\qquad

2007

Mid Year Examination

HSC CHEMISTRY

Thursday 22 March, 9 - 11am

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Draw diagrams using pencil
- Board approved calculators may be used
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your student number at the top of every page.

Mr Hunter

Miss Dreesbeimdieke
Mr Weeding
44 students

Total marks - 65

Section I-45 marks
Part A (15 marks)

- Attempt Questions 1-15

Part B (30 marks)

- Attempt Questions 16-22

Section II - 20 marks

- Attempt Question 23

Student Number:

Blank Page
\qquad

Section 1

45 marks

Part A

Total marks 15
Attempt questions 1-15

Use the Multiple-choice Answer Sheet provided.
Answer the questions by selecting the alternative that best answers the question. Indicate your choice by filling in the appropriate place on the Answer sheet, as shown below, where \mathbf{A} has been selected as the best alternative,
A
B
$\mathrm{C} \bigcirc$
D

If you make a mistake, indicate your choice by labelling the correct alternative, as shown below where, the original choice \mathbf{A} was a mistake, and \mathbf{C} is now selected as being the correct answer.
A \varnothing
B \bigcirc
$\mathbf{C} \bigcirc^{\text {Correct }} \mathrm{D} \bigcirc$
\qquad

1. Consider the following reaction:
$\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{MnO}_{2(\mathrm{~s})} \rightarrow \mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Mn}_{2} \mathrm{O}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
What is the reductant in this reaction?
(A) $\mathrm{MnO}_{2(\mathrm{~s})}$
(B) $\quad \mathrm{Mn}_{2} \mathrm{O}_{3 \text { (s) }}$
(C) $\quad \mathrm{Zn}_{\text {(s) }}$
(D) $\mathrm{H}^{+}(\mathrm{aq})$
2. Identify the amphiprotic species.
(A) methanol
(B) water
(C) ammonium sulphate
(D) calcium carbonate
3. The pH values of four acids and their concentrations are shown in the table below.

Acid	Concentration $(\mathbf{m o l} / \mathbf{L})$	$\mathbf{p H}$
A	0.1	2.0
B	0.1	1.0
C	0.05	1.0
D	0.01	2.0

Which acid is diprotic?
(A) A
(B) B
(C) C
(D) D
4. Which group of substances below would produce a solution with a pH greater than 7 ?
(A) ammonia, sodium hydroxide, potassium carbonate
(B) carbon dioxide, sulphur dioxide, hydrogen iodide
(C) hydrogen chloride, ethanol, carbon dioxide
(D) sodium oxide, nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$, magnesium hydroxide
5. Two drops $(0.1 \mathrm{~mL})$ of $0.1 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ is added to a small beaker of each of the following solutions. In which beaker will the pH of the solution stay approximately constant?
(A) A solution of ethanol and ethanoic acid.
(B) A solution of ethanol and ethane.
(C) A solution of ethanoic acid and sodium ethanoate.
(D) An equimolar solution of ethanol and sodium ethanoate.
6. An unknown chemical was extracted from a soil sample and sent to a laboratory. The following result was achieved using indicators.

Indicator	Colour
Phenolphthalein	colourless
Methyl orange	red
Bromothymol blue	yellow

It can be assumed that the unknown chemical is:
(A) strongly acidic
(B) slightly acidic
(C) neutral
(D) slightly alkaline
7. Which curve below would represent the change in pH in a conical flask when a solution of sodium hydroxide (from a burette) is added to a solution of hydrochloric acid (in the conical flask)?
(A)

(B)

(C)

(D)

\qquad
8. Calculate the mass of carbon dioxide formed when 1.67 g of ethanol reacts with excess oxygen gas to ensure complete combustion.
(A) 0.80 g
(B) 1.59 g
(C) $\quad 3.19 \mathrm{~g}$
(D) $\quad 44.0 \mathrm{~g}$
9. Consider the following diagram.

Which of the following describes what happens to the concentrations of nickel ions, chlorine gas and chloride ions and the masses of the nickel and platinum electrodes as this galvanic cell operates under standard conditions.

