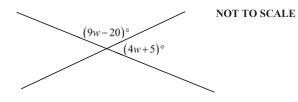
5	*	S.S.	7
Contraction of the second		LUS RADIO	ENER


ABBOTSLEIGH

Student Number: Student Name :

Student Teacher:

Question 1 (12 marks) Start a new booklet

- Factorise $2h^2 + 11h + 15$ (a)
- Find the value of w in the diagram: (b)

(c) Given $a = \frac{2}{7}$, $b = \frac{3}{5}$ and $c = 4\frac{1}{8}$, evaluate $\frac{b^2 - a}{2\sqrt{c}}$ 2 in scientific notation to 3 significant figures.

Marks

1

2

1

1

- (d) Express $\frac{\log_3 8}{\log_3 2}$ as an integer
- (e) Determine the value of n to make the following expression equal to a single digit number:
 - $5^2 \times 2^4 \times 10^{-n}$

(f) Evaluate
$$\lim_{x \to 4} \frac{x^3 - 64}{x - 4}$$
 2

(g) Show that $\frac{21}{\sqrt{63}} - \frac{3}{\sqrt{7}+2} = 2$ 3

End of Question 1

AUGUST 2011

YEAR 12

ASSESSMENT 4

TRIAL HIGHER SCHOOL CERTIFICATE **EXAMINATION**

Mathematics

General Instructions

• Reading time - 5 minutes.

- Working time 3 hours. ٠
- Write using blue or black pen. •
- ٠ Board-approved calculators may be used.
- A table of standard integrals is • provided.
- All necessary working should be shown in every question.
- Attempt Questions 1-10. •

Total marks (120)

- •
- All questions are of equal value.

Question 2 (12 marks) Start a new booklet

Marks

2

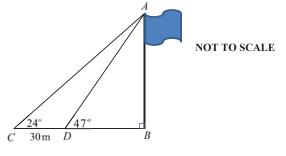
1

2

2

2

1


2

(a) Find the area of the rhombus ABCD given
$$AB = 13$$
 cm and $EB = 12$ cm.

Find the point A which is the y intercept of 4x - 3y - 12 = 0(b) (i)

- Hence find the equation of the line passing through (ii) A, which is perpendicular to 4x - 3y - 12 = 0
- Harry finds that the angle of elevation of the top of a flagpole, A from C is 24° as shown in the diagram below. He walks 30 metres towards the flagpole and (c) now finds that the angle of elevation is 47°.

i) Use the Sine rule to show that
$$AD = \frac{30 \sin 24^{\circ}}{\sin 23^{\circ}}$$

(ii) Hence show that
$$AB = \frac{30\sin 24^{\circ} \sin 47^{\circ}}{\sin 23^{\circ}}$$

(iii) Calculate the length AB correct to 2 significant figures.

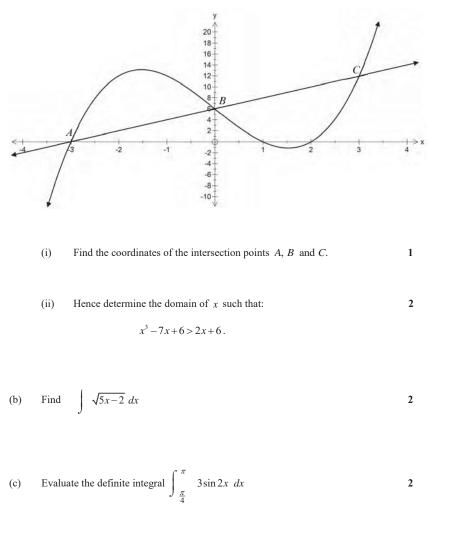
Solve for *x*: $(4x-3)^2 = 25$ (d)

End of Question 2

Quest	tion 3 (12 marks) Start a new booklet	Marl
(a)		oints A and B have coordinates (2, 0) and (0, -2) respectively. a diagram in your assessment booklet, clearly marking A and B.	
	(i)	Find the gradient AB.	1
	(ii)	Show the equation of line <i>l</i> that passes through B and is perpendicular to AB is given by $x + y = -2$	2
	(iii)	Show that C, the point of intersection of l and the x-axis has coordinates (-2, 0).	1
	(iv)	If D is the point (0, 2), write down the equation of the circle passing through the points A, B, C and D.	1
	(v)	Show the area between the circle ABCD and the quadrilateral ABCD is $4(\pi - 2)$ square units.	2
(b)		late the perpendicular distance of the point $(3, -1)$ from the line $3x+2$.	2
(c)	Find t	the equation of the tangent to the curve $y = 5\log_e x$ at $x = 1$.	3

