

2008

Mid Year Examination

HSC CHEMISTRY

Thursday 3 April, 9 – 11am

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Draw diagrams using pencil
- Board approved calculators may be used
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your student number at the top of every page.

Mr Hunter Mr Lee Mr Weeding 40 students Total marks - 65

Section I – 45 marks

Part A (15 marks)

• Attempt Questions 1-15 Part B (30 marks)

Part B (30 marks)

• Attempt Questions 16- 20

Section II - 20 marks

• Attempt Question 21

Question 15 Source: Smith, R. (2005). Conquering Chemistry. McGraw-Hill Australia.

Section 1 45 marks

Part A

Total marks 15 Attempt questions 1-15

Use the Multiple-choice Answer Sheet provided.

Answer the questions by selecting the alternative that best answers the question. Indicate your choice by filling in the appropriate place on the Answer sheet, as shown below, where **A** has been selected as the best alternative,

$A \ \textcircled{O} \ B \ \bigcirc \ C \ \bigcirc \ D \ \bigcirc$ If you make a mistake, indicate your choice by labelling the correct alternative, as shown below where, the original choice A was a mistake, and C is now selected as being the correct answer.

1 Which of the following statements correctly describes a redox reaction?

- (A) The oxidation half-reaction and the reduction half-reaction occur simultaneously.
- (B) The oxidation half-reaction occurs before the reduction half-reaction.
- (C) The oxidation half-reaction occurs after the reduction half-reaction.
- (D) The oxidation half-reaction occurs spontaneously but the reduction half-reaction does not.
- 2. Consider the following reaction

 $Zn_{(s)} + 2 H^{+} + 2 MnO_{2 (s)} \longrightarrow Zn^{2+} + Mn_2O_{3 (s)} + H_2O_{(1)}$

What is the oxidant in this reaction?

- (A) $MnO_{2 (s)}$
- (B) Mn₂O_{3 (s)}
- (C) $Zn_{(s)}$
- (D) H⁺

[H ₃ O ⁺]	Substance
10-9	baking soda
10-5	black coffee
10-8	sea water
10-11	laundry detergent
10-6	milk
10-13	chlorine bleach
10-4	soda water

3. The hydronium ion concentration (in molL⁻¹) of some common substances is given in the Table below

Of the substances listed which of the following are acidic?

- (A) Soda water and chlorine bleach
- (B) Milk and laundry detergent
- (C) Sea water and baking soda
- (D) Black coffee and milk
- 4. In the equilibrium

$$N_2H_5^+(aq) + SCN^-(aq) \implies HSCN(aq) + N_2H_4(aq)$$

- (A) $N_2H_5^+$ acts as a acid
- (B) SCN^{-} acts as a acid
- (C) HSCN acts as a base
- (D) N_2H_4 acts as a acid
- 5. Which statement best describes a weak acid solution?
 - (A) There are no neutral acid molecules present.
 - (B) Only a fraction of the acid molecules is ionised.
 - (C) All acid present is ionised to hydrogen ions.
 - (D) The total concentration of acid molecules present is high.

- 6. In the process of esterification the reactant alcohol and acid mixture is refluxed. What is the purpose of refluxing the mixture?
 - (A) Speed up the reaction
 - (B) Prevent the loss of alcohol as the reactant mixture is heated
 - (C) Remove the water produced as a product of the reaction
 - (D) Force the reaction to come to equilibrium
- 7. An equilibrium mixture between nitrogen, hydrogen and ammonia was subjected to a change at time t. The result of this change is shown in the diagram below.

What was the change made to the equilibrium mixture at time t?

- (A) The pressure in the equilibrium mixture of nitrogen and hydrogen was decreased.
- (B) The temperature of the reaction mixture was raised.
- (C) The concentration of nitrogen gas in the equilibrium mixture was increased.
- (D) The volume of the reaction vessel was increased.

- 8. Which substance can act both as an acid and as a base, in dilute solutions?
 - (A) Calcium carbonate
 - (B) Ammonium nitrate
 - (C) Ethanol
 - (D) Water
- 9. The pH values of four acids and their concentrations are shown in the table below.