	Concentration of $\boldsymbol{N i}^{2+}$	Concentration of $\boldsymbol{C l}_{\mathbf{2}}$	Concentration of $\boldsymbol{C l}^{-}$	Mass of Ni electrode	Mass of Pt electrode
(A)	decrease	no change	no change	increase	no change
(B)	increase	decrease	increase	decrease	no change
(C)	decrease	increase	increase	increase	decrease
(D)	increase	decrease	increase	decrease	increase

10. Which of the following substances would NOT be present in the reaction flask during the preparation of propyl ethanoate
(A) 1-propanol
(B) ethanoic acid
(C) propanoic acid
(D) concentrated sulphuric acid
\qquad
11. A student performs a titration between acetic acid and sodium hydroxide. The acid is delivered from the burette and the sodium hydroxide is in the conical flask.

Which of the following shows the best rinsing procedure that the student should follow?

	Pipette	Conical Flask	Burette
(A)	Rinsed with NaOH	Rinsed with distilled $\mathrm{H}_{2} \mathrm{O}$	Rinsed with $\mathrm{CH}_{3} \mathrm{COOH}$
(B)	Rinsed with distilled $\mathrm{H}_{2} \mathrm{O}$	Rinsed with NaOH	Rinsed with distilled $\mathrm{H}_{2} \mathrm{O}$
(C)	Rinsed with NaOH	Rinsed with distilled $\mathrm{H}_{2} \mathrm{O}$	Rinsed with distilled $\mathrm{H}_{2} \mathrm{O}$
(D)	Rinsed with distilled $\mathrm{H}_{2} \mathrm{O}$	Rinsed with NaOH	Rinsed with $\mathrm{CH}_{3} \mathrm{COOH}$

12. A student added 20 mL of $1 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ (aq) to 20 mL of $1 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH} \mathrm{(aq)} \mathrm{at}$ room temperature. The column graph that correctly compares the temperature of the solutions before they were reacted and once the reaction is complete is -

(B)

(D)

\qquad
13. Identify the entry in the table below that correctly identifies a Bronsted-Lowry acid base pair.

	Acid	Base
(A)	$\mathrm{H}_{2} \mathrm{~F}_{2}$	HF
(B)	$\mathrm{H}_{2} \mathrm{O}$	OH^{-}
(C)	HCO_{3}^{-}	$\mathrm{H}_{2} \mathrm{CO}_{3}$
(D)	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{OH}$

14. Heart pacemakers are often powered by lithium-silver chromate button cells. The overall reaction is:

$$
2 \mathrm{Li}_{(\mathrm{s})}+\mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{4(\mathrm{~s})} \leftrightarrow \mathrm{Li}_{2} \mathrm{Cr}_{2} \mathrm{O}_{4(\mathrm{~s})}+2 \mathrm{Ag}_{(\mathrm{s})}
$$

What is the anode this cell?
(A) Ag
(B) Li
(C) Ag^{+}
(D) $\quad \mathrm{Cr}_{2} \mathrm{O}_{4}{ }^{2-}$
15. During a first-hand investigation, a student recorded the following results:

Metal E displaces ions of metal F. Metal F displaces ions of both metals G and H. Both metals G and H displace ions of metal I.

Based on these results, which scenario below is correct if a galvanic cell was to be established?

	Anode	Cathode	Electron movement
(A)	G	H	$\mathrm{H} \rightarrow \mathrm{G}$
(B)	F	G	$\mathrm{F} \rightarrow \mathrm{G}$
(C)	E	I	$\mathrm{I} \rightarrow \mathrm{E}$
(D)	E	G	$\mathrm{G} \rightarrow \mathrm{E}$

\qquad

Section 1 (continued)

Part B-30 marks
Attempt Questions 16-22
Answer the questions in the spaces provided.
Show all relevant working in questions involving calculations.

Question 16 (5 marks)

You have performed a first-hand investigation in which you identified the pH of a range of salt solutions.
(a) Outline the procedure you used for your first-hand investigation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Predict the acidic, basic or neutral nature of ammonium nitrate and sodium ethanoate. Justify your prediction, including relevant equations in your answer.

Student Number:

Question 17 (4 marks)

Although the atmosphere naturally contains acidic oxides of nitrogen and sulphur, the levels of these oxides have been increasing since the industrial revolution.

Assess the evidence which indicates increases in atmospheric concentration of these oxides.