End of Question 3

4

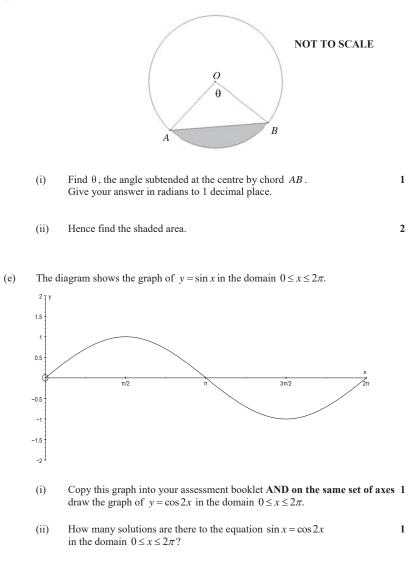

ks

Question 4 (12 marks) Start a new booklet	Marks	Question 5 (12 marks) Start a new booklet Marks	5
(a) Differentiate with respect to <i>x</i> :			
(i) $e^{\cos x}$	2	(a) If α and β are the roots of the equation $6x^2 - 2x + 1 = 0$ find:	
	2	(i) $\alpha + \beta$ 1	
(ii) $\frac{2-x}{3x+4}$	2	(ii) $\alpha^2 + \beta^2$ 2	
		(b) Given the equation of the parabola $x^2 - 2x - 8y - 15 = 0$	
(b) Find the values of x for which the curve $y = x^3 - 6x^2 + 9x - 4$ is increasing.	2	(i) Show that the equation of the parabola can be expressed as: $(x-1)^2 = 8(y+2)$	
		(ii) Find the vertex. 1	
(c) The first three terms of an arithmetic progression are 51, 44 and 37.		(iii) Find the focus. 1	
(i) Write down the nth term for this sequence	2	(iv) Find the equation of the directrix. 1	
(ii) If the last term of the sequence is -47, how many terms are there in this series?	2	(v) Sketch the parabola showing where it crosses the y axis, the focus and the directrix.2	
(iii) Find the sum of this series.	2	(c) The derivative of a function is given by $f'(x) = 15(5x-1)^2$. 2	
		If $f(0) = 10$, find the equation of $f(x)$.	
End of Question 4			

End of Question 5

Marks

(a) The following diagram shows the graphs of $y = x^3 - 7x + 6$ and y = 2x + 6



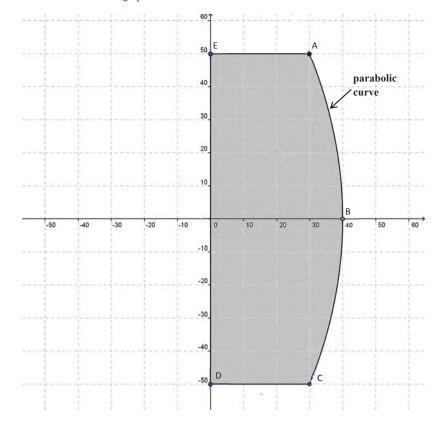
7

Question 6 continued

(d) A circle has a radius of 20 cm and arc AB is 32 cm.

End of Question 6 8 Marks

Question 7 (12 marks) Start a new booklet			Marks	
(a)		ometric sequence has a second term 6 and the ratio of ixth term to the fifth term is 3. Find the first term.	2	
(b)	(i)	Show that $\int_{0}^{3} \frac{2}{x+1} dx = \log_{e} 16$	2	
	(ii)	Hence use the Trapezoidal rule with four function values to find an approximation of $\log_e 16$	3	
(c)	Com The f	y's parents invest \$1200 each year in a superannuation fund for her. pound interest is paid at 9% per annum on the investment. irst \$1200 is to be invested on Nancy's first birthday. The last is to vested on her 21 st birthday. To the nearest dollar:		
	(i)	How much is the first investment worth on Nancy's 22 nd birthday ?	2	
	(ii)	What is the total investment worth on Nancy's 22 nd birthday ?	3	


