Total marks (120) Attempt Questions 1 – 10 All questions are of equal value

Answer all questions in a SEPARATE writing booklet. Extra writing booklets are available.

Ques	ition 1 (12 marks) Use a SEPARATE writing booklet.	Marks	
(a)	Solve the equation $5-4(x-2)=19$.	2	
(b)	Simplify $\frac{2}{x-3} - \frac{1}{x+1}$	2	
(c)	Find log, 13 correct to 3 significant figures.	2	
(d)	Given that p and q are rational numbers, find the values of p and q if $\left(2\sqrt{3}-1\right)\left(3\sqrt{3}+2\right)=p+q\sqrt{3}$	2	!
(e)	Solve $2x^2 - 7x + 6 = 0$.	2	!
(1)	Graph the solution of $ 2x-1 < 7$ on a number line.	2	2

The diagram shows the origin O and the coordinates of the points A (-4, 3), B (0, 5) and C (9, 2).

Copy or trace this diagram into your writing booklet.

- (a) Find the exact length of the interval BC.
- (b) Show that the equation of the line k, drawn through A and parallel to BC is x + 3y 5 = 0.

Clearly indicate the line k on your diagram.

- (c) Find the coordinates of D, the point where the line k meets the x axis.
- (d) Prove ABCD is a parallelogram.
- (e) Find the perpendicular distance from the point B to the line k.
- (f) Hence, or otherwise, find the area of ABCD.

2

3

1

2

2

-

- (a) Differentiate the following:
 - $(i) \qquad \frac{4x+5}{3x-2}$

2

(ii) $x^2 \sin x$

2

(b) In the diagram AC|DG, $\angle ABE = 54^{\circ}$, BE = BF.

NOT TO SCALE

Copy the diagram into your writing booklet.

Find the value of $\angle BFG$, giving all reasons.

.

(c) Find:

(i)
$$\int_0^2 \frac{1}{x+1} dx$$

(ii)
$$\int \frac{e'-1}{e'} d$$

- (d) A curve has a gradient function $\frac{dy}{dx} = 2x 3$. Find the equation of the curve if it passes through the point (1, 4).
- 2

(ii)

(iii)

(iv)

Find any point of inflexion.

DOMESTIC BY IL SACRO

Please turn over

stational magnetic representatives and service in the contract

Sketch the curve, showing the main features, for $-1 \le x \le 4$.

What is the maximum value of the function over the given domain?

(a) A red die and a green die are thrown at the same time. What is the probability that the pair of dice show:

(i) at least one six

1

(ii) a total of 7

1

(b) Find all solutions to $4^x - 17 \times 2^x + 16 = 0$

3

(c) The following is the graph of a function y = f(x).

2

(i) Over what domain is the function decreasing?

1

(ii) Draw a possible graph of the derivative of this function, f'(x).

2

(d) A quadratic function is given by $f(x) = 2x^2 + mx + 5$ and f(-2) = 3.

(i) Find the value of m.

.

- (ii) If the roots of the equation f(x) = 0 are α and β find the value of
- -

(II) $\alpha^2 + \beta^2$

(I) $\alpha + \beta$

2

Solve $\tan^2 x = \frac{1}{3}$ for $0^* \le x \le 360^*$.

2

To calculate the area of the region bounded by the curve $y = x^2 - 2x$ and the x axis between x = 0 and x = 4, Essie used $\int_{0}^{4} (x^{2} - 2x) dx$.

Explain why Essie's method of calculating this area is incorrect. (i)

Find the area of the required region. (ii)

Find the gradient of the tangent to the curve $y = x - 2e^x$ at the point where x = 1.

2

The diagram shows the graph of $y = 4 - x^2$.

Show that the x intercepts are 2 and -2. (i)

Find the exact volume of the solid formed when the region bounded by (ii) the curve $y = 4 - x^2$ and the x axis is rotated about the x axis.