Student Number:

Question 18 (5 marks)
(a) In the space below, sketch a graph that demonstrates the difference in boiling points between alkanes, alkanoic acids and alkanols.
(b) Explain the trends in boiling points shown in the graph.
\qquad

Student Number:

Question 19 (5 marks)

(a) Many commercial products contain acids and esters. Using specific examples, outline the use of esters and acids found in products that can be purchased in the supermarket.
(b) Draw a diagram of the reflux apparatus used in the preparation of an ester in the laboratory.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Student Number:

\qquad

Question 20 (3 marks)

Wayne is a very poor surfer so he would rather collect shells at the beach and determine the percentage composition of calcium carbonate in the shells he finds.

He placed a clean dry shell which weighed 1.306 g in a small beaker. To this he added 10 mL of $5 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid to dissolve the shell completely. The HCl is in excess. The resulting solution was transferred into a volumetric flask and the volume was made up to 25 mL with distilled water. A 10 mL sample from this solution required 11.2 mL of $1 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$ for complete neutralisation.

Calculate the percentage of calcium carbonate in the shell.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Student Number:

\qquad

Question 21 (5 marks)

In order to produce a cell with a voltage between 1.1 V and 1.2 V , a student constructed a Galvanic Cell with copper and silver half cells using a potassium chloride salt bridge. The cell was set up under standard conditions.
(a) Draw a diagram of the Galvanic Cell the student constructed.
(b) Assess this students' experimental design.

Student Number:

\qquad

Question 22 (3 marks)
The diagram below can be used to compare the relative strengths of three different acids.

Use the information provided in the above diagram to describe the difference between a strong and a weak acid in terms of an equilibrium between the intact molecule and its ions.
\qquad

Section II

20 marks

Answer Question 23 below.

Answer the question in a writing booklet. Extra writing booklets are available. Show all relevant working in questions involving calculations.

Question 23 - Shipwrecks, Corrosion and Conservation (20 marks)
(a) A student was asked to compare and explain the solubility and concentration of selected gases at increasing depths in the oceans.

The student found the following information on the internet.

TABLE: Solubility $\left(\mathrm{g} / 100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)$

Pressure (atm)	O_{2}	$\mathrm{~N}_{2}$	CO_{2}
5	0.08	0.04	0.8
10	0.16	0.08	1.6

Evaluate the relevance of this information in relation to the area of investigation.
\qquad
(b) Sea water contains a variety of ions including sodium, magnesium, calcium, potassium, chloride, sulphate and hydrogen carbonate.

Explain the origins of these ions from minerals in the oceans.
(c) In your practical work, you performed a first-hand investigation to identify factors that affect the rate of an electrolysis reaction.
(i) Outline the method you used to show how ONE factor effects the rate of an electrolysis reaction, making sure that you incorporate a risk assessment.
(ii) Provide a conclusion based on the results you achieved in this experiment.
(d) (i) Explain what steel is. 1
(ii) Compare the composition, properties and uses of TWO types of steel.

END OF EXAM

Student Number:

BLANK PAGE

Page 18 of 20
\qquad

DATA SHEET

Avogadro constant, N_{A}... $6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Volume of 1 mole ideal gas: at 100 kPa and at $0^{\circ} \mathrm{C}(273.15 \mathrm{~K})$ 22.71 L
at $25^{\circ} \mathrm{C}(298.15 \mathrm{~K})$ 24.79 L

Ionisation constant for water at $25^{\circ} \mathrm{C}(298.15 \mathrm{~K}), K_{w} \ldots1 .0 \times 10^{-14}$
Specific heat capacity of water $4.18 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$

Some useful formulae

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] \quad \Delta H=-m C \Delta T
$$