Acid	Conc. (mol L-1)	рН
Р	0.01	2.0
Q	0.05	1.0
R	0.1	1.0
S	0.1	2.0

Which acid can donate more than one proton?

- (A) P
- (B) Q
- (C) R
- (D) S

10. Which group of substances below result in a lower pH when dissolved in water?

- (A) Ammonia, sodium hydroxide, potassium carbonate
- (B) Hydrogen chloride, ethanol, carbon monoxide
- (C) Sodium oxide, magnesium oxide, calcium hydroxide
- (D) Carbon dioxide, sulfur dioxide, hydrogen bromide
- 11. When making the ester, ethyl propanoate, concentrated sulfuric acid is added to a mixture of ethanol and propanoic acid. One effect of the sulfuric acid is to increase the yield of the ester. Which of the following is the correct explanation for this increased yield?
 - (A) Sulfuric acid is a dehydrating agent and removes water as a reaction product.
 - (B) Sulfuric acid provides hydrogen ions which catalyse the reaction.
 - (C) The mixture becomes hot, which accelerates the reaction.
 - (D) The boiling point of the mixture increases, allowing a higher reaction temperature.

- 12. Which of the following 4 carbon atom molecules has the highest boiling point?
 - (A) Butane
 - (B) Methyl propanoate
 - (C) Butanoic acid
 - (D) 2-butanol
- **13.** A 285.3 g bottle of soda awater was deccarboanted by adding 14.7 g of salt into it. The final mass was 296 g. The volume of gas formed at 25°C and 100kPa was -
 - (A) 2.22 L
 - (B) 2.06 L
 - (C) 2.25 L
 - (D) 2.04 L
- 14. When an indicator is used in acid base titration, its colour change -
 - (A) always identifies the equivalence point.
 - (B) only occurs at a pH of 7.
 - (C) needs to correspond to that point when the moles of acid and base present in the mixture are identical.
 - (D) needs to correspond to that point when the moles of acid and base present in the mixture correspond to the molar ratio of the balanced equation.
- **15.** The diagram below shows a dry cell battery.

Which of the following statements is correct for this dry cell battery?

- (A) The manganese(IV) oxide is the electrolyte.
- (B) The graphite rod is the anode
- (C) Graphite is reduced at the cathode
- (D) Zinc is oxidised to zinc(II) at the anode.

Student Number:

Section 1 (continued)

Part B – 30 marks Attempt Questions 16-20

Answer the questions in the spaces provided.

Show all relevant working in questions involving calculations.

Quest	ion 1	16 (10 marks)	Marks
(a)	(i)	From the Table of Standard Potentials, select TWO metals that will reduce hydrogen ions to hydrogen gas.	1
	(ii)	Using one of the metals in part (i) write oxidation and reduction half reactions for the reaction which occurs.	2
	(iii)) Write a balanced overall cell equation for the redox reaction.	1

Question16 continues on page 9.

3

(b) (i)	 Sketch and label a diagram showing the structure of ONE of the following cells: button cell fuel cell lithium cell 	Marks
	 liquid junction photovoltaic device (eg the Gratzel cell), vanadium redox cell 	3

(ii) Explain the chemistry of the cell drawn in b(i)

Marks

Que	stion 17 (9 marks)	171411
(a)	(i) Define acids and bases according to the Bronsted-Lowry theory.	1
	(ii) In the following two reactions, state whether HCO ₃ ⁻ behaves as an acid or a base. Explain your answer in each case.	2
	1. $H_2CO_3(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + HCO_3^-(aq)$ 2. $HCO_3^-(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CO_3^{2-}(aq)$	
(b)	The pH of a 0.001 molL ⁻¹ solution of hydrochloric acid and the pH of a 0.056 molL ⁻¹ of acetic (ethanoic, CH_3COOH) acid is 3.	
	(i) Compare the concentration of each acid. Explain your answer.	2
	(ii) Compare the strength of each acid. Explain your answer.	2

Question17 continues on page 11.

Marks

2

(iii) Compare the hydrogen ion concentration in the solutions of each acid. Explain your answer.