3

3

3

2

(a) The diagram shows a cross-section of a river. The river is 60 m wide and its depth is recorded in metres at 15 m intervals across its width.

- Find an estimate for the cross-sectional area of the river using Simpson's Rule with 5 function values.
- (ii) Water flows past this section at a rate of 5 metres per second. What is the volume of water passing this section per second?
- (b) Alex deposits \$75 into a superannuation fund at the beginning of each month. The fund pays 15% per annum interest which compounds monthly and is paid at the end of each month.
 - (i) Find the value of the fund at the end of 5 years.
 - (ii) How many months will Alex need to contribute to the fund if he wishes the fund to be worth \$40 000?
- (c) (i) Without using calculus, sketch the graph of $y = e^x + 1$.
 - (ii) Write down the number of solutions to the equation e' + 1 = x + 3.

Clearly indicate the solutions on your graph.

Please turn over

Que	Question 8 (12 marks) Use a SEPARATE writing booklet.		
(a)	Differentiate $y = 2^s$.	1	
(b)	Given that $\log_a b = 2.57$ and $\log_a c = 0.35$, find the value of $\log_a (bc)^2$	2	
		2	
(c)	(i) Differentiate $y = \log(\cos x)$ (ii) Hence find $\int \tan x dx$	1,000	
(d)	A particle is moving in a straight line with its displacement x refixed point at time t seconds given by $x = t^3 + t^2 - 5t + 2$, $t \ge t$	metres from a 0.	
	(i) Find expressions for the velocity and acceleration of the	e particle. 2	
	(ii) Comment on the acceleration of the particle throughout	it its motion.	
	(iii) In what initial direction is the particle moving?		

Please turn over

At what time does the particle come to rest?

- (a) In a jewel box there are 4 gold and 2 silver coins. Two coins are chosen at random from the box and the first coin is not replaced before the second coin is drawn. Find the probability that:
 - (i) both coins are gold.
 - (ii) at least one coin is gold.

- 2
- (b) In the diagram ABC is a triangle with a right angle at B, AB = BC = 6 cm and \angle CAB = $\frac{\pi}{4}$ radians.

PB is an arc of a circle with centre A, radius AB, and meets AC at P.

NOT TO SCALE

- (i) Find the exact area of the sector ABP.
- (ii) Find the exact area of the shaded portion BPC.
- (c) (i) Show that ke^0 , ke^{-1} , ke^{-2} , ... are the first terms of a geometric series.
 - (ii) Explain why this series has a limiting sum.
- (d) The value, V, of a machine which loses value over time, t years, is given by $V = V_0 e^{-kt}$ where V_0 was the value of the machine when new and k is a constant, k > 0.
 - (i) The new price of the machine was \$178 000 and it loses 16% of its value in the first year. Use this information to show that k = 0.174.
 - (ii) The value of the machine continues to fall by 16% each year. Once the machine's value is less than 10% of its original price, the company can write the machine off.

After how many years can the machine be written off?

2

- (a) A cylindrical can is to be constructed in such a way that the sum of its height, h, and its diameter, 2r, is 18 cm.
 - (i) Show that the volume of the can, V, is given by $V = 18\pi r^2 2\pi r^3$.
 - (ii) Find the dimensions of the can that give the maximum volume.
- (b) The quadrilateral ABCD is a parallelogram with diagonal AC perpendicular to DC. The two diagonals intersect at E.

NOT TO SCALE

Show that $DE^2 + 3EA^2 = AD^2$.

3

(c) The isosceles triangle ABC has equal sides, AB and AC, of length x metres. The perimeter of the triangle is 1 metre and $\angle ABC = \theta$ radians. T is the midpoint of BC.

(i) Show that $\sin \theta = \frac{\sqrt{x - \frac{1}{4}}}{x}$

3

(ii) Hence, or otherwise, show that the area of triangle ABC is given by $A = (\frac{1}{2} - x)\sqrt{x - \frac{1}{4}}.$

.