Quest	ion 8 (12 marks) Start a new booklet	Marks
This q	uestion considers the function defined as $f(x) = e^{-\frac{x^2}{2}}$.	
(i)	State the domain of $f(x)$.	1
(ii)	Show that $f(x)$ is an even function.	1
(iii)	Show that $f'(x) = -xe^{-\frac{x^2}{2}}$	1
(iv)	Find the stationary point of $y = f(x)$ and determine its nature.	2
(v)	Use the product rule to show that $f''(x) = (x^2 - 1)e^{-\frac{x^2}{2}}$	2
(vi)	Find the two points at which $f''(x) = 0$ and show they are points of inflexion.	2
(vii)	By considering the value that $f(x)$ approaches as x becomes large, state the range of $f(x)$.	1
(viii)	Sketch $y = f(x)$ showing the information found above.	2

End of Question 8

End of Question 7

Question 9 (12 marks) Start a new booklet

(a) A wine barrel has been designed by rotating the shape ABCDE (shown in the following diagram) about the y axis. The curve ABC is parabolic. The point B is the vertex of this parabolic curve. All units on the graph are shown in cm.

- (i) Using the formulae $(y-k)^2 = -4a(x-h)$ show that the equation of the parabolic curve in the diagram is $y^2 = -250x + 10000$
- (ii) All units on the graph are shown in cm. By rotating the shaded area 3
 around the y-axis, find the volume of the barrel in Litres, where l cm³=1mL.

Question 9 continued on page 12

Question 9 continued

Marks

3

- (b) A particle is moving in a straight line. Its velocity, v as a function of time t ($t \ge 0$) is given by $v = \frac{4}{t+1} - 2t$.
 - (i) Find when the particle changes direction. 2

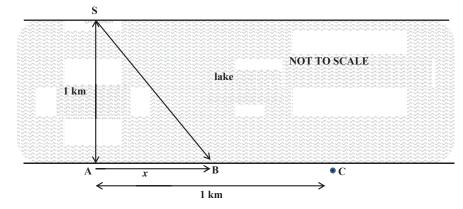
Marks

- (ii) Find the exact distance travelled in the first two seconds. 2
- (iii) What is the acceleration of the particle as $t \to \infty$ 2

End of Question 9

11

Question 10 (12 marks) Start a new booklet


3

4

(a) Show that
$$\frac{(1 + \tan^2 \theta) \cot \theta}{\csc^2 \theta} = \tan \theta$$
 3

(b) By using the identity $\cos \alpha = 2\cos^2 \frac{\alpha}{2} - 1$, (**do not prove this**) find the solutions to the equation $\cos \frac{\alpha}{2} = 1 + \cos \alpha$ for the domain $0 \le \alpha \le 2\pi$

(c) Suzy wishes to return to camp. She is standing at S, on the edge of a lake, which is 1km wide. The camp (at C) is one km from the direct opposite side (Point A) from where Suzy is currently standing, as shown in the diagram. She knows she walks at 3km/h and swims at 2km/h and wonders to herself at what distance, x, from the point opposite, should she swim to, in order to minimise the time to get to camp. Note that point B is a distance of x from point A.

(i) Using time =
$$\frac{\text{distance}}{\text{speed}}$$
, show that the total elapsed time, *T* in swimming 2
to point B and walking from there to camp is given by $T = \frac{3\sqrt{1+x^2}+2-2x}{6}$

(ii) Knowing that Suzy wants to take the least amount of time getting back to camp, show that $x = \frac{2}{\sqrt{5}} km$ AND determine her travel time in hours (correct to one decimal place).