0		Marks
Ques	tion 18 (6 marks)	
Durin	ig your practical course you have performed a first hand investigation whereby you made an ester.	
(a)	Identify the ester produced.	1
(D)	write a balanced chemical equation for the production of this ester.	1
(c)	Justify the procedure used to produce this ester.	
		4

Question 19 (2 marks)

Potassium metabisulphite, $K_2S_2O_5$, is added to wine to prevent oxidation. The reaction mechanism is as follows:

 $\begin{array}{rll} S_2O_5{}^{2\text{-}}{}_{(aq)} \ + \ H_2O_{(l)} \ \rightarrow \ 2HSO_3{}^{\text{-}}{}_{(aq)} \\ HSO_3{}^{\text{-}}{}_{(aq)} \ + \ H_3O^{\text{+}}{}_{(aq)} \ \leftrightarrow \ SO_2{}_{(aq)} \ + \ 2H_2O_{(l)} \end{array}$

Use the equations to explain how adding potassium metabisulphite will affect the pH of wine.

Que	Question 20 (3 marks)						
(a)	Use an equation to show the ionisation of acetic (ethanoic) acid in water.	1					
(b)	Use a diagram to model the ionisation of acetic (ethanoic) acid in water.	2					

Section II

20 marks

Answer Question 21 below.

Answer the question in a writing booklet. Extra writing booklets are available. Show all relevant working in questions involving calculations.

Que	Question 21 – Shipwrecks, Corrosion and Conservation (20 marks)								
(a)	A solution of copper(II) chloride is electrolysed using inert graphite electrodes. At one of the electrodes, bubbles form. Analysis of these bubbles shows that two different gases are being formed, one of which is confirmed to be chlorine.								
	(i)	In your answer booklet, draw a fully labelled diagram of the equipment used for this electrolysis.	2						
	(ii)	With the use of a half equation, identify the other gas produced.	1						
	(iii)	Calculate the applied voltage required for this electrolysis reaction to proceed.	2						
	(iv)	As the reaction proceeds, other observable changes occur. Describe two of these changes and explain why they occur.	2						
(b)	(i)	Identify the trend in oxygen concentration with increasing depth in the ocean.	1						
	(ii)	Explain why the oxygen concentration changes with increasing depth.	2						
(c)	The wo transfe	ork of Galvani, Volta, Davy and Faraday has helped in increasing an understanding of electron reactions. Describe the impact of this work on society.	4						
(d)	You pe differe	erformed a first-hand investigation to compare and describe the rate of corrosion of metals in nt acidic and neutral solutions.							
	(i)	Outline the procedure used and the results you obtained.	2						
	(ii)	Identify a risk associated with this procedure.	1						
	(iii)	Use your results to explain why metal corrosion is accelerated in an acidic environment.	3						

BLANK PAGE

DATA SHEET

Avogadro constant, N_A $6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at 100 kPa and
at 0°C (273.15 K) 22.71 L
at 25°C (298.15 K) 24.79 L
constant for water at 25°C (298.15 K), K_w 1.0×10^{-14}
Specific heat capacity of water $4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$

Some useful formulae

$$pH = -\log_{10}[H^+] \qquad \Delta H = -m C \Delta T$$

Some standard potentials

$K^{+} + e^{-}$	~	K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	←	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	~~	Ca(s)	-2.87 V
$Na^+ + e^-$	⇒	Na(s)	-2.71 V
$Mg^{2+} + 2e^{-}$	+	Mg(s)	-2.36 V
$Al^{3+} + 3e^{-}$	⇒	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$	\rightleftharpoons	Mn(s)	-1.18 V
H ₂ O + e ⁻	~	$\frac{1}{2}H_2(g) + OH^-$	-0.83 V
$Zn^{2+} + 2e^{-}$	~^	Zn(s)	-0.76 V
$Fe^{2+} + 2e^{-}$	=	Fe(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	←	Ni(s)	-0.24 V
$Sn^{2+} + 2e^{-}$	\rightleftharpoons	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	~	Pb(s)	-0.13 V
H ⁺ + e [−]	\rightleftharpoons	$\frac{1}{2}H_2(g)$	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	~	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	~	Cu(s)	0.34 V
$\frac{1}{2}O_2(g) + H_2O + 2e^-$	\rightleftharpoons	20H ⁻	0.40 V
$Cu^+ + e^-$	\rightleftharpoons	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	\rightleftharpoons	I-	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	~``	I-	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe ²⁺	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}Br_2(l) + e^-$	←	Br ⁻	1.08 V
$\frac{1}{2}$ Br ₂ (aq) + e ⁻	←	Br-	1.10 V
$\frac{1}{2}O_2(g) + 2H^+ + 2e^-$	=	H ₂ O	1.23 V
$\frac{1}{2}Cl_2(g) + e^{-1}$	⇒	CI	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	=	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\text{Cl}_2(aq) + e^-$	1	CI	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	~	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}F_2(g) + e^-$	₹	F-	2.89 V

