ASCHAM SCHOOL

YEAR 12

MATHEMATICS TRIAL EXAMINATION

2008

Time allowed: 3 hours

Total marks: $\mathbf{1 2 0}$
Plus 5 minutes reading time

Instructions

1. Attempt all questions.
2. Write in blue or black pen.
3. All questions are of equal value.
4. All necessary working should be shown in each question. Marks may be deducted for badly presented work.
5. Standard integrals are provided at the back of the paper.
6. Board- approved calculators may be used.
7. Answer each question in a separate writing booklet.

QUESTION 1

a) Evaluate to 2 decimal places: $\sin 6$
b) Factorise $18 x^{2}-2$
c) Solve for x and y :
$2 x-y=5$
$3 x+y=10$
d) Write as a single fraction in simplest form: $\frac{x}{4}-\frac{x-1}{8}$
e) Rationalise the denominator and write in simplest form:

$$
\frac{\sqrt{3}-2}{2 \sqrt{3}+1}
$$

f) Solve for x : $|x-4| \leq 2$
g) For what values of x will the series $1+(1+x)+(1+x)^{2} \ldots$ have a limiting sum?

QUESTION 2

a) Differentiate with respect to x :
i) $\quad x \sin 2 x$
(2)
ii) $\frac{\ln 2 x}{x}$
ii) $\quad \cos x^{2}$
(2)
b) Integrate with respect to x :
i) $\sec ^{2} 2 x$
(1)
ii) $\quad \frac{e^{-2 x}+e^{x}}{e^{x}}$
(2)
c) Evaluate: $\int_{1}^{3} \frac{1}{(3 x-5)^{2}} d x$

QUESTION 3

a) On a number plane, plot the approximate positions of $A(0,3) B(4,5)$ and $\mathrm{C}(8 .-3)$
i) Show that the equation of AC is $3 x+4 y-12=0$
ii) Find the perpendicular distance from B to $A C$. (1)
iii) Find the co-ordinates of the point D such that $A B C D$
is a parallelogram.
iv) Find the area of parallelogram $A B C D$
b) Solve for x where $0 \leq x \leq 2 \pi$: $2 \sin ^{2} x=\sin x$
c) Find the value(s) of p if the roots of the equation $4 x^{2}-p x+9=0$ are not real.
(3)

QUESTION 4

a) Find the co-ordinates of the focus and the equation of the directrix of the parabola with equation

$$
\begin{equation*}
2 x+y^{2}-8 y=0 \tag{4}
\end{equation*}
$$

b) The gradient function of a curve is $2 e^{-x}+3$. If the curve passes through the point $(1,4)$, find the equation of the curve. (2)
c) Find n if $\sum_{r=3}^{n}(3 r-5)=5191$ (4)
d) In triangle $A B C, A B=5, B C=4$ and angle $A B C=150^{\circ}$, find the exact length of $A C^{2}$.

QUESTION 5

a) Apply Simpson's rule with five function values to find an approximation to $\int_{0}^{\pi} \sin ^{2} x d x$
b) A sector $O A B$ of a circle centre O, radius 5 m , has area $\frac{25 \pi}{24}$ square metres.
i) Find, in degrees, the angle subtended by the arc at the centre.
ii) An ant crawling along the arc from A takes 12 minutes to reach B. What is its average speed in millimetres per second? Give your answer to 2 decimal places.
c) If the roots of equation $3 x^{2}-5 x-7=0$ are α and β, find $\alpha^{2}+\beta^{2}$
d) Solve for x if $2 \log x=\log 3+\log (x+6)$

QUESTION 6

a) Consider the function $y=4 \log x+6-x$ for $1 \leq x \leq 10$
i) Find the stationary point and determine its nature.
ii) Discuss the concavity of the curve in the given domain. (2)
iii) Sketch the curve of $y=4 \log x+6-x$ for $1 \leq x \leq 10$
b) PQRS is a rhombus with PT perpendicular to RS.

Draw the diagram below in your answer books and mark in the data.
ii) Find the size of angle VRQ

QUESTION 7

a) Tina wishes to fence off sections of her garden as shown in the diagram below where PS is an existing wall and the lines PQ, TR and QS represent the fencing.
She wishes to have a triangular garden (PQS) of 1600 square metres
i) Explain why $\mathrm{QP}=2 \mathrm{RT}$.
ii) Show that the length of fencing L needed is

$$
L=2 x+\frac{2400}{x} \text { metres. }
$$

iii) Find the exact value of x which will give the minimum length of fencing Tina needs.

b) i) On the same set of axes, draw the graphs of $y=\cos x$ and $y=\sin 2 x$ for $0 \leq x \leq \pi$
ii) The two graphs intersect at $x=\frac{\pi}{6}$ and $x=\frac{5 \pi}{6}$. Find the areas bounded fully by the two curves.

