ASCHAM SCHOOL

MATHEMATICS TRIAL EXAMINATION 2012

General Instructions

- Reading time -5 minutes

What time -3 hours

- blue pen. Black pen is preferred

Board-approved calculators may be used
A table of standard integrals is provided at the back of this paper
Show all necessary working in Questions 11-16

Total marks -

 100Section I Pages i-ii 10 marks

- Attempt Questions 1-10 using Multiple Choice sheet
- Allow about 15 minutes for this section

Section II Pages iii-viii 90 marks

- Attempt Questions 11-16

Allow about 2 hours 45 minutes for this section

- Do each question in a separate booklet.
- Write your name and your teacher's name on each booklet.
- Clearly label the front of each booklet with the number of the question.

Collection

- Start each question of Section II in a new booklet.
- If you use a second booklet for a question, place it inside the first.
- Write your name/number, teacher's name and question number on each booklet.

Section 1 (10 marks)

Objective response questions to be completed on the given sheet.

1. Each interior angle of a regular decagon is:
(A) 140°
(B) 144°
(C) 148°
(D) 145°
2.

$\xrightarrow{\text { For the graph }}$| point at which |
| :--- |

3. A parabola has its focus at $(0,4)$. The equation of its directrix is $x=-4$

Which of the following is the equation of the parabola?
(A) $(y+2)^{2}=8(x-4)$
(B) $(y-4)^{2}=8(x+2)$
(C) $x^{2}=16 y$
(D) $(x+2)^{2}=8(y-4)$
4. The roots of the equation $2 x^{2}+4 x-7=0$ are α and β. The value of $\alpha+\beta+2 \alpha \beta$ is:
(A) 9
(B) -18
(C) $\quad-9$
(D) 18
5. The sum of the first eleven terms of the geometric series which begins $2-1+\frac{1}{2}-\ldots$. is:
(A) $\frac{1023}{256}$
(B) $\frac{341}{512}$
(C) $\frac{2047}{1536}$
(D) $\frac{683}{512}$
6. Interest of 10% p.a., compounded annually, is paid on an investment. After 10 years $\$ 100$ will have grown to about:
(A) $\$ 260$
(B) $\$ 250$
(C) $\$ 235$
(D) $\$ 200$
7.

The graph could be represented by the
(A) $y=-\frac{1}{x-3}-2$
(B) $y=-\frac{1}{x-3}+2$
(C) $y=-\frac{1}{x+3}+2$
(D) $y=-\frac{1}{x+3}-2$
8. The line through $(-1,2)$ which is perpendicular to $5 x-3 y-1=0$ is:
(A) $3 x+5 y=7$
(B) $5 x+3 y=1$
(C) $3 x-5 y=-13$
(D) $5 y+3 x=1$
9. The minimum value of $x^{2}-7 x+10$ is:
(A) 2
(B) $3 \frac{1}{2}$
(C) $-2 \frac{1}{4}$
(D) $2 \frac{1}{4}$
10.

In the quadrilateral, $\angle \mathrm{SPQ}=120^{\circ}, \angle \mathrm{QSR}=30^{\circ}$, $\mathrm{PQ}=5 \mathrm{~cm}, \mathrm{PS}=3 \mathrm{~cm}$ and $\mathrm{SR}=6 \mathrm{~cm}$. Area of $\Delta \mathrm{QSR}$ is:
(A) $73.5 \mathrm{~cm}^{2}$
(B) $10.4 \mathrm{~cm}^{2}$
(C) $10.5 \mathrm{~cm}^{2}$
(D) $21 \mathrm{~cm}^{2}$

Section II (90 marks)

Answer each whole question in separate booklets

Question 11 (15 marks) Start this question in a new booklet

a) Write $\sin 4$ correct to 3 significant figures.
b) \quad Solve $|2 x-1|<5$
c) Find a primitive of $\frac{3}{x}-x^{2}$
d) Simplify $8^{n} \times 2^{2 n}$
e) Find a and b if $6 \sqrt{5}-\frac{1}{\sqrt{5}-2}=a+b \sqrt{5}$
f) Find x if $\log _{x}(3 x+4)=2$
g) Simplify $\sec ^{2} \theta\left(1-\cos ^{2} \theta\right)$
h)

Find the size of x and y with reasons.

