why the boiling point of an ester is lower than the boiling points of acids or alcohols of similar molar mass.	2

Question 27 (6 marks)

Marks

A student was interested in confirming the sulfate content of a lawn-food, so he carried out the following investigation.

- 1. Weigh a 250 mL beaker.
- 2. Add two spatulas of lawn-food and reweigh the beaker with lawn-food.
- 3. Add 100 mL of 0.1M HCl and stir the mixture.
- 4. Add 50 mL of saturated BaCl₂(aq).
- 5. Filter to obtain the precipitate using a pre-weighed filter paper.
- 6. Wash the precipitate and dry for 10 minutes.
- 7. Reweigh the filter paper and precipitate.

He also recorded the following observations and results during the experiment.

- The lawn-food appeared to be an uneven, grey colour.
- Even though I stirred the lawn-food with the acid for a few minutes, not all of it dissolved.
- When I added the BaCl₂ solution, a dense, white precipitate formed suddenly.
- My teacher told me to expect the filtration not to work very well, but none of the solid went through my filter paper into the filtrate.

Results:

- Mass of beaker: 305.5 g
- Mass of beaker and lawn-food: 306.9 g
- Mass of filter paper: 0.105 g
- Mass of filter paper + precipitate: 1.425 g.

(a)	Write the net ionic equation for the reaction that occurred when the BaCl ₂ was added to the beaker.	2
(b)	Calculate the percentage of sulfate in the lawn-food.	2
(c)	The value quoted on the label for the % of sulfate was 25%. Based on the	
	student's method, identify two reasons why he did not obtain this result.	2

Section II

12 marks

Attempt Question 28

Allow about 20 minutes for this section

Answer question 28 in a writing booklet. Extra writing booklets are available. Show all relevant working in questions involving calculations

Marks **Question 28 – Industrial Chemistry** (12 marks) Write an appropriate equation and describe what you observed for a reaction (a) carried out in the laboratory to show sulfuric acid acting as: a dehydrating agent (i) 2 (ii) an oxidising agent 2 The industrial production of nitric acid involves several equilibrium steps. (b) (i) One step in the production of nitric acid involves the reaction of nitrogen 2 monoxide with oxygen, according to the equation: $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ This reaction is exothermic. Describe TWO methods which could be used to increase the yield of nitrogen dioxide. A 10 L reaction flask initially contained 2.5 mol NO and 1.2 mol O₂. (ii) 3 After equilibrium was established, there was only 0.5 mol NO. Calculate the equilibrium constant for the reaction. Show all relevant working. (c) Raw materials used in the production of sulfuric acid include sulfur and ores of sulfur. Describe the PHYSICAL processes used in the Frasch process and relate (i) 2 these physical processes to physical properties of sulfur. (ii)Outline ONE possible environmental issue associated with the extraction of sulfur by the Frasch process. 1

End of Paper

CHEMISTRY - MULTIPLE-CHOICE ANSWER SHEET

ATTEMPT ALL QUESTIONS

Question	1	$A \bigcirc$	$B \bigcirc$	$_{\rm C}$	$D \bigcirc$
	2	$A \bigcirc$	$B \bigcirc$	С	D O
	3	$A \bigcirc$	$B \bigcirc$	c	D 🔾
	4	A 🔾	В	c	D 🔾
	5	$A \bigcirc$	$B \bigcirc$	$c \bigcirc$	D 🔾
	6	$A \bigcirc$	В	$c \bigcirc$	D 🔾
	7	$A \bigcirc$	В	C O	D 🔾
	8	A 🔾	В	c	D 🔾
	9	$A \bigcirc$	В	$c \bigcirc$	D 🔾
	10	$A \bigcirc$	В	$C \bigcirc $	D 🔾
	11	A 🔾	В	c 🔾	$D \bigcirc$
	12	$_{\rm A}$ \bigcirc	$B \bigcirc$	c	O
	13	$A \bigcirc$	$B \bigcirc$	С	D 🔾
	14	$A \bigcirc$	$B \bigcirc$	c \bigcirc	$D \bigcirc$
	15	$A \bigcirc$	$B \bigcirc$	$c \bigcirc$	D 🔾
	16	$_{\rm A}$ \bigcirc	$B \bigcirc$	$_{\rm C}$ \bigcirc	$D \bigcirc$
	17	$A \bigcirc$	$B\bigcirc$	c	D
	18	$A \bigcirc$	$B \bigcirc$	c	D 🔾
	19	$A \bigcirc$	В	c 🔾	D
	20	A O	В	$c \bigcirc$	$D \bigcirc$

