

Chemistry Assessment

Task 2 Term 12008

Acidic Environment \& Chemical Monitoring

General Instructions

- Reading time - 5 minutes
- Working time - 50 minutes
- Write using black or blue pen
- Write your Student Number at the top of this page and on the response sheets on pages 5 and 6
- Board-approved calculators may be used

A data sheet and a periodic table are provided at the back of the paper.

Student Number	
Mark /	

Theory

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample:
$2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
$\mathrm{A} O$
B
C 0
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A A
B
CD \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.
A

correct
C

b) \square

- Mark your answers for Questions 1-7 in the multiple choice grid on page 5

1. Which of the following $0.1 \mathrm{~mol} \mathrm{~L}^{-1}$ solutions has a pH greater than 7 at $25^{\circ} \mathrm{C}$?
(A) Ammonium chloride
(B) Ammonium nitrate
(C) Sodium fluoride
(D) Sodium acetate
2. Which of the following is a conjugate acid/base pair?
(A) $\mathrm{PO}_{4}{ }^{3-} / \mathrm{H}_{2} \mathrm{PO}_{4}$
(B) $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{OH}^{-}$
(C) $\quad \mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}$
(D) $\quad \mathrm{HPO}_{4}{ }^{2-} / \mathrm{H}_{3} \mathrm{PO}_{4}$
3. What is produced when an acidic oxide and a base react?
(A) carbon dioxide and water
(B) hydrogen and a salt
(C) water and a basic oxide
(D) water and a salt
4. Which equation best shows the formation of acid rain?
(A.) $\quad \mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})$
(B) $\mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
(C) $\quad 2 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \quad \mathrm{HNO}_{3}(a q)+\mathrm{HNO}_{2}(a q)$
(D) $\quad \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}(g)$
5. What is the maximum volume of nitrogen (IV) oxide that could be produced when 1 litre of nitrogen (II) oxide and 1 litre of oxygen are reacted?
(A) 0.5 L
(B) 1.0 L
(C) 1.5 L
(D) $\quad 24.79 \mathrm{~L}$
6. The chemical formula of a flavouring agent compound used to give an orange odour is shown.

What is the IUPAC name of this compound?
(A) ethyl octanoate
(B) octyl ethanoate
(C) 2-ethyl octanoate
(D) propyl hexanoate
7. A student's refluxing apparatus used in esterification is shown.

What is incorrect about the student's refluxing apparatus?
(A) Water enters the condenser at the base.
(B) Using a round-bottomed flask as the reaction vessel.
(C) The use of a hot plate
(D) Inserting a stopper at the top of the condenser.

1.	A O	B O	C O	D O
2.	A O	B O	C O	D O
3.	A O	B O	C O	D O
4.	A O	B O	C O	D O
5.	A O	B O	C O	D O
6.	A O	B O	C O	D O
7.	A O	B O	C O	D O

Student Number

Part B. 34 marks
Attempt Questions 8-15
Allow about 45 minutes for this part

- Show all relevant working in questions involving calculations.

Question 8 (4 marks) MARKS
Antacids are used to combat indigestion by neutralizing excess acid in the stomach.
(a) Write a chemical equation for the reaction between the antacid, magnesium hydroxide and stomach acid, hydrochloric acid.
(b) Stomach acid has a pH of 2 .

Calculate the mass of antacid, magnesium hydroxide, required to neutralize 20 mL of stomach acid.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The diagram shows 3 beakers containing acids.

0.01 M
hydrochloric acid

0.01 M sulfuric acid
(a) Explain the difference in pH between the three acids in the diagram.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Calculate the pH after 20 mL of $0.01 \mathrm{~mol} \mathrm{~L}^{-1}$ hydrochloric acid is diluted with 180 mL of water.
\qquad
\qquad
\qquad
\qquad

Question 10 (6 marks)

Different theories of acid and bases were developed by Lavoisier, Davy, Arrhenius and Bronsted-Lowry. Sulfuric acid was classified as an acid by all of these scientists.