					1		T		T		1		1		1					
	He He	4.003 Helium	Ne ¹⁰	20.18 Neon	18 Ar	39.95 Arron	36 Xr	83.80 Krypton	S4 Xe	131.3 Xenon	86 Rn	[222.0] Radon	118 Uuo	Ununoctium						
			Р 4	19.00 Fluorine	11 CI	35.45 Chlorine	35 Br	79.90 Bromine	53 I	126.9 Iodine	85 At	[210.0] Astatine	117			71 Lu 175.0	Lutetium	103	[262.1] Lawrencium	
			∞0	16.00 Oxvgen	I6 S	32.07 Sulfur	34 Se	78.96 Selenium	52 Te	127.6 Tethurium	84 Po	[210.0] Polonium	116 Uuh	Ununhexium	×	70 Yb 173.0	Ytterbium	102 No	[259.1] Nobelium	
			►Z	14.01 Nitrogen	15 P	30.97 Phosphorus	33 As	74.92 Arsenic	Sb Sb	121.8 Antimony	83 Bi	209.0 Bismuth	115			69 Tm 168.9	Inutium	101 Md	[258.1] Mendelevium	ts.
			ωU	12.01 Carbon	Si 14	28.09 Silicon	32 Ge	72.61 Germanium	Sn Sn	118.7 Tin	82 Pb	207.2 Lead	114 Uuq	Ununquadium		68 Er 167.3	FLDIUM	100 Fm	[257.1] Fermium	wn in bracke
			BS	10.81 Boron	13 Al	26.98 Aluminium	31 Ga	69.72 Gallium	Ц Ц	114.8 Indium	81 TT	204.4 Thallium	113			67 Ho 164.9	шлшюн	99 Fs	[252.1] Einsteinium	otope is show
FNTS							30 Zn	65.39 Zinc	Cd &	112.4 Cadmium	80 Hg	200.6 Mercury	112 Uub	Ununbium		66 Dy 162.5	Dysprosum	38 C	[252.1] Californium	dioactive iso
F.I.F.M			ment	ent			Cu 29	63.55 Copper	47 Ag	107.9 Silver	79 Au	197.0 Gold	111 Uuu	Unununium		65 Tb 158.9	rerotum	97 Bk	[249.1] Berkelium	common ra
F THE			Symbol of ele	Name of elem	-		28 Ni	58.69 Nickel	46 Pd	106.4 Palladium	78 Pt	195.1 Platinum	110 Uun	Ununulium		64 Gd 157.3	Cadolinam	8.E	[244.1] Curium	of the most Np and ⁹⁹ Tc
ABLE. C		KEY	79 Au	197.0 Gold			C°3	58.93 Cobalt	45 Rh	102.9 Rhodium	77 Ir	192.2 Iridium	109 Mt	[268] Meitnerium		63 Eu 152.0	cuobinu	95 Am	[241.1] Americium	tomic mass sotopes ²³⁷ 1
DDIC T			tomic Number	Atomic Weight			26 Fe	55.85 Iron	Ru Ru	101.1 Ruthenium	76 Os	190.2 Osmium	108 Hs	[265.1] Hassium		62 Sm 150.4	Samarun	94 Pu	[239.1] Plutonium	he relative a ven for the i
PERIC			<				25 Mn	54.94 Manganese	43 Tc	[98.91] Technetium	75 Re	186.2 Rhenium	107 Bh	[264.1] Bohrium		61 Pm [146.9]		93 Np	[237.0] Neptunium	not known, t nd Tc are gi
							52	52.00 Chromium	42 Mo	95.94 Molybdenum	74 W	183.8 Tungsten	106 Sg	[263.1] Seaborgium		60 Nd 144.2	THE OWNER AND	92 U	238.0 Uranium	c weight is r hts of Np ar
							23 V	50.94 Vanadium	Rb Bb	92.91 Niobium	73 Ta	180.9 Tantalum	105 Db	[262.1] Dubnium		59 Pr 140.9		91 Pa	231.0 Protactinium	re the atomi atomic weig
							22 Ti	47.87 Titanium	240 Zr	91.22 Zirconium	72 Hf	178.5 Hafnium	104 Rf	[261.1] Rutherfordium	cs	58 Ce 140.1		84	232.0 Thorium	Whe
		r					21 Sc	44.96 Scandium	39 Y	88.91 Yttrium	57-71	Lanthanides	89-103	Actinides	Lanthanide	57 La 138.9	Actinides	89 Ac	[227.0] Actinium	
г			4 Be	9.012 Beryllium	12 Mg	24.31 Magnesium	Ca Ca	40.08 Calcium	38 Sr	87.62 Strontium	56 Ba	137.3 Barium	88 Ra	[220.0] Radium						
	H H 1008	Hydrogen	Li.	6.941 Lithium	11 Na	22.99 Sodium	19 K	39.10 Potassium	37 Rb	85.47 Rubidium	Cs Cs	132.9 Caesium	87 Fr	[225.0] Francium						

