ASCHAM SCHOOL

MATHEMATICS TRIAL EXAMINATION 2012

100

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen. Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11–16

Total marks –

Section I Pages i–ii 10 marks

- Attempt Questions 1–10 using Multiple Choice sheet
- Allow about 15 minutes for this section

Section II Pages iii–viii 90 marks

- Attempt Questions 11–16
- Allow about 2 hours 45 minutes for this section
- Do each question in a separate booklet.
- · Write your name and your teacher's name on each booklet.
- Clearly label the front of each booklet with the number of the question.

Collection

- Start each question of Section II in a new booklet.
- If you use a second booklet for a question, place it inside the first.
- Write your name/number, teacher's name and question number on each booklet.

Section 1 (10 marks)

2.

Objective response questions to be completed on the given sheet.

1. Each interior angle of a regular decagon is:

(A) 140° (B) 144° (C) 148°	(D)	145°
---	-----	------

For the graph of y = f(x) shown, state the point at which f'(x) < 0 and f''(x) > 0.

(C) C

(D) D

3. A parabola has its focus at (0, 4). The equation of its directrix is x = -4. Which of the following is the equation of the parabola? (A) $(y+2)^2 = 8(x-4)$

(B)
$$(y-4)^2 = 8(x+2)$$

(C) $x^2 = 16y$
(D) $(x+2)^2 = 8(y-4)$

4. The roots of the equation $2x^2 + 4x - 7 = 0$ are α and β . The value of $\alpha + \beta + 2\alpha\beta$ is:

(A) 9 (B) -18 (C) -9 (D) 18

5. The sum of the first eleven terms of the geometric series which begins $2 - 1 + \frac{1}{2} - \dots$ is:

(A)
$$\frac{1023}{256}$$
 (B) $\frac{341}{512}$ (C) $\frac{2047}{1536}$ (D) $\frac{683}{512}$

6. Interest of 10% p.a., compounded annually, is paid on an investment. After 10 years \$100 will have grown to about:

(A) \$260 (B) \$250 (C) \$235 (D) \$200

<

8. The line through (-1,2) which is perpendicular to 5x - 3y - 1 = 0 is:

(A)
$$3x + 5y = 7$$
 (B) $5x + 3y = 1$ (C) $3x - 5y = -13$ (D) $5y + 3x = 1$

9. The minimum value of $x^2 - 7x + 10$ is:

(A) 2 (B)
$$3\frac{1}{2}$$
 (C) $-2\frac{1}{4}$ (D) $2\frac{1}{4}$

10.

In the quadrilateral, $\angle SPQ = 120^\circ$, $\angle QSR = 30^\circ$, PQ = 5cm, PS = 3cm and SR = 6cm. Area of $\triangle QSR$ is: (A) 73.5 cm²

,

- (B) 10.4 cm²
- (C) 10.5 cm²
- (D) 21 cm^2

Section II (90 marks)

Answer each whole question in separate booklets

Question 11 (15 marks) Start this question in a new booklet	
a) Write sin 4 correct to 3 significant figures.	[1]
b) Solve $ 2x - 1 < 5$	[2]
c) Find a primitive of $\frac{3}{x} - x^2$	[2]
d) Simplify $8^n \times 2^{2n}$	[2]
e) Find <i>a</i> and <i>b</i> if $6\sqrt{5} - \frac{1}{\sqrt{5} - 2} = a + b\sqrt{5}$	[2]
f) Find x if $\log_x(3x+4) = 2$	[2]

g) Simplify $sec^2\theta(1-\cos^2\theta)$ [2]

302

Find the size of *x* and *y* with reasons.