Question 12 (15 marks) Start this question in a new booklet

a) For the sequence $243,81,27, \ldots \ldots$. find the least value of n such that $T_{n}<\frac{1}{1000}$?
b) Differentiate with respect to x :
(i) $\frac{1}{2 x^{4}}$
[1]
(ii) $\frac{\log x}{x}$
[2]
(iii) $\cos ^{2} 3 x$
c) Find $\int \sec ^{2} 4 x d x$
d) Evaluate exactly $\int_{-2}^{0} \frac{x^{2}}{5-x^{3}} d x$
e)

The graph shows the derivative, y^{\prime}, of a function $y=f(x)$.
(i) State the value(s)of x where $y=f(x)$ is increasing.
(ii) State the value(s) of x where $y=f(x)$ has a point of inflexion.
(iii) State the value(s) of x where $y=f(x)$ has a minimum turning point.
(iv) If $f(0)=1$ sketch the graph of $y=f(x)$.

Question 13 (15 marks) Start this question in a new booklet

a)

The diagonals of quadrilateral ABCD intersect at E. Sketch the diagram showing the measurements given.
(i) Prove $\triangle \mathrm{AEB}\|\| \triangle \mathrm{CED}$.
(iii) Hence prove $\mathrm{AB} \| \mathrm{DC}$
b) The radius of a circle is 3 cm . What angle at the centre is subtended by a sector of area $18 \mathrm{~cm}^{2}$. Give your answer correct to the nearest degree.
c) (i) Find, in terms of m, an expression for the discriminant $x^{2}+2 m x+(3 m-2)$. [1 (ii) Hence find the values of m if $x^{2}+2 m x+(3 m-2)=0$ has real roots.
d)

The diagram shows the points $\mathrm{A}(0,3), \mathrm{B}(2,0)$ and $\mathrm{C}(-6,-1)$ on a number plane
(i) Find the distance AB .
(ii) Show that the equation of $A B$ is $3 x+2 y-6=0$.
(iii) Find the perpendicular distance of C from AB
(iv) Given that $\mathrm{AC} \perp \mathrm{AB}$ find the size of $\angle \mathrm{ABC}$ correct to the nearest minute.
(v) Given M is the midpoint of AC and N is the midpoint of BC state, with reason, the length of MN

Question 14 (15 marks) Start this question in a new booklet

a) Given the table of values for $f(x)$ below, use Simpson's Rule with 5 function values to find $\int_{0}^{16} f(x) d x$.

x	0	4	8	12	16
$f(x)$	1	11	34	26	17

b) Find the equation of the normal to $y=\frac{e^{3 x}}{4}-2$ at the point where $x=\ln 2$, giving your answer in general form.
c) Given that $y=(1-x) e^{x}$
(i) Show that $y^{\prime}=-x e^{x}$ and find $y^{\prime \prime}$.[3]
(ii) Find the turning point and show that it is a maximum. [2]
(iii) Show that there is a point of inflexion at $\left(-1, \frac{2}{e}\right)$. [2]
(iv) Determine y as $x \rightarrow-\infty$ and as $x \rightarrow \infty$. [1]
(v) Hence sketch $y=(1-x) e^{x}$ and write its range. [2]

Question 15 (15 marks) Start this question in a new booklet

a) The graphs of $y=4-x^{2}$ and $y=x+2$ intersect at the points $(-2,0)$ and $(1,3)$