Explain how each of their theories predict that sulfuric acid is an acid. Support your answer by using equations where appropriate.
\qquad

Question 11 (3 marks)
The hydrogen carbonate ion can act as both an acid and a base, and, with carbonic acid, forms a buffer pair.
(a) What name is given to a substance that can donate a proton or accept a proton?
(b) Describe the effect of a specific buffer in a natural system.

Question 12 (3 marks)

Write balanced chemical equations to show the difference in products when heptane gas is combusted in:
(a) (i) excess oxygen and
(ii) limited oxygen.
(b) Which reaction would require the more careful monitoring? Give a reason for your answer
(a) (i) \qquad
(ii). \qquad
(b). \qquad
\qquad

Question 13 (5 marks)
A student carried out an experiment to decarbonate a 300 mL bottle of soft drink. He opened the bottle and noticed the bubbles of carbon dioxide escaping from the soft drink.
(a) Explain these observations using an equation in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The student measured the mass of the bottle of soft drink before and after decarbonation and found the mass to have decreased by 1.25 g . Assume that all carbon dioxide has been removed from the bottle.

What volume of carbon dioxide (at $25^{\circ} \mathrm{C}$ and 100 kPa) would be required to carbonate 1 L bottle of soft drink? Show all working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 14 (5 marks)
(a) Using IUPAC nomenclature, give the name of the ester formed from the reaction between 1-propanol and ethanoic acid.
(b) Using structural formulae write a balanced equation to describe the reaction between 1-propanol and ethanoic acid.
\qquad
(c) State the purpose of including a small quantity of acid in the reaction vessel in order to prepare the ester.
(d) Describe the purpose of refluxing in esterification. 2
\qquad
\qquad
\qquad
\qquad

Question 15 (3marks)
The boiling points of some alkanoic acids and their equivalent alkanols are presented in the table.

Compound	Boiling point ${ }^{(}{ }^{\boldsymbol{C}}$)
Butanoic acid	163
Pentanoic acid	186
Hexanoic acid	206
1-butanol	118
1-pentanol	138
1-hexanol	157

Explain the differences between the boiling points of alkanoic acids and their equivalent alkanols.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad End of Test

Chemistry Assessment

Task 2 Term 12008

Acidic Environment

\& Chemical Monitoring

General Instructions

- Reading time - 5 minutes
- Working time - 50 minutes
- Write using black or blue pen
- Write your Student Number at the top of this page and on the response sheet on page 5
- Board-approved calculators may be used

A data sheet and a periodic table are provided at the back of the paper.

Theory

ANSWERS

Marking Guiddines

Total Marks - 41

Part A - 7 marks - pages 3 - 4

- Attempt Questions 1-7
- Allow about 5 minutes for this part

Part B-34 marks - pages . 6-12

- Attempt Questions 8-15
- Allow about $\mathbf{4 5}$ minutes for this part

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample:
$2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
$\mathrm{A} O$
B
C 0
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A A
B
CD 0

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.
A

b \square

- Mark your answers for Questions 1-7 in the multiple choice grid on page 5

1. Which of the following $0.1 \mathrm{~mol} \mathrm{~L}^{-1}$ solutions has a pH greater than 7 at $25^{\circ} \mathrm{C}$?
(A) Ammonium chloride
(B) Ammonium nitrate
(C) Sodium fluoride
(D) Sodium acetate

Outcome: H8
2. Which of the following is a conjugate acid/base pair?
(A) $\mathrm{PO}_{4}{ }^{3-} / \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
(B) $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{OH}^{-}$
(C) $\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}$
(D) $\mathrm{HPO}_{4}{ }^{2-} / \mathrm{H}_{3} \mathrm{PO}_{4}$

Outcome: H8
3. What is produced when an acidic oxide and a base react?
(A) carbon dioxide and water
(B) hydrogen and a salt
(C) water and a basic oxide
(D) water and a salt

Outcome: H8
4. Which equation best shows the formation of acid rain?
(A.) $\quad \mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})$
(B) $\mathrm{C}\left(s_{)}+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)\right.$
(C) $\quad 2 \mathrm{NO}_{2}(g)+\mathbf{H}_{2} \mathrm{O}(l) \quad \rightarrow \quad \mathrm{HNO}_{3}(a q)+\mathrm{HNO}_{2}(a q)$
(D) $\quad \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}(g)$