Question 12 (15 marks) <u>Start this question in a new booklet</u>

a)	For th	the sequence 243, 81, 27, find the least value of <i>n</i> such that T_n <	$\frac{1}{1000}$?
b)	Differ	rentiate with respect to x:	[2]
	(i)	$\frac{1}{2x^4}$	[1]
	(ii)	$\frac{\log x}{x}$	[2]
	(iii)	$\cos^2 3x$	[2]

c) Find $\int \sec^2 4x \, dx$ [1]

d) Evaluate exactly
$$\int_{-2}^{0} \frac{x^2}{5-x^3} dx$$
 [2]

e)

The graph shows the derivative , y' , of a function $y = f(x)$.
(i) State the value(s) of x where $y = f(x)$ is

(iv) If f(0) = 1 sketch the graph of y = f(x). [2]

Ques	tion 13	(15 mark	s) <u>Start</u>	this qu	estion in a new booklet	
a)	A		Tl in th	ne diago tersect a e measu	onals of quadrilateral ABCD at E. Sketch the diagram showing irements given.	
	25	E 15	(i)	Prov	$e \Delta AEB \Delta CED.$	[2]
	9 D	15	/ (ii	i) Hen	ce prove AB DC	[1]
b)	The radi	us of a circle i 8cm ² . Give y	is 3cm. What an your answer cor	ngle at t rect to t	he centre is subtended by a sector ihe nearest degree.	[2]
c)	(i) Find, (ii) Henc	in terms of <i>m</i> re find the value	n, an expression ues of m if x^2 -	for the $2mx +$	discriminant $x^2 + 2mx + (3m-2)$. - $(3m-2) = 0$ has real roots.	[1] [1]
d)		y ⊳ Å	A		The diagram shows the points $A(0,3)$, $B(2,0)$ and $C(-6,-1)$ on a number plane.	
					(i) Find the distance AB.	[1]
		A),3)		(ii) Show that the equation of AB is $3x + 2y - 6 = 0$.	[1]
					(iii) Find the perpendicular distance of C from AB.	[2]
	C/ (-(6,-1)	(2,0)		(iv) Given that AC⊥AB find the size of ∠ABC correct to the nearest minute.	[2]
	K			à	(v) Given M is the midpoint of AC and N is the midpoint of BC state, with reason, the length of MN.	[2]

Question 14 (15 marks) <u>Start this question in a new booklet</u>

a) Given the table of values for f(x) below, use Simpson's Rule with 5 function values to find $\int_{-1}^{16} f(x) dx$.

[2]

b)

- b) Find the equation of the normal to $y = \frac{e^{3x}}{4} 2$ at the point where $x = \ln 2$, giving your answer in general form. [3]
- c) Given that $y = (1 x)e^x$:

(i)	Show that $y' = -xe^x$ and find y'' .	[3]
(ii)	Find the turning point and show that it is a maximum.	[2]
(iii)	Show that there is a point of inflexion at $\left(-1, \frac{2}{e}\right)$.	[2]
(iv)	Determine y as $x \to -\infty$ and as $x \to \infty$.	[1]
(v)	Hence sketch $y = (1 - x)e^x$ and write its range.	[2]

Question 15 (15 marks) <u>Start this question in a new booklet</u>

a) The graphs of $y = 4 - x^2$ and y = x + 2 intersect at the points (-2,0) and (1,3).

- (i) State the 3 inequalities required to indicate the shaded region ABC. [1]
- (ii) Calculate the volume of the solid formed when the shaded region ABC is rotated about the *x*-axis. [4]
- The population P, of the seal population on Macquarie Island has been found to
increase each year since the end of 1982, when there were only 30 seals. By the end
of 1992 the population had grown to 180.Given that $\frac{dP}{dt} = kP$ after t years:(i) Show that $P = P_0 e^{kt}$ satisfies $\frac{dP}{dt} = kP$.[1](ii) Find the values of P_0 and k.[2](iii) Determine the expected population at the end of 2012.[1](iv) Find the rate at which the population will be expected to increase by the
end of 2012.[1]

See next page for (c)

c) A company borrows \$200 000 from a bank to be paid back in 20 equal annual instalments. The bank charges 6% p.a. interest compounded half-yearly. Let A_n be the amount owing after *n* years and Y be the value of each yearly instalment.