Page 18 of 18

2008 HSC Half Year Marking Guidelines

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
А	Α	D	Α	В	В	С	D	В	D	Α	С	С	D	D

Quest	Sample Answer	Marking Scheme
16(a)	any TWO of Ma Al Zn Eo Ni Sn or Dh	Must have 2 for 1 mark
(i)	any Two of Nig, Al, Zh, FC, Ni, Sh of To	Whist have 2 for 1 mark
$\frac{(1)}{16(2)}$	$M_{2}^{+}(z_{2}) + 2z_{2}^{+}(z_{2}) + 2z_{2$	1 for each correct oxidation and
(ii)	Oxidation half reaction Mg(s) \leftrightarrow Mg ² (aq) + 2e	
(11)	Reduction half reaction $2H^{+(aq)} + 2e \leftrightarrow H_{2(g)}$	reduction equation
16 (a)	Redox cell reaction Mg + $2H^+ \leftrightarrow Mg^{2+} + H_2$	Correct combination of half cell
(111)		reactions to overall redox cell
		reaction (depending on metal
		chosen) with states
16(b)		Correct sketch that represents accurate
(i)	hydrogen in	diagram of cell correct labelling of
(1)	terminal (H2) and	electrodes, electrolytes, and terminals (-1
	+ terminal O2	each error)
	solution	
		NB Identify, by name of the cell chosen
	$\operatorname{out} \leftarrow $	
	porous membranes	
1(1)	with catalytic surfaces	
16(b)	Cause: $H_2 + 2OH^2 \rightarrow 2H_2O + 4e^2$	<u>3 Marks</u>
(11)	Effect: The oxidation reaction involving hydrogen gas	Correct half equations and correct not
	and the hydroxide ion provides the electrons for the	equation (1 mark) and description of the
	reaction.	reactions (2 marks)
	Cause: $\Omega_2 + 2H_2\Omega + 4e^- \rightarrow 4\Omega H^-$	reactions (2 marks)
	Effect: The reduction reaction results due to the electrons	
	Effect. The reduction reaction results due to the electrons	
	provided at the anode to produce hydroxide ions.	
	These reactions above produce water.	
	$2H_2 + O_2 \rightarrow 2H_2O$	
	• Description to include at least an understanding of electrodes	
	(porous carbon with a catalyst surface)and the fact they don't	
	undergo change with electrode reactions	
	• the cell can work indefinitely as long as fuel is supplied	
	• electrolyte, gets diluted and must be replenished	
17 (a)	An acid is a substance, that in solution, tends to donate	1 all correct
(1)	protons , and a base is a substance that tends to accept	
	protons.	
17 (a)		
(ii)	Cause: the hydrogen carbonate ion is amphiprotic.	1 mark each reaction
	Effect: In the first reaction HCO_3^{-1} is acting as a base as	
	it accents H^+ to form $H_2(\Omega_2)$ in the second reaction	
	In accepts 11 to form 112003 , in the second reaction,	
	1003 is acting as an actu as it donated a proton to form	
1	CO_3 .	