Outcome: H4

5. What is the maximum volume of nitrogen (IV) oxide that could be produced when one litre of nitrogen (II) oxide and 1 litre of oxygen are reacted?
(A) 0.5 L
(B) $\quad 1.0 \mathrm{~L}$
(C) 1.5 L
(D) $\quad 24.79 \mathrm{~L}$

Outcome: H10

6. The chemical formula of a flavouring agent compound used to give an orange odour is shown.

What is the IUPAC name of this compound?
(A) ethyl octanoate
(B) octyl ethanoate
(C) 2-ethyl octanoate
(D) propyl hexanoate
7. A student's refluxing apparatus used in esterification is shown.

What is incorrect about the student's refluxing apparatus?
(A) Water enters the condenser at the base.
(B) Using a round - bottomed flask as the reaction vessel.
(C) The use of a hot plate
(D) Inserting a stopper at the top of the condenser.

Outcome: H12

1.	A O	B O	C O	D
2.	A O	B O	C •	D O
3.	A O	B O	C O	D •
4.	A O	B O	C •	D O
5.	A O	B •	C O	D O
6.	A O	B •	C O	D O
7.	A O	B O	C O	D •

Part B. 34 marks
Attempt Questions 8-15
Allow about 45 minutes for this part

- Show all relevant working in questions involving calculations.

Question 8 (4 marks) MARKS
Antacids are used to combat indigestion by neutralizing excess acid in the stomach.
(a) Write a chemical equation for the reaction between the antacid, magnesium hydroxide and stomach acid, hydrochloric acid.

Sample Answer:
$\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad$ (1 mark no subscripts req'd)
Outcome: H10
(b) Stomach acid has a pH of 2 .

Calculate the mass of antacid, magnesium hydroxide, required to neutralize 20 mL of stomach acid.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sample Answer:

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =10^{-2} \\
\mathrm{~mol} \mathrm{HCl} & =10^{-2} \times \times \mathrm{V} \\
& =10^{-2} \times 0.02 \mathrm{~L} \\
& =2 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$

$\operatorname{mol~} \mathrm{Mg}(\mathrm{OH})_{2}=1 / 2 \mathrm{~mol} \mathrm{HCl}$

$$
=1 \times 10^{-4} \mathrm{~mol}
$$

$$
\text { mass } \begin{aligned}
\operatorname{Mg}(O H)_{2} & =\operatorname{mol} \times f w \\
& =1 \times 10^{-4} \times(24.3+2(1+16)) \\
& =5.83 \times 10^{-3} g
\end{aligned}
$$

Marking criteria	Marks
- Correct answer with relevant working	3
- 2 of the responses below (excluding the first)	2
- correct answer with no working shown or - mass calculated from incorrect moles or - recognizes stoichiometric relationship 1:2 - calculates mol HCl or - calculates $\left[H^{+}\right]$	1

Outcomes H10

Question 9 (5 marks)

The diagram shows 3 beakers containing acids.

0.01 M
hydrochloric acid

0.01 M sulfuric acid
(a) Explain the difference in pH between the three acids in the diagram.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sample Answer

The pH of an acid solution is determined by the degree of ionization of the acid and also by the number of protons in the acid.

Citric acid is a weak acid which only partially ionizes in water. The fewer H^{+}produce a higher $p H$.

HCl is a strong acid which completely ionizes in water. All the molecules ionize to produce H^{+} and therefore the pH is lower than the same concentration of citric acid.
$\mathrm{H}_{2} \mathrm{SO}_{4}$ is a diprotic strong acid. Its ionization can produce two H^{+}and therefore it has a lower pH than the same concentration of HCl which is monoprotic.