BLANK PAGE

DATA SHEET

Avogadro constant, N _A		$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at 10		
at	: 0°С (273.15 K)	22.71 L
at	25°C (298.15 K)	24.79 L
Ionisation constant for water at 25	5°С (298.15 К), К _ж	1.0×10^{-14}
Specific heat capacity of water		$4.18 \times 10^3 \mathrm{J kg^{-1} K^{-1}}$
Se	ome useful formulae	

$$pH = -\log_{10}[H^+] \qquad \qquad \Delta H = -m\,C\,\Delta T$$

Some standard potentials

23444240 154		i i po boli osta	
$K^{+} + e^{-}$	<	K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	quit.	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	4-7	Ca(s)	-2.87 V
$Na^+ + e^-$	weight.	Na(s)	-2.71 V
$Mg^{2+} + 2e^{-}$	~	Mg(s)	-2.36 V
$Al^{3+} + 3e^{-}$	47	Al(s)	-1.68 V
$Mn^{2+} + 2e^-$	~	Mn(s)	-1.18 V
H ₂ O + e ⁻	₩	$\frac{1}{2}$ H ₂ (g) + OH ⁻	-0.83 V
$Zn^{2+} + 2e^-$	~	Zn(s)	$-0.76\mathrm{V}$
$Fe^{2+} + 2e^{-}$	47	Fe(s)	$-0.44\mathrm{V}$
$Ni^{2+} + 2e^-$	₹**	Ni(s)	-0.24 V
$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-}$	~	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	· ·	Pb(s)	-0.13 V
H++e-	_	$\frac{1}{2}H_2(g)$	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	rieng.	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	~	Cu(s)	0.34 V
$\frac{1}{2}O_2(g) + H_2O + 2e^-$	desc.	20H-	0.40 V
Cu ⁺ + e ⁻	~	Cu(s)	0.52 V
$\frac{1}{2}$ I ₂ (s) + e ⁻	desgr	I_	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	=	I ⁻	0.62 V
Fe ³⁺ + e ⁻	No. of Contract of	Fe ²⁺	0.77 V
$Ag^+ + e^-$	<_	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^{-}$	design.	Br ⁻	1.08 V
$\frac{1}{2}\mathrm{Br}_2(aq) + \mathrm{e}^-$	4.7	Br ⁻	1.10 V
$\frac{1}{2}O_2(g) + 2H^+ + 2e^-$	~*	H_2O	1.23 V
$\frac{1}{2}\text{Cl}_2(g) + e^-$	~_ 2	CIT	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	43	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\text{Cl}_2(aq) + e^-$	~~	Cr	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	47	${\rm Mn}^{2+} + 4{\rm H}_2{\rm O}$	1.51 V
$\frac{1}{2}F_2(g) + e^{-}$	-	F-	2.89 V