17 (b) (i)	<u>Cause:</u> The concentration of an acid refers to the amount of solute in a volume of solution <u>Effect:</u> Thus hydrochloric acid is less concentrated as 0.001 is lower in conc than 0.56	1 mark qualitative 2 marks quantitative
17 (b) (ii)	Cause: The strength of an acid refers to the degree of ionisation or dissociation in solution. Effect: Ethanoic is less ionised in solution and thus is the weaker acid. Using this information, it is only 1.8% ie (0.001÷0.056)x100 ionised while HCl is 100% ionised.	2 marks must be quantitative with working
17 (b) (iii)	<u>Cause:</u> Since the pH, which is a measure of hydrogen ion concentration, <u>Effect:</u> Each acid is the same, the hydrogen ion concentration in solution must be the same. $[H^+] = 10^{-pH}$ $= 10^{-3}$ = 0.001 mol/L	2 marks must be quantitative with working with the correct explanation
18 (a)	(a) Ethyl ethanoate	1 mark – identifies the ester made.
18 (b)	* $CH_3COOH + CH_3CH_2OH \leftrightarrow CH_3COOCH_2CH_3 + H_2O$ * concentrated sulphuric acid + heat under reflux.	1 marks – balanced equation
18 (c)	 Add together 5mL of ethanol, 6mL of ethanoic acid and 8 drops of sulphuric acid in a quick fit reaction flask that can be connected to a water cooled condensor. Justification: The concentrated sulphuric acid acts as a catalyst and speeds up the rate of reaction. It also absorbs water therefore drives the above equilibrium to the right and increases the yield of ester. Add a couple of glass boiling chips. Justification: Dispersal of heat to ensure even heating and prevents bumping. Heat in a hot water bath under reflux for 20 minutes. Justification: The hot water bath provides a constant heating temperature of 100°C around the flask which also ensures even heating. This increases the rate of reaction and results in a higher yield. A Bunsen flame used directly would be too hot and as the reactants are flammable and volatile they maybe ignited by the flame. Reflux ensures that as reactants evaporate, they then get condensed and return to the reaction flask. After refuxing for 20 minutes distill and collect the fraction that evaporates at 75-85°C. Justification: In the reaction flask is a mixture of ethyl ethanoate, ethanol, ethanoic acid and sulphuric acid. Distillation helps separate the ester as this is the temperature it evaporates. 	 <u>3-4 marks</u> detailed description of necessary equipment and the refluxing process or suitable diagram. Justification given for all equipment, chemicals (including catalyst, must say conc sulphuric acid) and refluxing. <u>2 marks</u> Describes equipment and refluxing process or draws a diagram. Identifies some chemicals and gives at least one reason for a piece of equipment. <u>1 mark</u> Outlines some chemicals or equipment

	carbon dioxide and water.	
	Example: $CH_3COOH + Na_2CO_3 \leftrightarrow CH_3COO^-Na^+ + CO_2 + H_2O$	
	Separate by opening the tap of the funnel and release the aqueous layer. Justification: The oily layer is on top and is the ester. After releasing the aqueous layer, all that is left in the separating funnel is the ester.	
19	The addition of metabisulphite $(S_2O_5^{2-})$ increases the concentration of of HSO_3^- as shown in the first equation. The second equation shows an equilibrium reaction. The system adjusts to overcome this increase in the concentration of HSO_3^- by favouring the forward reaction. This causes the concentration of H_3O^+ to decrease and the pH to increase.	3-4 marksClearly demonstrates a quantitative understanding of pH as it relates to $[H_3O^+]AND$ explains the effect of a decrease in $[H_3O^+]$ concentration with reference to the second equation.2 marks Demonstrates an understanding of pH as it relates to $[H_3O^+]$ AND explains the effect of a decrease in $[H_3O^+]$ concentration with reference to the second equation.1 mark Identifies the pH change as becoming more basic or less acidic
20 (a)	CH ₃ COOH (aq) \leftrightarrow CH ₃ COO ⁻ (aq) + H ⁺ (aq)	Must have states and equil arrow.
20 (b)	$\begin{array}{c} & & & \\$	Must be quantitative
21	(i) pust source	 2 Marks - Must have electrodes labelled, solutions labelled, electron flow, polarity of electrodes. Subtract 1 for each omission. 1 Mark - Correct identification of gas.