Marking criteria	Marks
- Explains the difference in pH between the three acids	3
-Explains the difference in pH between two of the acids - Identifies citric acid as a weak acid and HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ as strong acids AND links ionization to pH for any of the three acids.	2
- Identifies citric acid as a weak acid and HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ as strong acids or - Links ionization to pH for any of the three acids	1

Outcomes H6, H8

(b) Calculate the pH after 20 mL of $0.01 \mathrm{~mol} \mathrm{~L}^{-1}$ hydrochloric acid is diluted with 180 mL of water.
\qquad
\qquad
\qquad
\qquad

Sample Answer:

$$
\begin{aligned}
c 1 v 1 & =c 2 v 2 \\
0.01 \times 0.02 & =c 2 \times 0.2 \\
c 2 & =1 \times 10^{-3} \\
p H & =-\log \left[H^{+}\right] \\
& =-\log 1 \times 10^{-3} \\
& =3.0
\end{aligned}
$$

Question 10 (6 marks)
Different theories of acid and bases were developed by Lavoisier, Davy, Arrhenius and Bronsted-Lowry. Sulfuric acid was classified as an acid by all of these scientists.

Explain how each of their theories predict that sulfuric acid is an acid. Support your answer by using equations where appropriate.
\qquad

Sample answer

Lavoisier proposed that acids contained oxygen, and $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains oxygen.
Davy suggested that acids were substances that contained replaceable hydrogen. When acid reacted with metals they replaced hydrogen with the metal to form a metal salt. $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains hydrogen.
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Mg} \rightarrow \mathrm{H}_{2}+\mathrm{Mg} \mathrm{SO}_{4}$
Arrhenius proposed that an acid was a substance that ionized in water to produce hydrogen ions.
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-}$
The chemists Bronsted and Lowry proposed that acids were proton donors and bases were proton acceptors. $\mathrm{H}_{2} \mathrm{SO}_{4}$ donates a proton. (see equation)

Marking criteria	Marks
- Links each proposed theory to $\mathrm{H}_{2} \mathrm{SO}_{4}$ and uses at least two relevant equations.	6
- Links each proposed theory to $\mathrm{H}_{2} \mathrm{SO}_{4}$ and uses only one relevant equation.	5
- Links each proposed theory to $\mathrm{H}_{2} \mathrm{SO}_{4}$ or - Links three theories and one equation	4
- Links two theories to $\mathrm{H}_{2} \mathrm{SO}_{4}$ with one equation - Links three theories to $\mathrm{H}_{2} \mathrm{SO}_{4}$	3
- Explains one theory with an equation - Identifies two theories	2
- Identifies any of the four theories of acids - Gives one relevant equation - Identifies $\mathrm{H}_{2} \mathrm{SO}_{4}$ as a proton donor	1

Outcomes : H1,H2

Question 11 (3 marks)
The hydrogen carbonate ion can act as both an acid and a base, and, with carbonic acid, forms a buffer pair.
(a) What name is given to a substance that can donate a proton or accept a proton? (1 mark)
\qquad
ANS Amphiprotic (1 mark)
(b) Describe the effect of a specific buffer in a natural system. (2 marks)
\qquad
\qquad
\qquad
\qquad

Outcomes : H6

Conjugate pairs like $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$and $\mathrm{HPO}_{4}{ }^{2-}$ act as buffers in the blood. Buffers maintain a constant pH when small amounts of acids or bases are added. The acid part of the pair reacts with any base to remove it and the conjugate base reacts with any acid that is added.

Marking criteria	Marks
- Links the effects of a buffer with an example in a natural system.	2
- Identifies a buffer pair in a natural system or - Describes the effect of a buffer	1

Outcomes H4

Question 12 (3 marks)
Write balanced chemical equations to show the difference in products when heptane gas is combusted in:
(a) (i) excess oxygen and
(ii) limited oxygen.
(b) Which reaction would require the more careful monitoring? Give a reason for your answer
(1 mark)
(a) (i) \qquad
(ii). \qquad
(b) \qquad
\qquad
\qquad

Sample Answer:

(a) $(\mathrm{i}) \mathrm{C}_{7} \mathrm{H}_{16}(\mathrm{~g})+11 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 7 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(ii) $\mathrm{C}_{7} \mathrm{H}_{16}(\mathrm{~g})+15 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 7 \mathrm{CO}(\mathrm{g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(b) In (ii) the production of CO is very poisonous to human health as it reduces the oxygen carrying capacity of the blood.