QUESTION 8

a) Consider the function whose derivative is given by
$\frac{d y}{d x}=x^{3}(x-2)(x+3)$. Which value of x will give a maximum turning
point on the graph of the function? Explain.
b) Find the exact volume if the region bounded by the curve $y=3 \log x$, the x axis and $\mathrm{x}=5$, is rotated about the y axis.
c) The amount Q grams of a carbon isotope in a dead tree trunk is given by $Q=Q_{0} e^{-k t}$ where Q_{0} and k are positive constants and time t is measured in years from the death of the tree.
i) Show that Q satisfies the equation $\frac{d Q}{d t}=-k Q$
ii) Show that if the half life of the isotope is 5500 years, then $\mathrm{k}=\frac{1}{5500} \ln 2$
iii) For a particular dead tree trunk, the amount of isotope is only 15% of the original amount in the living tree. How long ago did the tree die? Give your answer to the nearest 1000 years. (2)

QUESTION 9

a) A particle moves along a straight line so that its distance x in metres from a fixed point O is given by $x=2-3 \sin 2 t$ where time t is measured in seconds.
i) Where is the particle initially? (1)
ii) Show that the velocity $v=-6 \cos 2 t$
iii) In which direction is the particle travelling initially? Explain.
iv) Is the particle speeding up or slowing down when

$$
\begin{equation*}
t=\frac{\pi}{3} ? \text { Explain. } \tag{3}
\end{equation*}
$$

v) When does the particle first come to rest?
vi) Find the distance travelled by the particle in the first $\frac{\pi}{2}$ seconds.
vii) Find the average velocity in the first $\frac{\pi}{4}$ seconds
c) Given that $\grave{\mathbf{O}}_{0}^{2} f(x) d x=11$ and that $\dot{\mathbf{O}}_{0}^{3} f(x) d x=7$, what is the value of $\dot{\mathrm{O}}_{2}^{3} f(x) d x$.

QUESTION 10

a) Alex borrowed $\$ 10000$ on 1 January 2008 and agreed to repay it in equal six monthly instalments, the first being paid on 30 June 2008 and he last on 31 December 2018. She is charged 9% per annum interest compounded monthly.
$\$ A$, represents the amount owing after n months and $\$ \mathrm{M}$ represents the six monthly instalment
i) Write an expression for the amount Alex owes on 1 July 2008 after she has made her first payment?
ii) How many payments does she make altogether? (1)
iii) Find the value of M
b) A water tank is in the shape of a rectangular prism with a
base area of $12 \mathrm{~m}^{2}$ and a height of 2 m .
At 12 noon one day, water begins to enter the tank which was dry until then.
The rate at which the volume, V , of water in the tank changes over time hours is given by
$\frac{d V}{d t}=\frac{24 t}{t^{2}+15}$, where t is time in hours from 12 noon and V is measured
in cubic metres
i) Show that the volume of water in the tank at time t is given

$$
\begin{equation*}
\text { by } V=12 \ln \left(\frac{t^{2}+15}{15}\right) \tag{2}
\end{equation*}
$$

ii) At what time would the tank be completely filled with water if the water continued to enter the tank at the given rate. Answer in hours and minutes.
iii) At 4 pm the water is stopped from entering the tank and the existing water is pumped out. The rate at which the water is pumped out of the tank is given by
$\frac{d V}{d t}=\frac{t^{2}}{k}$, where k is a constant.
At exactly 6 pm the tank is empty.
Find the value of k to 3 decimal places. (3)