Some standard potentials

$\mathrm{K}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	K(s)	-2.94 V
$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ba}(\mathrm{s})$	-2.91 V
$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ca}(\mathrm{s})$	$-2.87 \mathrm{~V}$
$\mathrm{Na}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Na}(\mathrm{s})$	$-2.71 \mathrm{~V}$
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mg}(\mathrm{s})$	$-2.36 \mathrm{~V}$
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Al}(\mathrm{s})$	$-1.68 \mathrm{~V}$
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mn}(\mathrm{s})$	$-1.18 \mathrm{~V}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-}$	\rightleftharpoons	$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{OH}^{-}$	$-0.83 \mathrm{~V}$
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Zn}(\mathrm{s})$	$-0.76 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Fe}(\mathrm{s})$	$-0.44 \mathrm{~V}$
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ni}(\mathrm{s})$	$-0.24 \mathrm{~V}$
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Sn}(\mathrm{s})$	$-0.14 \mathrm{~V}$
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Pb}(\mathrm{s})$	$-0.13 \mathrm{~V}$
$\mathrm{H}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})$	0.00 V
$\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{SO}_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}$	0.16 V
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cu}\left(s^{\text {s }}\right.$	0.34 V
$\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$	\rightleftharpoons	$2 \mathrm{OH}^{-}$	0.40 V
$\mathrm{Cu}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cu}(\mathrm{s})$	0.52 V
$\frac{1}{2} \mathrm{~L}_{2}(s)+\mathrm{e}^{-}$	\rightleftharpoons	I^{-}	0.54 V
$\frac{1}{2} \mathrm{~L}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	I^{-}	0.62 V
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}$	\rightleftharpoons	Fe^{2+}	0.77 v
$\mathrm{Ag}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ag}(\mathrm{s})$	0.80 V
$\frac{1}{2} \mathrm{Br}_{2}(l)+\mathrm{e}^{-}$	\rightleftharpoons	Br^{-}	1.08 V
$\frac{1}{2} \mathrm{Br}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	Br^{-}	1.10 V
$\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{H}_{2} \mathrm{O}$	1.23 V
$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{e}^{-}$	\rightleftharpoons	Cl^{-}	1.36 V
$\frac{1}{2} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{-}+7 \mathrm{H}^{+}+3 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cr}^{3+}+\frac{7}{2} \mathrm{H}_{2} \mathrm{O}$	1.36 V
$\frac{1}{2} \mathrm{Cl}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	Cl^{-}	1.40 V
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	1.51 V
$\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{e}^{-}$	\rightleftharpoons	F^{-}	2.89 V

Student Number:

$\begin{gathered} 1 \\ \mathrm{H} \\ 1.008 \\ \text { Hydrogen } \end{gathered}$						PERI	DIC T	KLE KEY	F THE	ELEM	NTS						$\begin{gathered} 2 \\ \mathrm{He} \\ 4.003 \\ \text { Helium } \end{gathered}$
3	4						Iomic Number	79				5	6	7	8	9	
Li	Be							Au	Symbol of el			B	C	N	O	F	Ne
6.941	9.012						tomic Weight	197.0				10.81	12.01	14.01	16.00	19.00	20.18
Lithium	Beryllium							Gold	Name of elen			Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
Sodium	Magnesium											Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
Rubidium	Strontium	Ytrrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83			
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[210.0]	[210.0]	[222.0]
Caesium	Barium	Lanthanides	Hafnium	Tantalum	Tangsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq	15	Uuh	11	Uuo
[223.0]	[226.0]		[261.1]	[262.1]	[263.1]	[264.1]	[265.1]	[268]	-	-	,		-		-		
Francium	Radium	Actinides	Rutherfordium	Dubaium	Seaborgium	Bohrium	Hassium	Meitnerium	Ununnilium	Unununium	Ununbium		Ununquadium		Ununhexium		Ununoctium

57 La 138.9 Lanthanum	58 Ce 140.1 Cerium	59 Pr 140.9 Praseodymium	60 Nd 144.2 Neodymium	61 Pm $[146.9]$ Promethium	$\begin{gathered} 62 \\ \mathrm{Sm} \\ 150.4 \\ \text { Samarium } \end{gathered}$	63 Eu 152.0 Europium	64 Gd 157.3 Gadolinium	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ 158.9 \\ \text { Terbium } \end{gathered}$	66 Dy 162.5 Dysprosium	67 Ho 164.9 Holmium	$\begin{gathered} 68 \\ \mathrm{Er} \\ 167.3 \\ \text { Erbium } \end{gathered}$	$\begin{gathered} 69 \\ \text { Tm } \\ \text { 168.9 } \\ \text { Thulium } \end{gathered}$	$\begin{gathered} 70 \\ \mathrm{Yb} \\ 173.0 \\ \text { Yuterbium } \end{gathered}$	$\begin{gathered} 71 \\ \mathrm{Lu} \\ 175.0 \\ \text { Lutetium } \end{gathered}$
Actinides														
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
[227.0]	232.0	231.0	238.0	[237.0]	[239.1]	[241.1]	[244.1]	[249.1]	[252.1]	[252.1]	[257.1]	[258.1]	[259.1]	[262.1]
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Califormium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets.
The atomic weights of Np and Tc are given for the isotopes ${ }^{237} \mathrm{~Np}$ and ${ }^{99} \mathrm{Tc}$.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
C	B	C	A	C	A	A	C	B	C	A	B	B	B	B