Marking Guidelines:

Criteria	Marks
\bullet Writes correct equation for complete combustion \bullet Writes any correct equation for incomplete combustion \bullet Provides a reason for CO or C requiring careful monitoring	3
Any two of above	
Any one of above	2

Outcome: H9

Question 13 (5 marks)
A student carried out an experiment to decarbonate a 300 mL bottle of soft drink. He opened the bottle and noticed the bubbles of carbon dioxide escaping from the soft drink.
(a) Explain these observations using an equation in your answer. (3 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sample answer:

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})
$$

When the lid is removed the volume increases and pressure of carbon dioxide decreases. The equilibrium of the reaction above will be shifted to the left to counteract this change, and carbon dioxide will pass from the solution to the gas phase (and bubbles seen to rise to the surface)

Marking Guidelines

\(\left.\begin{array}{|l|l|}\hline Criteria \& Marks

\hline - Writes a relevant equation

- Explains the significance of opening the bottle in terms of disturbing the

equilibrium\end{array}\right) 3\)| - Uses the equation to explains the shift in equilibrium |
| :--- |

Outcome H13

(b) The student measured the mass of the bottle of soft drink before and after decarbonation and found the mass to have decreased by 1.25 g .. Assume that all carbon dioxide has been removed from the bottle.

What volume of carbon dioxide (at $25^{\circ} \mathrm{C}$ and 100 kPa) would be required to carbonate 1 L bottle of soft drink? Show all working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sample answer:

Number of moles of $\mathrm{CO}_{2}=1.25 / 44.01$
Volume in 300ml bottle $=1.25 / 44.01 \mathrm{X} 24.79 \mathrm{~L}$

$$
=0.704 \mathrm{~L}
$$

Volume for one litre $\quad=1.25 / 44.01 \times 24.79 \times 1000 / 300$

$$
=2.35 \mathrm{~L}
$$

Marking Guidelines

Criteria	Marks
\bullet Correct calculation of the number of litres for the 300 ml bottle to be carbonated. \bullet Correct calculation for a 1 litre bottle.	2
One of the above.	1

Question 14 (5 marks)
(a) Using IUPAC nomenclature, give the name of the ester formed from the reaction between 1-propanol and ethanoic acid.

ANS: propyl ethanoate (1)
(b) Using structural formulae write a balanced equation to describe the reaction between 1-propanol and ethanoic acid.
(1 mark)
\qquad

$$
\begin{equation*}
\text { ANS: } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

(c) State the purpose of including a small quantity of acid in the reaction vessel in order to prepare the ester.
(1 mark)
\qquad
ANS: Acid acts as a catalyst - increasing the rate of the esterification reaction. (1)
(d) Describe the purpose of refluxing in esterification. (2 marks)
\qquad
\qquad
\qquad
\qquad

ANS: Using heat increases the rate of the esterification reaction. (1) Refluxing prevents the escape of the volatile reactants and products. (1)

Outcome: H13

Question 15 (3marks)

The boiling points of some alkanoic acids and their equivalent alkanols are presented in the table.

Compound	Boiling point $\left({ }^{\circ} \mathbf{C}\right)$
Butanoic acid	163
Pentanoic acid	186
Hexanoic acid	206
1-butanol	118
1-pentanol	138
1-hexanol	157

Explain the differences between the boiling points of alkanoic acids and their equivalent alkanols.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outcomes: H12, H14

Sample Answer:

Alkanoic acids have greater boiling points than their equivalent alkanols for two reasons. Firstly, alkanoic acids are slightly bigger than their equivalent alkanols and thus contain more dispersion forces acting between adjacent alkanoic acid molecules. (1) Second, there are greater amounts of hydrogen bonding between alkanoic acid molecules compared with the hydrogen bonding between alkanol molecules. This is due to the alkanoic acid molecule having an extra oxygen atom in its functional group. (1)

Outcome criteria	Marks
Recognising that alkanoic acids have higher boiling points than the equivalent alkanols + alkanoic acids and alkanols have hydrogen bonding + alkanoic acids have more hydrogen bonding	3
Recognising that alkanoic acids have higher boiling points than the equivalent alkanols + alkanoic acids and alkanols have hydrogen bonding	2
Recognising that alkanoic acids have higher boiling points than the equivalent alkanols.	1

End of Test