End of assessment

Question 1	ematics Exam 2011 Q (q) 21 _ 3 x 17-2
a) (2h+5)(h+3)	Q1 (g) 21 _ 3 × <u>17-2</u> 1 1 1 1 1 1 1 1
9w - 20 + 4w + 5 = 180	$= \frac{2}{2} \frac{1}{5} \frac{1}{5} - \frac{3}{5} \frac{(47 - 2)}{3}$
13W = 195	
W = 15	$= 21\overline{47} - \overline{47} + 2$
$\frac{b^2 - a}{2\sqrt{c}} = \frac{\left(\frac{3}{6}\right)^2 - \frac{2}{7}}{2\sqrt{11}}$	= 17-17+2
212 214	= 2
= 0,01828787861	Question 2
= 1.83 × 10 ^{-z}	(a)A, 13 B AE = 5 (by Pythagoras)
$\frac{(d)}{\log_3 8} \frac{\log_3 2^3}{\log_3 2} \frac{\log_3 2^3}{\log_3 2}$	$A = \pm x A C \times D B$
log3 2 log3 2	$= \frac{1}{2} \times (2 \times 5) \times (2 \times 12)$
$= \frac{3\log_3 2}{\log_3 2}$	= 120 cm ²
= 3	(b)(A+A, x=0
	:. 0-3y-12=0
$\frac{(e)}{2} 5^{2} \times 2^{4} \times 10^{-n} = 400 \times 10^{-n} = 4 \times 10^{2} \times 10^{10}$	y = -4 $A=(0, -4)$
:. 2-n=0	(ii) $3y = 4x - 12$
n = 2	$y = \frac{4}{3} - 4$
f) $\lim_{z \to 4} \frac{z^3 - 64}{z - 4}$	
$= \lim_{x \to 4} \frac{(x - 4)(x^2 + 4x + 1b)}{x - 34}$	egn of line with my + thruth
1	y = -3 - 4 4 $y = -3 - 4$
$= \frac{4^2 + 4 \times 4 + 16}{48}$	$\begin{array}{c} (c) (i) In \ \Delta \ A \subset D, \\ \hline AD \ -30 \ C \ 24^{\circ} \ 47^{\circ} \\ \hline Sin \ 24^{\circ} \ Sin \ 24^{\circ} \ Sin \ 24^{\circ} \end{array}$
	$AD = \frac{30 \sin 24^{\circ}}{\sin 23^{\circ}}$

1	71. 91
	Q3(b) dist of (3,-1) for
$Q_2(c)(\hat{u})$	$\frac{430}{3x - 4y + 2z0}$ is $\frac{4}{dz} = \frac{4x_1 + 8y_1 + c}{4z}$
$I_n \triangle ABD, LB = 90^\circ$	A d. TAXI+BYITCI
$\therefore \sin 47^\circ = \frac{AB}{AD}$	AZ 1BZ
AD	$= \frac{3 \times 3 - 4 \times -1 + 2}{2}$
AB = ADSin 47°	<u>59+16</u>
= 30 sin 24° sin 47°	= 15
Sin 23°	5
	= 3 units
(iii) AB = 22.83936	
= 23m to 2 sig figs	
(h) /	(c) y = 5 loge 24
$(d) (4x - 3)^2 = 25$	When x = 1, y = 5loge 1
$4x - 3 = \pm 5$	=0
4x = 5+3 or $4x = -5+3$	$dy = 5 \times \frac{1}{3L}$
$\chi = 2$ or $\chi = -\frac{1}{2}$	da Sc
-	A(1,0) m=5
Question 3 My	ieges of tangent is
12	1 - 12 - 5(x - 1)
(a) 2	y - 0 = 5(z - 1) , $y = 5z - 5$
-3 -2 -1 1 2 3	9=32=3
-3 -2 -1 1 2 3 A	m
	Question 4 cosoc
B • -2	Question 4 (a) (i) $y = e^{\cos x}$ $y' = -\sin x e^{\cos x}$
	y'=-sinxe
(i) $m_{AB} = \frac{2}{2} = 1$	
2	(ii) $y = \frac{2 - \pi}{3\pi + 4}$
(ii) $m_{l} = -1$ y int = -2	3x+4
y = -x - 2	$y' = (3\pi + 4) \times -1 - (2 - \pi), 3$
$x_{ty} = -2$	$(3x+14)^2$
(iii) & meets 2 axis when y=0	= -3x - 4 - 6 + 3x
$\therefore C = (-2, 0) (x+0=2)$	(3x+4)2
	= -10
(iv) circle has centre (0,0)	=
$\frac{radus 2 : x^{2} + y^{2} = 4}{(y) A = \pi r^{2} - AB^{2}}$ = $\pi x 2^{2} - (A^{4+4})^{2}$	$(3x+4)^2$
(V) $A = Tr^{2} - AB^{2}$	
$= \frac{1}{4} \frac{1}{1} \frac{1}{2} - \frac{1}{2} $	
$= 4(\pi - 2) $ 0 ⁻	1