Quest	Sample Answer	Marking Scheme
16 (a)	- \quad Risk assessment performed. All risks were identified, assessed and controlled. - $\quad 20 \mathrm{~mL}$ of acidic salt ($\mathrm{NH} 4+$), neutral salt (NaCl) and basic salt (Na 2 CO 3) were put in a beaker. - Calibrated pH meter was placed in each and the reading taken	- \quad Risk assessment (1 mark) - Specific mention of a range of salts by name (1 mark) - \quad Specific mention of how the pH is taken (universal indicator OK but volume and colours must be mentioned)
16 (b)	$\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$therefore acidic due to hydronium ions as a result of the hydrolysis reaction. Nitrate neutral. (1 mark) $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$therefore basic due to hydroxide ion as a result of hydrolysis reaction. Sodium neutral. (1 mark)	As shown
17	A brief overview outlining the oxides of nitrogen and sulphur Oxides of sulphur can enter the atmosphere naturally, such as from volcanic eruptions or industrially such as through the extraction of iron from its ore as outlined in the following equation: $4 \mathrm{FeS}_{2(\mathrm{~s})}+11 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+8 \mathrm{SO}_{2(\mathrm{~g})}$ Oxides of nitrogen can enter the atmosphere naturally through lightening strikes breaking down nitrogen and oxygen molecules or industrially as a result of air passing through an internal combustion engine as outlined in the equation below. $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NO}_{(\mathrm{g})}$ $2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$ The oxides can then react with the water in the atmosphere. $\mathrm{SO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ $\mathrm{SO}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{H}_{2} \mathrm{SO}_{4 \text { (aq) }}$ $2 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{HNO}_{2(\mathrm{aq})}$ Evidence which shows increasing concentrations of SO_{2} Post industrial revolution (1800 's), there has been an increase in SO_{2} emissions in industrial areas - expand and explain why. Acid rain (equations above) levels increased, especially since 1940, proven through precipitation record, ice cores and tree borings. This increase is associated with high manufacturing activity. For example, in the 1930's during the Depression acid rain levels low, but rose substantially in the lead up to WWII. This has been proven through processes such as deforestation such as in Eastern Europe where 50% of forests have been affected in recent years. Evidence which shows concentrations of SO_{2} is not increasing Regulations in 50 's and 60 's have resulted in most industrial countries having concentrations lower than expected. WHO goal is 23 ppb , Sydney normally 10 ppb as fossil fuels have a low S content. Areas such as Illawarra and Hunter have raised levels due to increased industrial activity. Washed out by rain Primary sources of SO_{2} emissions filter the air they release. Flue Gas Desulphurisation (FGD) is achieved through scrubbers containing lime (CaO) which turns SO_{2} into calcium sulphite which is then oxidized to form CaSO_{4} (then used as plasterboard). $\begin{aligned} \mathrm{SO}_{2(\mathrm{~g}}+\mathrm{CaO} & (\mathrm{~s}) \\ 2 \mathrm{CaSO}_{3(\mathrm{~s})} & \rightarrow \mathrm{O}_{2(\mathrm{~g})} \end{aligned} \mathrm{CaSO}_{3(\mathrm{~s})} \mathrm{CaSO}_{4(\mathrm{~s})}$ Coal with low sulphur content used.	4 marks - Shows oxides and how they enter the atmosphere with the use of equations - Evidence for increasing levels - Limitations to the evidence - Overall assessment 3 marks - \quad Shows oxides and how they enter the atmosphere with the use of equations - \quad Evidence for increasing levels - Overall assessment 1-2 Marks Limited understanding using the above as a guideline.