End of Examination

Solutions

$$
\text { c) } \begin{align*}
& \int_{1}^{3} \frac{1}{(3 x-5)^{2}} d x \tag{1}\\
= & \int_{1}^{3}(3 x-5)^{-2} d x \\
= & {\left[\frac{(3 x-5)^{-1}}{-1 \times 3}\right]_{1}^{3} } \tag{1}\\
= & -\frac{1}{3}\left[\frac{1}{3 x-5}\right]_{1}^{3} \\
= & -\frac{1}{3}\left(\frac{1}{9-5}-\frac{1}{3-5}\right) \\
= & -\frac{1}{3}\left(\frac{1}{4}+\frac{1}{2}\right) \\
= & -\frac{1}{3} \times \frac{3}{4} \tag{2}\\
= & -\frac{1}{4} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \text { QUESTION } 3 \\
& \text { i) } \begin{aligned}
m_{A C} & =\frac{3+3}{-8} \\
& =\frac{6}{8} \\
& =-\frac{3}{4}
\end{aligned} \\
& \text { equg } A C \\
& \begin{array}{l}
y-3=-\frac{3}{4} x \\
4 y-12=-3 x \\
3 x+4 y-12=0 \quad \text { (2) }
\end{array}
\end{aligned}
$$

$$
=\frac{20}{5}=4 \text { imits }
$$

III) See diagram for gradients $D(4,-5)$
iv) Area $\triangle A B C=\frac{1}{2} A C \times$ ieiq N

$$
A C=\sqrt{64+36}
$$

$$
=10
$$

\therefore Anea of porallelepram
$=2$ Axea of $\triangle A B C$
$=2 \cdot \frac{1}{2} \cdot{ }_{10} \times 4$
$=40$ square uirts
b) $2 \sin ^{2} x=\sin x \quad 0 \leqslant x \leqslant 2 \pi$ $2 \sin ^{2} x-\sin x=0$
$\sin x(2 \sin x-1)=0$
$\sin x=0$ or $\sin x=\frac{1}{2}$
$x=0, \pi, 2 \pi$ or $x=\frac{\pi}{6}, \frac{5 \pi}{6}$
c) $4 x^{2}-p x+q=0$
$\Delta=p^{2}-4 \times 4 \times 9$
$=p^{2}-144$
For non real roots $\Delta<0$
$p^{2}-144<0$
$(p-12)(p+12)<0$
$-12<p<12$
$-12<p<12$

[^0]b)ii) Averape speed

- dutance
$=\frac{r \theta}{12 \times 60}$
$=\frac{5 \times \frac{\pi}{12} \times 1000}{12 \times 60}$
$\doteq 1.81805 \ldots \mathrm{~mm} / \mathrm{sec}$
$=1.82 \mathrm{~mm} / \mathrm{scc}$ (2ap)
$3 x^{2}-5 x-7=0$
$\alpha \neq \beta=\frac{5}{3}$
$\alpha \beta=-\frac{7}{3}$
$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
$=\frac{25}{9}-2 \times-\frac{7}{3}$
$=\frac{25}{9}+\frac{14}{3}$
$=7 \frac{4}{9}$
x). $2 \log _{2} x=\log 3+\log (x+6)$

$$
\begin{gathered}
\log x^{2}=\log 3(x+6) \\
x^{2}=3 x+18 \\
x^{2}-3 x-18=0 \\
(x-6)(x+3)=0 \\
x=6 \text { ox }-3
\end{gathered}
$$

bat $x>0$
$\therefore x=6$
(2)
(3)

QUESTION 6

nахиміum turnippoint.
ii) $y^{\prime \prime}=\frac{-4}{x^{2}}$
inich is regative for all x
cure is alway concave, (2)
down $(x \neq 0)$

6b) C_{R}^{P}
i) $2 a \triangle s P Q V, R Q V$ $\angle P Q V=\angle R Q V$ (dugonak bisect $)$ $P Q=Q R$ (sides of roxobus) $Q V$ is comenon
$\therefore \triangle P Q V \equiv \triangle R Q V$ (SAS)
ii) $\angle Q P V=90^{\circ}\left(\begin{array}{c}\text { converior } \angle \text { to } \angle V T R \\ R Q \| S R\end{array}\right.$
$\left.\therefore \angle V R Q=90^{\circ} \quad \begin{array}{r}\text { natakinp } \angle S \text { of } \\ \text { conpruent } \\ \Delta S\end{array}\right)$
(2)