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

-		, <u>.</u>											
	He + 1003	0 × 20	30	× ×	30.95 Argen	83	08.58 mal/ca	žž	131.3 Xenen	86 Po	[2220]		
-		9 F 10	Рымпе	⊏ਹ	35.45 Chiodine	×ĕ	79.90 Smelle	æ-	126.9 Estate	% ₹	[210.0] Allin		
		°C 90	Cripere	9 S	72,07 refer	# 8	78.96 Set-minas	S/B	127.6 Tellentern	# E	[209.0] Potentian		
		r-z s	Mingen	210	30,97 Phospharus	33 As	74.92 Annek	58	121.8 Automony	23	2000		The second line of the second li
		90°E	Control	크ਲ	28.09 alexa	ଅଞ	72.64 Generalina	22	118.7	28 £	, , , ,		
		2 B 0	Boros	E TY	26.98 Alement	구경	25.72 canta	\$5	14.8 Dadius	≅ F	204.4 Tallian		
2) •	C		l		85	€.4 ¥.4	⇔ 2	112.4 Cadmien	œ. 1	200.6		-
TAINE IN		ŧ				වුයි	63.55	48	107.9	2.4	0. a	3 25	Economical and a second
H. THIE		Symbol et elemes	Name of ricesent			≋Z	28.65 W EE	\$2.	105.4 Paradem	≈ 5	195.1 Patimen	285	Dicardedin
RIE OF	A A A	05 A 20	Dago			⊼ වේ	58.93 Com	杂氢	102.9 Rhodem	11	192.2 #188m	85 ≅ §	
PERIODIC TARLE	Š	Atomic Number Atomic Weight	ı	•		ar	55.85	¥₽	101.1	2.5	150.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00	89 E E	Flassinn
DERIO		# R				អន្ត	K.Z.	£3.	[97.91]	75	186.2 Benton	5 a 5	Babrina
						ಸರ	52.00	\$\$	95.94 Maryindanas	43	183.8 Magara	8.85	Seabogium
						ะเ>	50.94 Wandian	∓£	92.91 Nichtur	E.	180.9	<u>e</u> 8§	Euthelms
						a⊨	47.87 Tauman	84	91,22 Zironian	23	178.5 Hattien	27.2	Ditherfeeding
						ភូន	Kapallules	8>	88.91 Yuram	57-71	Lathanolds	1	Actionics
		4 % S	Perylling	¥27	74.31 Market	8ರೆ	90.04	26.59	87.62 President	沒	137.3	8 Z Z	Reduin
	1.008	و د	Lithian	=2	27.8 8.8 1	274	30 CC	33	85.47 Wellsen	86	132.9	2 2 2 2 3 2 3	Handenn Handenn
- 1	<u> </u>	1		E		1						<u> </u>	

-								-					THE REAL PROPERTY AND ADDRESS OF THE PERSONS ASSESSMENT OF THE PERSONS	The state of the s
57	85	Si		9	3	. 69	Z	\$3	99	63	Z	3	70	=
-	ð	À.		Pm	S	ā	3	_	á	H	ŭ	Ē	\$	1
138.0	1071	140,0	4	<u> </u>	8	152.0	157.3	2	162.5	3	167.3	68.0	C	175.0
Landbanusa	C C	Percentimento		Prome Dans	Samerium	Encomplia	Cactolistem	Destalling.	Cysprestum	Hadanism	Bribliam	Thulbern	Y therthous	Lubetura
No. of the last of	- Annual Control of the Control of t			The second secon		Additional and the second seco		and account of the state of the						
Actinoids														
8	96	16	92	8	J	ક	96	S	8	8	8	©	8	9
3	F	æ	=	ź	Z	Am	5	Ä	ט	E	H	Z	2	ב
100	3320	231.0	238.0		7	[243]	[4	2	[3]	5	[257]	9	[250]	<u>7</u>
EB	Thechan	Psecacinalman	Chanton	Maptingen	Pluksium	Asserticans	Outline	Bedelins	Cultionstun	Ensteinan	Formelun	Mendelerum	Nother Learn	Lawrencium

For elements that have no stable or long-lived auclides, the mass number of the medide with the longest confirmed half-life is listed between square brackets.
The International Union of Pure and Applied Chemistry Periodic Table of the Elements (Oxtober 2005 version) is the principal source of data. Some data may have been modified.