	Evidence which shows increasing concentrations of $\mathrm{NO}_{\underline{x}}$ Electricity generation and use of cars in the $20^{\text {th }}$ Century have resulted in increased levels of NO_{x}. 1960's photochemical smog bad in big cities which led to tight controls on car emissions and from power stations. However, with an continual increase in car numbers will always come increasing levels of NO_{x} emissions. Acid rain (equations above) levels increased, especially since 1940, proven through precipitation record, ice cores and tree borings. This increase is associated with high manufacturing activity. For example, in the 1930's during the Depression acid rain levels low, but rose sunbstantially in the lead up to WWII. Ice cores. Nitrous oxides levels (in ppb) supports the above information as in last 50 years gas bubbles show and increase from 285 to 315 ppb of NO_{x}. Evidence which shows concentrations of $\mathrm{NO}_{\underline{x}}$ is not increasing Washed out by rain (use equation) Emission controls on cars like catalytic converters. In 15 year period, the EPA in Sydney have shown, on average, no clear trend with respect to increases. Note Sydney (peak range $93-320 \mathrm{ppb}$) is favourable to London (peak range 130 460 ppb) and LA (peak range $240-470 \mathrm{ppb}$). Accuracy of Information. Ice cores show a good picture of years gone by, but they are not necessarily representative of all parts of the world. Data from pollution control agencies is now starting to build over a lengthy period of time to give solid trends. Data before 1950 is not too reliable. Overall Assessment (value judgment) It would appear that the amount of SO_{2} and NO_{x} emitted is always increasing due to an increase in industrialization and populations; however, measures to control concentrations in the atmosphere are working and levels are not rising significantly. The removal of these gases by water also helps. This though leads to problems of decreasing pH of rain water and the problems associated with this such as deforestation. The lower the emissions (and sustained lowering) the better it is for the environment.	
18(a)		Must have axis correct, labelled, and shape correct
18(b)	There are two clear trends observed in the graph; the boiling point between molecules and the boiling point within molecules. Between Molecules The boiling point of alkanoic acids is greater than alkanols which is greater than alkanes. Alkanes have the lowest BP of the three when comparing molecules of similar molecular weight. Alkanes are non-polar molecules so have only weak dispersion forces between molecules that need to be broken for boiling to occur. Alkanols also have these dispersion forces to overcome, however, as the molecule is polar with an hydroxyl functional group it also has hydrogen bonding to overcome to boil. Alkanoic acids have the highest BP's of the three. They have dispersion forces and a hydroxyl end and therefore hydrogen bonding. However, they are more polar due to the $\mathrm{C}=\mathrm{O}$ carbonyl group. This results in extra polarity and greater dipole-dipole interactions and therefore more energy to overcome than alkanols of similar molecular weight.	3 Marks Must show trend between molecules with a reason and trend within molecules with a reason

	Within Molecules As the molecular weight increases in each group the BP increases. The functional group(s) remain the same and does not account for the increase. The number of C atoms does increase and as the chain increases there is a greater number of electrons and therefore a greater number of dispersion forces. More dispersion forces between molecules results in a higher BP .	
19 (a)	Ester: Acids: Acetic acid, citric acid, tartaric acid, malic acid, fumaric acid, lactic acid - preservative in pickles and other processed foods. Phosphoric acid - preservative in cola drinks Sulphur dioxide - preservative in dried foods and wine Ascorbic acid - antioxidant to protect soft drinks, jams, condensed milk, sausages. Propanoic acid - in bread	2 marks - at least two examples of an ester and two examples of an acid. Each example must show where the acid and ester is used.
19 (b)		3 marks Completely correct 2 marks Correct diagram with no more than one error 1 mark Reflux diagram with 2 or more errors.
20	$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ 1000 mL has 1 mol NaOH , so 11.2 mL has $\mathrm{n} \mathrm{n}(\mathrm{NaOH})=$ $\begin{aligned} (11.2 / 1000) & \times 1 \\ & =1.12 \times 10-2 \mathrm{~mol} \\ \mathrm{n}(\mathrm{HCl})= & 1 \times 1.12 \times 10^{-2} \end{aligned}$ So, amount of HCl in beaker after reaction with shell and before dilution $\begin{aligned} \mathrm{n}(\mathrm{HCl}) & =25 / 10 \times 1.12 \times 10^{-2} \\ & =2.8 \times 10^{-2} \mathrm{~mol} \end{aligned}$ The original HCl reacted was 10 mL of $5 \mathrm{~mol} / \mathrm{L}$, is ($10 /$ $1000) \mathrm{L} \times 5 \mathrm{~mol} / \mathrm{L}=0.05 \mathrm{~mol}$	3 Marks - all correct with units 2 Marks - 1 error in calculation 1 Mark - a correct equation or at least one correct calculation