 (ii) 2H₂O(1) → O₂ (g) = 4H⁺ (aq) + 4e⁻ Gas produced is oxygen gas (iii) Cu²⁺ + 2e⁻ → Cu +0.34V Cl⁻ → Cl₂ + 2e⁻ -1.36V Cu²⁺ + 2Cl⁻ → Cu + Cl₂ -1.02V So a voltage greater than 1.02V must be applied. (iv) The negative electrode (cathode) increases in mass due to the deposition of copper because of the reduction of copper ions. The blue colour of the solution diminishes due to the reduction of the blue copper ions. 	 2 Marks - Greater than 1.02V with wor 1 Mark - Correct answer with equations no reference to greater than OR greater 1.02V but no working OF incorrect answ but correct use of equations. 2 Marks - 2 valid observations with explanations. 1 Mark - 1 valid observation with explanation OR 2 valid observations with explanation.
 (b) (i) Oxygen concentration decreases (then increases in some areas) NB Cause: Effect (ii) Cause: Lot of oxygen at surface At the surface there is a lot of photosynthetic organisms producing oxygen and high partial pressure of oxygen above water results in oxygen dissolving. [1 mark] : As depth increases, less photosynthetic organisms but many organisms respiring and using oxygen causing it to decrease.[1 mark] (At great depths water from Arctic and Anatatric regions feeds in. This water is high on oxygen hence concentration increases slowly.) 	1 Mark – Identifies the trend correctly 2 Marks - Full working and correct ans
Work of Early Scientists Galvani Galvani discovered effect of static charge and electric currents on muscles and nerves in frogs. Frog muscles contracted when the spinal cord was connected to iron with a copper hook. Twitching occurred when the nerve was touched with different metals. Conclusion was the tissues contain an electric fluid called "animal electricity" as no external source of electricity was involved. Believed the brain created the fluid and nerves conducted the fluid to muscles which were stimulated by it. Volta Repeated and extended his experiments with frogs legs based on extending the idea of whether the electricity was in the muscle or arose from the metals connected by moist salty flesh of frogs leg. He tested different metals and the twitching got stronger as the similarity between the metals decreased. Described Galvani's "animal electricity" as "metal electricity". So concluded that "life, tissue or a vital force" not responsible but it was the metals. The	 3-4 Marks Outlines the work of Galvani, Volta, Davand faraday in inceasing our understandin of electron transfer reactions AND provide features and characteristics of the impact this work on society. 2 marks States the work of at least two of Galvan Volta, Davy and faraday increasing our understanding of electron transfer reaction OR provides features and characteristics the impact of this work on society. 1 mark States the work of at least one of Galvan Volta, Davy and faraday increasing our understanding of electron transfer reaction OR provides features and characteristics the impact of this work on society. 1 mark

salty environment from the frogs led connected the metals. Metal *contact theory* important lead into electrochemistry.

Davy

Developed the voltaic pile to create a bigger battery and electrolysed water. Electrolysed molten KOH and NaOH to produce K and Na. after realizing aqueous solutions only produced hydrogen and oxygen gas. Went on to isolate Sr, Ca, Mg, Ba Electric current through molten salts, resulting in *reduction reactions* to produce metals. Electrolyte used regulates the *substance formed* at each electrode. Compounds contained charges particles which *conduct electricity* by moving to the opposite charged electrode. An electric force holds compounds together

Faraday

Electrolytic reactions leading to the development of the Faraday's Laws of Electrolysis. Amount of an element produced (*quantitative analysis*) by electrolysis dependent on quantity of electricity passed through the circuit, the atomic mass, the element and the valency. Quantitative laws supported the concept at the time *that electricity was a particle (electron)*. Electrolyte theory that salts break up and the resulting charged particles move to the opposite electrodes. Terms such as anode, cathode, anion, cation, electrode and electrolysis which helped his descriptions of the experiments he carried out.