	1
Q4(b)	05
$\frac{(46)}{y=x^3-6x^2+9x-4}$	$(4i) x^2 - 2x + 1 = 8y + 15 + 1$
-u-3x -12x+9	$(2i-1)^2 = 8(y+2)$
Jaurne increasing when	(ii) V = (1, -2)
y'>0	(iii) 4a = 8
· : 3/22-4x+3)>0	.: a=2 -2
3/2-3)/2-1)20	$S = (1, \sigma)$
	(1V) direction is $\mu = -4$ -
13 = 261 052673	f (v) py
51 ×11 37	3 -1 (1,0) 2 4
$(c)(i) 51, 44, 37, \dots$	
a=51 d=-7	
$T_{n} = 51 + (n-1) - 7$	-2
<u>= 51 - 7n + 7</u>	
=58-7n	-4 <u>y=-4</u> -
(ii) $T_n = -47$	
: -47 = 58 - 7h	$(c) F'(x) = 15(5x-1)^2 - $
7n = 105	$F(z) = 15(5z-1)^3 + c$
n = 15	= 5×3 = (5×-1)3+2
; 15 Jerms	When $x=0$, $F(0)=10$
$\frac{(11)}{2} S_{15} = \frac{15}{2} (51 + -47)$	10 = -1 + c
	$\frac{c_{\pm} 11}{\pm (z) = (5z - 1)^3 + 11} - \frac{c_{\pm}}{-1}$
= 7.5×4	$\pm(z) = (5z - 1) + 11$
= 30	
<u> </u>	Question 6
Question 5	(a) (i) A (-3, o) B (0, 6) -
(a) $6x^2 - 2x + 1 = 0$	(3,12)
roots and d+B	(ii) encre above line
$(i) \alpha + \beta = -b$: -3" < x < 0 or x73
$\begin{array}{c} (i) \alpha + \beta = -b \\ = \frac{2}{6} \end{array}$	(b) ((5x-2)/2 dz
$\frac{=1}{3}$ $(ii)d^{2}tB^{2} = (d+B)^{2} - 2dB$	
$(ii)d^2 + \beta^2 = (d + \beta)^2 - 2d\beta$	= 2(5x-2) + c -
$= \left(\frac{1}{3}\right)^2 - 2 \times \frac{1}{6}$	3×5
= - 2/9	= 2 (5x-2) 521-2 +c
· 1	13

101	177
<i>Ψ</i> ⁶ <i>π</i>	
(c) f ¹¹ 3sin Zz dz	$(b)(i) \int_{0}^{3} \frac{2}{1+x} dx$
71	0 1+x
$= \begin{bmatrix} -\frac{3}{2} \cos 2\alpha \end{bmatrix}_{TT}$	$= 2 \left[\log_{e} \left(\chi + I \right) \right]^{3}$
L 2 -174	-7(lm 4 - lm 1)
$= -3\left[\left(\cos 2\pi - \cos \pi\right)\right]$	- log 42
21 2)	$= 2(lm 4 - lm 1)$ $= log 4^{2}$ $= log e 16$
3 /1-0)	
$\frac{z-3}{2}(1-0)$	$(1) \qquad \qquad \hline x \circ (23) \\ y z 1 \frac{3}{3} \frac{5}{2}$
- = -3	\$123 W FT
= -3	log 16 = area under y= 2 from 0 to 3
	from 0 to 3
(d) r= 20 cm h= 32 cm	from 0 to 3 = are. al 3 trapezia
i) l= ro	= + (f(0) + f(3) + 2f(2)+2
32 = 200	
$ \begin{array}{c} \theta = 32 \\ \hline 20 \\ = 1.6 \end{array} $	$\frac{1}{2}\left(\frac{2+1+2+4}{2}\right)$
$\begin{array}{c} (ii) A = \frac{1}{2}r^{2}(\theta - sin\theta) \\ = \frac{1}{2} \times 20^{2}(1.6 - sin 1.6) \\ = \frac{1}{2} 200 \times 0.600426. \end{array}$	÷ 35
=1x202(1.6-sin 1.6	$ \stackrel{\doteq}{=} \frac{35}{2.916} $
-2200 × 0.600426.	- 20110
= 120, 0852	(C) (i) First \$1200 in rested at
$= 120 \text{ cm}^2$	9% p.a. for 21 years
(e)_(i)	- worth \$1200 (1+ 0.09)21
~	± \$ 7330.57
yesin z	(i) Total investment works
	ZT \$1200 (1.09) ²¹ +\$1200 (1.09) ²⁰ +
	$\frac{2}{10} + \frac{1200(1.09)^2}{100} + \frac{1200(1.09)}{100}$
$f_{y=\cos 2\pi}$	= \$1200 (GP a= 1.09 r= 1.09
(ii) 3 solutions	n=21)
<u> </u>	\$1200 (1.09 (1.0921 - 1)
Question 7	1.09 - 1 -
(a) $T_2 = 6 = ar$. $T_6 = 3 = ar^5$ $T_5 = ar^4$	= \$74200 to neared. \$
T5 art	
r=3 ! a= Z=fot term	