QUESTITN 7
a) i).
$\therefore S_{T}=T P$ ('ine formin madst sideo y) $\therefore R T=\frac{1}{2} a P$ (lisejoinip medps) $\therefore a P=2 R T$
$\text { i) } \begin{aligned} \text { Axea } & =\frac{1}{2} P Q \times 2 x \\ 1600 & =P Q \times x \\ \therefore P Q & =\frac{1600}{x} \end{aligned}$
$\begin{aligned} L & =2 x+\frac{1600}{x}+\frac{1}{2 \times 1600} \\ & =2 x+\frac{1600}{x}+\frac{800}{x} \\ & =2 x+\frac{2400}{x} \end{aligned}$

i'1) $L^{\prime}=2-\frac{2400}{x^{2}}$
For minnuem $\angle, L^{\prime}=0 * L^{\prime \prime}>0$
$2=\frac{2400}{x^{2}}$
$2 x^{2}=2400$
$x^{2}=1200$
$x= \pm \sqrt{1200}$
$\# \neq \sqrt{12}$
$= \pm 20 \sqrt{3}$
But $x>0$
$\operatorname{Ses} y L^{\prime \prime}: L^{\prime \prime}=\frac{4800}{x^{3}}$
of $x=20 \sqrt{3} L^{\prime \prime}=\frac{4800}{(20 \sqrt{3})^{3}}$
$\therefore i y=20 \sqrt{3}$
L is minuma lerpth
b) i) (2)

Area $-\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin 2 x-\cos x d x+$
$\int_{\frac{\pi}{6}}^{\int_{\frac{\pi}{2}}^{\frac{\pi}{6}} \cos x-\sin 2 x d x}$
$\left.=\left[-\frac{\cos 2 x}{2}-\sin x\right]^{\frac{\pi}{2}}+\left[\sin x+\frac{\cos 2 x}{2}\right]^{\frac{\pi}{2}}\right]^{\frac{5 \pi}{6}}$
$=-\left(\cos \pi+\sin \frac{\pi}{2}-\left(\frac{\cos \frac{\pi}{3}}{2}+\sin \frac{\pi}{6}\right)\right]^{2}$
$-\left[\frac{\cos \pi}{2}+\sin \frac{\pi}{2}-\left(\frac{\cos \frac{\pi}{2}}{2}+\sin \frac{\pi}{6}\right)\right]$
$+\left(\sin \frac{5 \pi}{6}+\cos \frac{5 \pi}{2}\right.$
$+\left(\sin \frac{5 \pi}{6}+\frac{\cos \frac{5 \pi}{3}}{2}-\left(\sin \frac{\pi}{2}+\frac{\cos \pi}{2}\right)\right.$
$=-\left(-\frac{1}{2}+1-\frac{1}{4}-\frac{1}{2}\right)+\left(\frac{1}{2}+\frac{1}{4}-1+\frac{1}{2}\right)$
$=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$ units 2

Question 8
$d y=x^{3}(x-2)(x+3)$
D) $\frac{d y}{d x}$

x	-4	-3	-1	0	1	2	3
$\frac{d y}{d x}$	-384	0	6	0	-4	0	162
maximum buraciag poin							
at $x=0$							

| (3) |
| :--- | :--- |

b) $y=3 \log x$

$$
\begin{align*}
& \begin{array}{r}
3 \log 51
\end{array} \begin{array}{r}
y=3 \log x \quad \\
\frac{y}{3}=\log x \\
e^{y / 3}=x
\end{array} \\
& \text { Volume }=\pi \int^{3 / 095} 25-\left(e^{y / 3}\right)^{2} d y \\
& =\pi\left[25 y-\frac{e^{\frac{2 y}{3}}}{2 / 3}\right]_{0}^{3 \log 5} \\
& =\pi\left[75 \log 5-\frac{3}{2} e^{2 / 955}-10-\frac{3}{2} i\right] \\
& =\pi\left[75 \log 5-\frac{3}{2} \times 25+\frac{3}{2}\right] \\
& =\pi\left[75 \log 5-\frac{75}{2}+\frac{3}{2}\right] \\
& =\pi\left[75 \log 5-\frac{72}{2}\right] \\
& =\pi(75 \log 5-36) u^{3} \tag{4}
\end{align*}
$$

a) $x=2-3 \sin 2 t$
i) $t=0 \quad x=2$

$$
\begin{aligned}
& =0 \quad x=2 \\
& \therefore \text { particle is } 2 m \text { to right of } 0
\end{aligned}
$$

ii) $v=-3 \cos 2 t \times 2$

$$
=-6 \cos 2 t
$$

(1)
(II) $t=0$

$$
v=-6 \cos 0
$$

$$
=-6 \times 1
$$

$$
=-6
$$

$$
\therefore \text { particle is travelling to }
$$

the left
iv) $t=\frac{\pi}{3} \quad v=-6 \times \cos \frac{2 \pi}{3}$
$\begin{array}{lll}=-6 \times-2 & \\ =3 & \mathrm{~V}\end{array}$