(i) Show that $A_1 = 200000(1.03)^2 - Y$.	[1]
(ii) Find an expression for A_{20} .	[2]
(iii) Find the value of each yearly instalment.	[2]

Question 16 on next page

Question 16 (15 marks) Start this question in a new booklet

a)	The displacement, x cm of a particle traveling in a straight line at time t seconds is given by $x = 5e^{-2t} - 3 + 8t$.					
	(i) Find expressions for the velocity, v and acceleration, a in terms of t .	[2]				
	(ii) Describe the motion initially.	[2]				
	(iii) Determine the limiting velocity as $t \rightarrow \infty$.	[1]				
b)	(i) Sketch $y = -4\cos 2x$ for $0 \le x \le 2\pi$.	[2]				
	(ii) Hence find (a) $\int_{0}^{2\pi} -4\cos 2x dx$	[1]				
	(β) The area bounded by $y = -4\cos 2x$ and the <i>x</i> -axis from $x = 0$ to $x = 2\pi$.	[2]				
c)	A designer T-shirt manufacturer finds that the total cost, \$C to make x T-shirts i $C = 4000 + \frac{3x}{20} + \frac{x^2}{1000}$ and the selling price \$E for each T-shirt sold is $E = 30 - \frac{x}{200}$.	S				

Assuming all but 30 T-shirts are sold:

(i) Show that the total sales, \$S is given by
$$S = -\frac{x^2}{200} + \frac{603x}{20} - 900$$
 [1]

(ii) Show that the profit, \$P is given by
$$P = -\frac{3}{500}x^2 + 30x - 4900$$
. [1]

(iii) Find the maximum profit and show that the price for selling each T-shirt must be \$17.50 to achieve this maximum profit. [3]

END OF EXAMINATION

х

Standard Integrals

 $\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \ x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x, \ x > 0$ $\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$ $\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$ $\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$ $\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$ $\int \frac{1}{a^2 + r^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \qquad a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \qquad a > 0, \quad -a < x < a$

 $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$

 $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE: $\ln x = \log_e x, \quad x > 0$

 Student Number:

 Name:

 SECTION I
 Mathematics Multiple Choice Answer Sheet
 10 Marks

 This sheet must handed in separately

Shade the correct answer:

1.	АO	BO	СО	DО
2.	$_{\rm A}$ \circ	BO	СО	DО
3.	A O	BO	СО	DО
4.	A O	BO	СО	DО
5.	A O	BO	СО	DО
6.	A O	BO	СО	DО
7.	A O	BO	СО	DО
8.	A O	BO	СО	DО
9.	A O	BO	со	DО
10.	АO	BO	СО	DО

As cham Trial Y	r 12 Mathemat	ris 201	2 Solut	haus	xi
Student Number:_			Name: Mas	King Copu	F
SECTION I	Mathematics Multip	le Choice Ar	nswer Sheet	9	10 Marks
This sheet must ha	inded in separately				
Shade the correct	answer:				
1.	A O	В 👁	c o	DО	
2.	A O	ВО	С 🗢	D O	
3.	A O	В 👄	СО	D O	
4.	A O	ВО	С ●	D O	
5.	A O	ВО	СО	D 👁	
6.	А ●	ВО	C. O	DО	
7.	A O	В 👁	0.0	DO	
8.	A 👄	BO	С Ф	D O	
9.	A O	ВО	C ●	$\mathbf{D} = \mathbf{O}$	
10.	A O	ВО	C 🗢	D O	
	2				
			1		

Question 11 a) sin 4 = - 0.7568 ... = -0.757 (te 3 sig figs) b) |2x - 1| < 5-5<20-1< 5 -4<2× < 6 -2<×<3 c) Primitive of $\frac{3}{2} - x^2$ = 3 log a - 223 (+ C) d) 8" x 22n = 23n x 22n = <u>2</u>5n e) 6JB - 15-2 = a+bJB LHS = GJE - 1 × JE + 2 JE + 2 = 6 55 - (55 + 2) 5-4 - 655 - 55 - 2 = 555 -2 a = -2 b=5 F) log (3x + 4) = 2 $3c^2 = 3 \propto + 4$ x2 - 3x - 4 = 0 (or + 1)(or - 4) = 0 oc = -1 or oc = 4 But x > 0 : x = 4 9) $\sec^2 \Theta (1 - \cos^2 \Theta)$ = L × SIN2 0 = +an20 4) 19- 301 x° = 90° (diagonals of a rhombus bisect at right (1) y° = 180° - 30° - 40° = 60° (L SUM OF A) 1