Q8 (11)		Question 8 22
an cuit	NY	Question 8 χ^2 (a) $f(x) = e^{-\chi^2}$
	-	
		(i) an real x (-x)2
K.		$(i) f(-x) = e^{-2}$
2 -1	1 2	(i) $f(-x) = e^{-\frac{(-x)}{2}}$ = e^{-x}
		- f/2)
Question 9		$\begin{array}{c} \vdots exen function \\ (iii) f'(x) = -\frac{2x}{2} e^{-\frac{x^2}{2}} \\ z -\frac{x^2}{2} \end{array}$
(a) (i) vertex is	(40 0) = B	(ii) $P'(x) = -2x - \frac{\pi^2}{2}$
in h= 40	(70,0)=0	$\frac{111}{2} + \frac{1}{2} - \frac{2}{25}$
n= TO	N=U	=-20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4a(x-40)	0.
$A_1 H_1 \chi_{=}$	30, y=50	(iv) stat. pt. when f'(x)=0
: 502 = -	4a x -10	$\frac{1}{2} - \chi e^{-\chi^2/2} = 0$ Only when $\chi = 0$ since $e^{-\chi^2/2}$
a = 25	00	Only when x=0 since e Fo
- 17	0	Af(0,1), f'(x) = 0
- 12	3	$\begin{array}{c} Af (0,1), f'(z) = 0\\ If z = -0.5, f'(z) > 0 \\ \end{array}$
$y^2 = -29$ $y^2 = -2$	0/x-40)-	If x = 0.5, f'(x) = 0.000
1,2 -7	577 110000	:. max. t. pt at (0,1)
9=	502710000	
1) V- T (50	2 du	$ (v) f''(z) = e^{-\frac{x^2}{2}} - 1 + -x - ze^{-\frac{x^2}{2}} = e^{-\frac{x^2}{2}} (x^2 - i) $
(i) $V = \pi \int_{-50}^{50}$	n ay	$(v) + (z) = e^{-x^2/2} + -x^{-2}/2 = -x^2/2$
-50	10,00 - 42-12	
=LT [-	10:00 - y2)2 dy 250	(ii) f!(x) = 0 when x2-1=0
		1 (a) = 0 = 1 = 0
= 2TT / 160	0-8 3+ 4 25 5 62500	$x = \pm 1 (e^{-x^{2}/2} > 0 \text{ for all } x)$
		When z=-1.5, f"/-1.5)=0.40_
271 (16004 - 8	- y3 + y5 5x62500	When x = -0.5, p"(-0.5) = -0.66
		<pre> A si ha dec ses</pre>
2- 11400x 50-	8 53, 5051	: concavity changes : inflexion at (-1, e=)
-2+ (1600×50-	5 312500/	Ille Aller and the Aller
		When x = 0.5, f"(x) = 0.66
<u>= 406 000 π</u>		When x=1.5, f'(x) = 0.40-
5	- 3/	- concavity charges -11
÷ 425162.2	ose cm /mL	in concavity changes in plexion at (1, e 2)
- 475 112	libec	(vii) Asx > 0, f(x) > 0
425.162	L'IT-S	: range is 0 < y = 1