Impact on society

The above shows the work done by each scientist in assisting in an understanding of electron transfer reactions. With this knowledge came significant impacts on society such as:

- Portable forms of electricity enabling operation of devices such as torches.
- Isolation of metals through electrolysis eg copper to be used in electrical wiring
- Transport is electricity dependent, as is heating lighting, enetertainment

(d)

(i) Set up test tubes according to the following table

	1	1	
Test tube #	Metal	Vol of Soln	Soln
1	$0.5 \mathrm{cm}^2 \mathrm{Mg}$	5mL	0.1 mol/L HCl
2	$0.5 \mathrm{cm}^2 \mathrm{Fe}$	5mL	0.1 mol/L HCl
3	$0.5 \mathrm{cm}^2 \mathrm{Mg}$	5mL	1.0 mol/L HCl
4	$0.5 \mathrm{cm}^2 \mathrm{Fe}$	5mL	1.0 mol/L HCl
5	$0.5 \mathrm{cm}^2 \mathrm{Mg}$	5mL	0.1 mol/L
			CH ₃ COOH
6	$0.5 \mathrm{cm}^2 \mathrm{Fe}$	5mL	0.1 mol/L
			CH ₃ COOH
7	$0.5 \mathrm{cm}^2 \mathrm{Mg}$	5mL	1.0 mol/L
			CH ₃ COOH
8	0.5cm ² Fe	5mL	1.0 mol/L
			CH ₃ COOH
9	$0.5 \mathrm{cm}^2 \mathrm{Mg}$	5mL	0.1 mol/L NaCl
10	$0.5 \text{cm}^2 \text{Fe}$	5mL	0.1 mol/L NaCl
11	$0.5 \mathrm{cm}^2 \mathrm{Mg}$		1.0 mol/L NaCl

2 marks

Sketches in general terms the relevant procedure identifying all conditions [1] AND shows results [1]

12	0.5cm ² Fe	1.0 mol/L NaCl	
13	0.5cm ² Mg	Distilled water	
14	0.5cm ² Fe	Distilled water	
Results			
Test Tube	Results		
1	4		
2	3		
4	<u> </u>		
5	3		
6	2		
7	4		
8	3		
9	$\frac{2}{2}$		
10	2		
12	3		
13	2		
14	2		
Scale of 0-5 of size of metal af 0 = no reaction 1 = very small a $2 = small amou3 = moderate co4 = significant of5 = high corros(ii)Identify: Acidic$	ter all metals bei amount corrosion orrosion corrosion ion	ng submersed for exactly 24 hours.	Full RA [1]
ssess: Acidic ontrol: Use a minimise spl otection meas	solutions are cor dropper to carefu ashing upon tran sure.	rosive to the skin. Illy transfer the acid to t5he test tub Isfer. Wear gloves as a final	e
(iii)			
In the experime the acidic envir The higher the the metal. The	ent metal corrosic conment as comp acid concentration more reactive M	on was significantly accelerated in ared to the neutral environments. on, the greater the rate of corrosion g corroded faster than the Fe.	Relates results of experiment [1] Provides correct equations [1] Correct explanation [1]
Iron corrosion of	can be used to ex	plain why this is the case.	
Iron oxidises according the following equation:			
$Fe_{(s)} \leftrightarrow Fe^{2+}$	(_{aq)} + 2e ⁻		
The reduction rea $D_{2(g)} + 2H_2O_{(l)}$ $D_{2(g)} + 4H^+_{(aq)}$ 2	action possibilities + $4e^{-} \leftrightarrow 4OH$ + $4e^{-} \leftrightarrow 2H_2O$	are as follows: $E_{(aq)} = E^{o} (red) = +0.40V$ $D_{(1)} = E^{o} (red) = +1.23V$	1
The acidic enviro provides a more s react with the OF right, therefore in	onment (eg presend spontaneous reaction I ions from reaction receasing the E ^o of	the of $SO_{2(g)}$ due to human activity) on. Also, the H ⁺ ions from reaction 2 on 1. This drives the first reaction to the equation 1.	