$$
\begin{align*}
a & =12 \sin 2 t \quad \frac{1}{2} \tag{1}\\
t=\frac{\pi}{3} \quad a & =12 \sin \frac{2 \pi}{3} \\
& =12 \times \frac{\sqrt{3}}{2} \\
& =6 \sqrt{3}
\end{align*}
$$

$$
\therefore \text { particle is speediq up }
$$

v) Particle comes to rest when $v=0$ re. $-6 \cos 2 t=0$ $\cos 2 t=0$
$2 t=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$ $2 t=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$
$t=\frac{\pi}{4}$ or $\frac{3 \pi}{4}$ $t=\frac{\pi}{4}$ or $\frac{3 \pi}{4}$

- particle fist cones to pest apter $\frac{\pi}{4}$ seconds
vi) $t=0 x=2$ $t=\frac{\pi}{4} \quad x=2-3 \sin 2 \times \frac{\pi}{4}$

$$
=2-3 \sin \frac{\pi}{2}
$$

$$
=2-3
$$

$$
\begin{aligned}
t=\frac{\pi}{2} \quad \begin{aligned}
x & =2-3 \sin \pi \\
& =2-0
\end{aligned}
\end{aligned}
$$

$$
\begin{equation*}
=2 \tag{2}
\end{equation*}
$$

In st $\frac{\pi}{2}$ seconds the
particle travels $3+3=6$
vi) Average velocity
$=\frac{-3}{\frac{\pi}{4}}$
$=-\frac{12}{\pi} \mathrm{~m} / \mathrm{s}$
or $\frac{12}{\pi} \mathrm{~m} / \mathrm{s}$ in reparive direction
c) $\begin{aligned} \int^{3} f(x) d x & =7-11 \\ & =-4\end{aligned}$

Question 10
a) $\$ 10000 \quad \operatorname{Gan} 2008$ 6 monthly inst from 30 June 2008 9% pa $=\frac{9}{12} \%$ pm $\int_{\text {payments }}^{22}$
$=0.0075 \mathrm{~J}$ llyears
i) $A_{6}=10000(1.0075)^{6}-M$
ii) 22 payments
ii) $A_{12}=10000(1.0075)^{12}-m\left(1+1.0075^{6}\right)$
$\dot{A}_{132}=10000(1.0075)^{132}$
$-M\left(1+1.0075^{6}+1.0075^{12}+\right.$
1.0075^{126}
$=10000(1.0075)^{132}$
$-\frac{M \cdot\left(1.0075^{132}-1\right)}{1.0075^{6}-1}$
But $A_{132}=0$
$M=10000(1.0075)^{132}\left(1.0075^{6}-1\right)$
$1.0075^{132}-1$
$=\$ 731.24$

PTO
for $10 b$)
b) i) $\frac{d v}{d t}=\frac{24 \dot{t}}{t^{2}+15}$

$$
\begin{aligned}
& V=\frac{24}{2} \int \frac{2 t}{t^{2}+15} d t \\
&=12 \ln \left(t^{2}+15\right)+c \\
& 1 / 2
\end{aligned}
$$

Whent=0 $V=0$
$0=12 \ln (15)+c$
$c=-12$ ea $15 \quad 1 / 2$
$\therefore V=12 \ln \left(t^{2}+15\right)-12 \ln 15$ $=12\left(\ln \left(t^{2}+15\right)-\ln 15\right)$

$$
=12 \ln \left(\frac{t^{2}+15}{15}\right) \quad \text { (2) }
$$

ii) Nolume of $\begin{aligned} \operatorname{tank} & =12 \times 2 \\ & =24 \mathrm{~m}^{3}\end{aligned}$ $2_{4}=12 \ln \left(\frac{t^{2}+15}{15}\right)$
$2=\ln \left(\frac{t^{2}+15}{15}\right)$
$e^{2}=\frac{t^{2}+15}{15}$
$15 e^{2}=t^{2}+15$
$t^{2}=15 e^{2}-15$
$t^{2}=95.83 \ldots$
$t= \pm 9.789 \ldots$
$t>0$
It would take 9ho 47 min
tank would be full at $21 / 47$.