	So $\begin{aligned} & \text { The amount } \mathrm{HCl} \text { reacted with shell }=0.05-0.028 \\ & \\ & =2.2 \times 10-2 \mathrm{~mol} \\ & \begin{aligned} \mathrm{n}(\mathrm{CaCO} 3) & =1 / 2 \times 2.2 \times 10^{2-} \\ & =0.011 \mathrm{~mol} \\ \mathrm{~m}(\mathrm{CaCO}) & =0.011 \mathrm{~mol} \times 100 \mathrm{~g} / \mathrm{mol} \\ & =1.10 \mathrm{~g} \end{aligned} \\ & \begin{aligned} \% \text { comp CaCO} & \end{aligned} \\ & =1.10 \mathrm{~g} / 1.306 \mathrm{~g} \times 100 \\ & \\ & = \end{aligned}$	
21 (a)	Diagram	2 Marks - diagram all correct 1 Mark - no more than 2 mistakes
21 (b)	$\begin{aligned} & \mathrm{Cu} \leftrightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \\ & \mathrm{Ag}^{+}+\mathrm{e}^{\leftrightarrow} \leftrightarrow \mathrm{Ag} \\ & \mathrm{Cu}(\mathrm{~s})+2 \mathrm{Ag}^{+} \leftrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s}) \\ & -0.34 \mathrm{~V}+0.80 \mathrm{~V}=0.46 \mathrm{~V} \end{aligned}$ Positive:Student is on the right track in terms of producing electrical energy from chemical energy; Negative: however, the voltage produced of 0.46 V is insufficient for the 1.1 V required. Also, AgCl will ppt on the salt bridge.	3 marks Equations, correct voltage and an advantage and disadvantage. 2 marks Equations all correct. Lacking an advantage or disadvantage. 1 mark Any one thing correct.
22	(a) All three acids are at the same concentration, that is $0.01 \mathrm{~mol} / \mathrm{L}$. However, the pH is different in each solution. $\mathrm{HCl}=\mathrm{pH} 2.00$ Acetic Acid $=\mathrm{pH} 3.38$ Citric Acid $=\mathrm{pH} 2.56$ From this we can calculate the $\left[\mathrm{H}^{+}\right]$using $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$ So HCl $\begin{aligned} {\left[\mathrm{H}^{+}\right] } & =10^{-\mathrm{pH}} \\ & =10^{-2.00} \\ & =0.01 \mathrm{~mol} / \mathrm{L} \end{aligned}$ Acetic $\begin{aligned} {\left[\mathrm{H}^{+}\right] } & =10^{-\mathrm{pH}} \\ & =10^{-3.38} \\ & =4.17 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \end{aligned}$ Citric $\begin{aligned} {\left[\mathrm{H}^{+}\right] } & =10^{-\mathrm{pH}} \\ & =10^{-2.56} \\ & =2.75 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \end{aligned}$ From these calculations it can be seen that the ionisation of HCl molecules is greatest $(100 \%$ ionisation) because HCl is the strongest of the 3 acids. $\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}+(\mathrm{aq})+\mathrm{Cl}-(\mathrm{aq})$ The acetic acid is the weakest acid of the 3 meaning the	3 Marks Equations, calculations and a correct statement for each acid about ionisation.