$$\begin{array}{c} \underbrace{Question 1\Omega}{(a) 243, 81, 27, \dots} \\ a) 243, 81, 27, \dots \\ a = 243 & r = \frac{1}{3} \\ Tn < \frac{1}{1000} \\ 243 (\frac{1}{3})^{n-1} < \frac{1}{1000} \\ (\frac{1}{3})^{n-1} < \frac{1}{1000} \\ (\frac{1}{3})^{n-1} < \frac{1}{1000} \\ (\frac{1}{3})^{\frac{1}{3}} \\ n = 1 \\ \frac{1}{1000} \frac{1}{3} \\ \frac{1}{3000} + 1 \\ \frac{1}{1000} \frac{1}{3} \\ \frac{1}{3000} + 1 \\ \frac{1}{1000} \frac{1}{3} \\ \frac{1}{3000} + 1 \\ \frac{1}{10000} + 1 \\ \frac{1}{30000} + 1 \\ \frac{1}{10000} \frac{1}{3000} + 1 \\ \frac{1}{10000} \frac{1}{20000} + 1 \\ \frac{1}{30000} + 1 \\ \frac{1}{10000} \frac{1}{3000} + 1 \\ \frac{1}{10000} \frac{1}{20000} + 1 \\ \frac{1}{10000} \frac{1}{20000} + 1 \\ \frac{1}{10000} \frac{1}{2000} + 1 \\ \frac{1}{10000} \frac{1}{1000} \frac{1}{1000} + 1 \\ \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} + 1 \\ \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} + 1 \\ \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} + 1 \\ \frac{1}{1000} \frac{1}{1000$$

Question 13
a)
$$A = \frac{1}{\sqrt{13}} = \frac{1}{\sqrt{13}} = \frac{1}{\sqrt{13}}$$

(i) $In \Delta AEB and \Delta CEO$
 $AE = \frac{1}{25} = \frac{1}{3}$
 $C \Delta EB = 2 CED$
(vertically appoints)
(v

$$\frac{\text{duestion } 14}{\text{o}} \int_{0}^{16} \frac{f(x)}{0} dx = \frac{1}{9} \frac{1}{9} [1 + 9x^{11} + 2x^{3} 4x] + \frac{1}{19} \frac{1}{2} \frac{1$$

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} (y) & \frac{dy}{dt} & = & h f \\ \frac{dy}{dt} & \frac{dy}{dt} & - & x^{2} \\ \frac{dy}{dt} & \frac{dy}{dt} & - & x^{2} \\ \frac{dy}{dt} & \frac{dy}{dt} & - & x^{2} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} (y) & \frac{dy}{dt} & \frac{dy}{dt} & - & x^{2} \\ \frac{dy}{dt} & \frac{dy}{dt} & - & x^{2} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} (y) & \frac{dy}{dt} & \frac{dy}{dt} & - & x^{2} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} (y) & \frac{dy}{dt} & \frac{dy}{dt} & \frac{dy}{dt} & \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \frac{dy}{dt} & \frac{dy}{dt} & \frac{dy}{dt} & \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \frac{dy}{dt} & \frac{dy}{dt} & \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} & \frac{dy}{dt} & \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} & \frac{dy}{dt} & \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} & \frac{dy}{dt} & \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} & \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} & \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} & \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \frac{dy}{dt} \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dy}{dt} \end{array} \\$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z 5s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z s s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z s s^{-3c} - 3 + 86}$$