Q9(b)	. 09
(iii) acc = dv	$(b) V = \frac{4}{\chi + 1} - 2\chi$
(iii) acc = dv	£+1
$= -4(t+1)^{2}-2$	2 (i) changes directions when
= -4 -	> It stop - V=0
$As \neq \Rightarrow \infty \qquad \frac{(k+1)^2}{(k+1)^2}$	$\frac{1}{2t} = \frac{4}{t+1}$
As x > 00 -4.	-> 0 t+1
(C+D2	$2t^2 + 2t - 4 = 0$
iacc -> -2 uni	$\frac{t^2}{t^2} = \frac{t^2 + t - 2}{t^2} = 0$
	(t+2)(t-1)=0
Question 10	t=-2 or t=1
$\frac{(a) LHS = (1 + \tan^2 \theta) (o + \theta)}{\cos^2 \theta}$	t > 0 2. only t= 1
	So partile changes directions
= sec ² 0, coto :	sinza after second.
= 1 coso	SINZA
COS20 Sing	$\frac{1}{1}$ (ii) $x = \int \frac{4}{t+1} - 2t dt$
= LOST Sinto	
cos o . Jano	$= 4 l_h (t+1) - t^2$
= SILO	When $t=0$, $x=4\ln 1-0(=0)$
LOSO-	When t=1, x= 4/h2 -1
= tom 0	When t=2, x=4/h3-4
= RH3	Distance travelled
$b)\cos \frac{d}{2} = \frac{1 + \cos d}{2} = \frac{1 + \cos d}{2}$	$= 4 \ln 2 - 1 + (4 \ln 2 -) - (4 \ln 3 - 4)$
= + 2005 2	$-1 = 4 \ln 2 - 1 + 4 \ln 2 - 1 - 4 \ln 3 + 4$
	= 8/112 - 4/113 + 2
$\frac{1}{2}\cos d = 2\cos^2 d$	$= 2 + 4 \ln 4 - 4 \ln 3$
-	= 2 + 4 (ln4 - ln3)
$\frac{2\cos^2\alpha}{2} - \cos \alpha = \frac{2}{2}$	=0 = 2 + 4 ln 4 3
205 A (7:05 A -1) = (2
$\frac{\cos \alpha}{2} \left(\frac{2\cos \alpha}{2} - 1 \right) = 0$	
$1.\cos \frac{1}{2} = 0 oR \ \cos \frac{1}{2}$	
X-IT of X-IT/NS	
$x = \frac{1}{2}$ or $x = \frac{1}{3}$ $\left(\frac{x}{2}\right)$	
1. L = Tar 2T	1

	1
S. (2-2	
10 (F) T- D 1 1+2	
S Z BAC	
10.C) T = D I S T = B T C S T = B T C S T = B T C T = B T C T = D T =	
= fitz2 hours	
2	
+ time to walk from Bto C	
- 1-× hours	
3	
(NB z is in km)	
-	E.
$T = \sqrt{1+\alpha^2}$, $1-\alpha$ F''	
$\frac{2}{3} = \frac{3}{\sqrt{1+x^{2}+2(1-x)}} = \frac{3}{6}$	
Б	
= 3/1+22 + 2 - 2x	
6	
ii) T is minimum when dT =0	
IT da	
$\frac{dT}{dx} = \frac{1}{6} \left(\frac{3}{2} (1+x^2)^{\frac{1}{2}} 2x - 2 \right)$	
- X 1	and the second s
$\frac{-\chi}{2\sqrt{1+x^2}} - \frac{1}{3}$	+ //
= 0 ulas 1 - x	
=0 when $l = x3 2 \sqrt{1+n^2}$	
All 12 - 37	
$\frac{1}{1+x^2} = \frac{3x}{2}$	
$1 + \chi^2 = 9\chi^2$	
$ \begin{array}{c} 1 + \chi^2 = 9\chi^2 & 2 \\ 4 + 4\chi^2 = 9\chi^2 \\ \chi^2 = 4 \\ 5 & \chi = \pm 2 \\ 75 \\ \end{array} $	
$\chi^2 = 4$; $\chi = \pm 2$	
$ut x > 0 \therefore x = \frac{2}{15} km$	1
$all m \alpha = 0$, $d_{-} - 1 = 0$	
$\frac{d}{dx} = 0, \frac{d}{dx} = -\frac{1}{3} < 0$	
$\forall han z = 1, \frac{dT}{dr} = 0, \dots, > 0$	
$\frac{dt}{dx} = 1, \frac{dT}{dx} = 0, \dots, > 0$ $\frac{dt}{dx} = 0, \dots, > 0$ $\frac{dt}{dx} = 0, \dots, > 0$ $\frac{dt}{dx} = 0, \dots, > 0$	
15	
= 0.7066 h = 0.7 h	
6 1	