	ionisation of the $\mathrm{CH}_{3} \mathrm{COOH}$ molecules (4.17\%) is the least producing the lowest concentration of H^{+}. $\mathrm{CH}_{3} \mathrm{COOH} \leftrightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$ The ionisation of the citric acid $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{H}_{3}$ molecules (27.5% ionisation) is in the middle meaning it is a stronger acid compared to acetic acid, however a weaker acid compared to HCl . $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{H}_{3} \leftrightarrow \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{7}^{3-}+3 \mathrm{H}^{+}$	
23 (a)	Graph shows that as depth increases so too does pressure. The table that shows as pressure increases so too does the solubility of gases. The student therefore may have used both sources to conclude that gas solubility and therefore concentration will increase with depth. Theoretically this is correct. An increase in pressure causes a closer interaction of non-polar gas molecules with water and facilitates the formation of dispersion forces. So an increase in pressure causes an increase in solubility of gas molecules which causes an increase in the concentration of the gas in water. However, In the sea, gas concentration is affected by other variables. O_{2} concentration decreases as aerobic organisms consume the surface O_{2} so doesn't make its way down to deeper parts. Also, photosynthesis doesn't occur at depths due to no sunlight penetration. Some areas of the ocean may, however, be affected by oxygen rich water from polar regions as a result of deep currents which will cause a concentration of about 2 ppm at depths $>1000 \mathrm{~m}$ CO_{2} concentration increases due to the respiration of aerobic organisms N 2 concentration does not change much from its surface value of 1520 ppm as there is no significant production or removal. Judgement The data doesn't consider any of the factors in the ocean that regulate gas concentration. This stimulus material is theoretical only and is not relevant for this area of the investigation.	5 marks Shows an understanding of the graph and table to compare conc and solubility [1] Explains the conc and solubility [1] Demonstrates an understanding of the variables that affect $\mathrm{CO} 2, \mathrm{O} 2$ and N 2 solubility [2] Evaluates the information to show that these two sources alone are not enough [1]
23 (b)	Leaching of the salts from soil and rocks on land by water eg rain and ground water that runs into the oceans Hydrothermal vents - at mid-ocean ridges the water in the percolates and is super-heated. It therefore dissolves ionic substances from the rocks	For each example, identifies the process [1] and explains [1]
$\begin{array}{\|l\|} \hline 23 \\ \text { (c)(i) } \end{array}$	- Copper toxic metal so avoid all contact with the skin. - A 100 mL beaker had $50 \mathrm{~mL} 0.5 \mathrm{~mol} / \mathrm{L}$ solution of copper(II) sulphate placed in it. Into the beaker and solution was placed two graphite electrodes. One electrode was connected to the positive terminal, the other to the negative terminal of a power pack and using DC current, a voltage of 4 V was applied. - The reaction was allowed to proceed to 5 minutes. - At the anode (positive terminal) oxygen gas evolved. The intensity of the bubbling was	Risk assessment [1] with a full method identifying variables and the rate will be determined. [3]

	ranked on a scale of 1-5. - The same procedure was repeated using different concentrations of copper(II) sulphate solution ($1 \mathrm{~mol} / \mathrm{L}$ and $2 \mathrm{~mol} / \mathrm{L}$) keeping the variables mentioned above constant including volume of solution, same electrodes and same voltage and same time. This ensures accuracy is being achieved. Each experiment could be repeated to ensure reliability.				
(c) (ii)	Increasing the concentration of solution causes the rate of the electrolysis reaction to be increased.				2 marks - specific conclusion 1 mark - general conclusion
$\begin{aligned} & \hline 23 \\ & (\mathrm{~d})(\mathrm{i}) \\ & \hline \end{aligned}$	Steel is an alloy of iron and carbon				
$\begin{aligned} & 23 \\ & \text { (d)(ii) } \end{aligned}$	SUBSTANCE	COMPOSITION	PROPERTIES	USES	Composition of both types of steel [1] Properties of both types of both types of steels [1] Uses of both types of steel [1] Comparison is clear in each example [1]
	Pure iron	100\% Fe	Soft and malleable, corrodes slowly	Limited	
	Pig iron (cast iron)	$3-4 \% \mathrm{C}, 1 \% \mathrm{Mn},$ $1 \% \mathrm{Si} \text {, rest } \mathrm{Fe}$	Hard and brittle, corrodes fairly rapidly	Casting engine blocks, fire hydrants	
	Mild steel	$\begin{aligned} & <0.2 \% \mathrm{C}, \text { rest } \\ & \mathrm{Fe} \end{aligned}$	Soft and malleable, corrodes fairly rapidly	Car bodies, pipes, nuts and bolts, shipbuilding	
	Structural steel	$\begin{aligned} & \text { 0.2-0.5\% C, rest } \\ & \text { Fe } \end{aligned}$	Hard and malleable, high tensile strength, corrodes fairly rapidly	Beams and girders, railways, shipbuilding	
	Stainless steel	$\begin{aligned} & \text { 10-20\% Cr, } \\ & 5-20 \% ~ N i, \text { rest } \\ & \mathrm{Fe} \end{aligned}$	Hard, takes a high polish, very resistant to corrosion	Kitchen sinks, surgical and dental instruments	