$$
\begin{align*}
& \text { iii) At 4pm } t=4 \\
& \therefore \text { amocant of water in Tank } \\
& =12 \ln \left(\frac{16+15}{15}\right) \\
& =12 e^{\frac{31}{15}} \mathrm{~m}^{3} \\
& \frac{d V}{d t}=\frac{t^{2}}{k} \\
& V=\frac{t^{3}}{3 k}+\alpha \\
& t=0 \text { (le at } 4 \mathrm{pm} \text {) } V=12 \ln ^{\frac{31}{15}} \\
& \therefore 12 e_{n} \frac{31}{15}=0+\alpha \\
& \therefore v=\frac{t^{3}}{3 k}+12 \ln \frac{31}{15} \\
& \text { 6pm } \quad t=2 \quad V=0 \\
& 0=\frac{8}{3 k}+12 \ln \frac{3 k}{15} \\
& 0=8+36 k \operatorname{en} \frac{31}{15} \\
& -8=36 k \ln \frac{31}{15} \\
& k=\frac{-8}{36 \ln \frac{1 / 1}{15}} \\
& =-0.30611 .77 \\
& =-0.306(3 \alpha p) \tag{3}
\end{align*}
$$

[^0]: (Question 4 .
 a). $\begin{aligned} 2 x+y^{2}-8 y & =0 \\ y^{2}-8 y & =-2 x\end{aligned}$ $y-8 y=-2 x$
 $y^{2}-8 x+16=-2 x+16$ $(y-4)^{2}=-2(x-8) \quad \checkmark$ verkex $=(8,4) \frac{1}{2}$

 $$
 4 a=2
 $$

 Focus $=\left(\frac{1}{2}, 4\right)^{\prime}$
 Quectiox: $x=\frac{1}{2} \sqrt{4}$
 b) $d y=2 e^{-x}+3$
 $d x$
 $\begin{aligned} y & =-2 e^{-x}+3 x+c \\ \text { Sub } & (1,4) \\ 4 & =-2 e^{-1}+3+c \\ c & =1+2 / e\end{aligned}$

 $$
 c=1+2 / e
 $$

 $S_{N}=\frac{N}{2}\{2 a+(N-1) d\}$
 $5191=\frac{N}{2}\left\{8+(N-1)_{3}\right\}$
 $10382=N(8+3 N-3)$

 $$
 \begin{align*}
 & N=\frac{-5 \pm \sqrt{25+12 \times 10382}}{6} \\
 &=58 \text { or }-358 \\
 & \text { But } N>0 \\
 & N=58 \\
 & \therefore=60 \\
 & \text { d) } 5{ }^{150} 4 \tag{4}\\
 & A \\
 & A C^{2}=5^{2}+4^{2}-2 \times 5 \times 4 \times c o z \\
 &=25+16-40 \times \frac{\sqrt{3}}{2} \\
 &=41+20 \sqrt{3}
 \end{align*}
 $$

 $$
 a=\frac{1}{2}
 $$

 : equation of curve is

 $$
 y=\frac{-2}{e^{x}}+3 x+1+\frac{2}{e}
 $$

 $\Rightarrow \sum_{r=3}^{n} 3 r-5=5191$

 $$
 T_{1}=4 \quad T_{2}=7 \quad T_{3}=10
 $$

 $h=\frac{b-a}{n}=\frac{\pi-0}{4}=\frac{\pi}{4}$

 $$
 a=4 \quad d=3
 $$

 $10382=5 N+3 N^{2}$
 $3 N^{2}+5 N-10382=0 \quad \checkmark$
 Question 5
 a)

 | x | 0 | $\frac{\pi}{4}$ | $\frac{\pi}{2}$ | $\frac{3 \pi}{4}$ | π |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | $\sin ^{2} x$ | 0 | $\frac{1}{2}$ | 1 | $\frac{1}{2}$ | 0 | $\int_{0}^{\pi} \sin ^{2} x d x=\frac{\pi}{3}\left\{0+0+4\left(\frac{1}{2}+\frac{1}{2}\right)+2 \times 1\right\}$

 $$
 \begin{aligned}
 & =\frac{\pi}{12}(6) \\
 & =\frac{\pi}{2}
 \end{aligned}
 $$

 b)) Area of sector $=\frac{1}{2} r^{2} \theta$

 $$
 \frac{25 \pi}{24}=\frac{1}{2} 258
 $$

 (3)

 $$
 \frac{25 \pi}{24} \times \frac{2}{25}=\theta
 $$

 $$
 \begin{aligned}
 \theta & =\frac{\pi}{12} \\
 & =15^{\circ}
 \end{aligned}
 $$

 (2)