$$\frac{deexton 16}{e^2 x z s s^{-3c} - 3 + 86}$$

$$\frac{deexton 1}{e^2 x z s s^{-3c} - 3 + 86}$$

$$\frac{deexton 1}{e^2 x z s s^{-3c} - 3 + 86}$$

$$\frac{deexton 1}{e^2 x z s s^{-3c} - 3 - 3}$$

$$\frac{deexton 1}{e^2 x z s s^{-3c} - 3 - 3}$$

$$\frac{deexton 1}{e^2 x z s s^{-3c} - 3}$$

$$\frac{deexton 1}{e^2 x z s s s^{-3c} - 3}$$

$$\frac{deexton 1}{e^2 x z s s s^{-3c} - 3}$$

$$\frac{deexton 1}{e^2 x z s s s^{-3c} - 3}$$

$$\frac{deexton 1}{e^2 x z s s s^{-3c} - 3}$$

$$\frac{deexton 1}{e^2 x z s s s s^{-3c} - 3}$$

$$\frac{deexton 1}{e^2 x z s s s s s^{-3c} - 3}$$

$$\frac{deexton 1}{e^2 x z s s s s s^{-3c} - 3}$$

$$\frac{deexton 1}{e^2 x z s s s s s^{-2} - 2}$$

$$\frac{deexton 1}{e^2 x z s s s s s^{-2} - 2}$$

$$\frac{deexton 1}{e^2 x z s s s s s s^{-2} - 2}$$

$$\frac{deexton 1}{e^2 x z s s s s s s^{-2} - 2}$$

$$\frac{deexton 1}{e^2 x s s s s s s^{-2} - 2}$$

$$\frac{deexton 1}{e^2 x s s s s s s^{-2} - 2}$$

$$\frac{deexton 1}{e^2 x s s s s s s^{-2} - 2}$$

$$\frac{d$$

$$C = 4000 + \frac{3}{20}x + \frac{x}{1000}$$

$$E = 30 - \frac{x}{200} \quad \text{for} (3x - 30)$$

$$= (30 - \frac{x}{200}) (x - 30)$$

$$= 30x - 900 - \frac{x^2}{200} + \frac{3x}{20}$$

$$= \frac{x^2}{200} + \frac{603}{20}x - 900$$

$$as required.$$

$$P = S - C$$

$$= (-\frac{x^2}{200} + \frac{603}{20}x - 900)$$

$$= (4000 + \frac{3}{20}x)$$

$$= -\frac{3}{500} \text{ oc}^2 + 30x - 4900$$

$$0 \text{ os require}$$

$$D = \frac{3}{500} \text{ oc}^2 + 30x - 4900$$

$$\frac{dP}{dx} = -\frac{3}{250} \times + 30$$

$$\frac{d^2P}{dx^2} = -\frac{3}{250} < 0$$

$$\therefore \text{ Moximum profit occurs when}$$

$$\frac{dP}{dx} = 0 \quad -\frac{3}{250} \times + 30 = 0$$

$$= \frac{33x}{250} = 30$$

$$\frac{33x}{250} = 30$$

$$x = 2500$$

$$\therefore \text{ Moximum profit occurs when}$$

$$\frac{dP}{dx} = 30 = 2500$$

$$\therefore \text{ Moximum profit occurs when}$$

$$\frac{dP}{dx} = 30 = 2500$$

$$\therefore \text{ Moximum profit occurs when}$$

$$\frac{dP}{dx} = 30 = 2500$$

$$\therefore \text{ Moximum profit occurs when}$$

$$\frac{dP}{dx} = 30 = 2500$$

$$\therefore \text{ Moximum profit occurs when}$$

$$\frac{dP}{dx} = 30 = 2500$$

$$\therefore \text{ Moximum profit occurs when}$$

$$\frac{dP}{dx} = 30 = 2500$$

$$\therefore \text{ Moximum profit occurs when}$$

$$\frac{dP}{dx} = 30 = 2500$$

$$\therefore \text{ Moximum profit occurs when}$$

$$\frac{dP}{dx} = 30 = 2500$$

$$\therefore \text{ Moximum profit occurs when}$$

$$\frac{dP}{dx} = 30 = 200$$

$$\frac{3}{200} = 17.5$$

$$\therefore \text{ Cost of each T- shirt to achieve maximum profit is $17.50$$