(i) State the 3 inequalities required to indicate the shaded region ABC .
(ii) Calculate the volume of the solid formed when the shaded region ABC is rotated about the x-axis.
b) The population P , of the seal population on Macquarie Island has been found to increase each year since the end of 1982, when there were only 30 seals. By the end increase each year since the end of 1982,
of 1992 the population had grown to 180 .
Given that $\frac{d P}{d t}=k P$ after t years:
(i) Show that $P=P_{0} e^{k t}$ satisfies $\frac{d P}{d t}=k P$.
(ii) Find the values of P_{0} and k.
(iii) Determine the expected population at the end of 2012
(iv) Find the rate at which the population will be expected to increase by the end of 2012.
c) A company borrows $\$ 200000$ from a bank to be paid back in 20 equal annual instalments. The bank charges 6% p.a. interest compounded half-yearly. Let $\$ A_{n}$ be the amount owing after n years and $\$ Y$ be the value of each yearly instalment.
(i) Show that $A_{1}=200000(1.03)^{2}-Y$
(ii) Find an expression for A_{20}. [2]
(iii) Find the value of each yearly instalment.

Question 16 on next page

Question 16 (15 marks) Start this question in a new booklet

a) The displacement, $x \mathrm{~cm}$ of a particle traveling in a straight line at time t seconds is given by $x=5 e^{-2 t}-3+8 t$.
(i) Find expressions for the velocity, v and acceleration, a in terms of t.
(ii) Describe the motion initially.
(iii) Determine the limiting velocity as $\mathrm{t} \rightarrow \infty$.
b) (i) Sketch $y=-4 \cos 2 x$ for $0 \leq x \leq 2 \pi$.
(ii) Hence find (α) $\int_{0}^{2 \pi}-4 \cos 2 x d x$
(β) The area bounded by $y=-4 \cos 2 x$ and the x-axis from $x=0$ to $x=2 \pi$.
c) A designer T-shirt manufacturer finds that the total cost, \$C to make x T-shirts is $C=4000+\frac{3 x}{20}+\frac{x^{2}}{1000}$ and the selling price $\$$ E for each T-shirt sold is
$E=30-\frac{x}{200}$.
Assuming all but 30 T -shirts are sold:
(i) Show that the total sales, $\$ S$ is given by $\mathrm{S}=-\frac{x^{2}}{200}+\frac{603 x}{20}-900$
(ii) Show that the profit, $\$ P$ is given by $P=-\frac{3}{500} x^{2}+30 x-4900$.
(iii) Find the maximum profit and show that the price for selling each T -shirt must be $\$ 17.50$ to achieve this maximum profit.

Standard Integrals

$\int x^{n} d x=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0$, if $n<0$
$\int \frac{1}{x} d x=\ln x, x>0$
$\int e^{a x} d x=\frac{1}{a} e^{a x}, \quad a \neq 0$
$\int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0$
$\int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0$
$\int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0$
$\int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, \quad a \neq 0$
$\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a$
$\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0$
$\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)$

NOTE: $\quad \ln x=\log _{e} x, \quad x>0$
\qquad
Name: \qquad

SECTION I Mathematics Multiple Choice Answer Sheet

This sheet must handed in separately

Shade the correct answer:

1.	A	\bigcirc	B 0	C	\bigcirc	D	\bigcirc
2.	A	\bigcirc	B \bigcirc	C	\bigcirc	D	\bigcirc
3.	A	\bigcirc	B 0	C	\bigcirc	D	\bigcirc
4.	A	\bigcirc	B 0	C	\bigcirc	D	\bigcirc
5.	A	\bigcirc	B	C	\bigcirc	D	\bigcirc
6.	A	\bigcirc	B \bigcirc	C	\bigcirc	D	\bigcirc
7.	A	\bigcirc	B \bigcirc	C	\bigcirc	D	\bigcirc
8.	A	\bigcirc	B \bigcirc	C	\bigcirc	D	\bigcirc
9.	A	\bigcirc	B \bigcirc	C	\bigcirc	D	\bigcirc
10.	A	\bigcirc	B 0	C	\bigcirc	D	\bigcirc

Ascham Trial Yr 12 Mathematios 2012 Solutions
\qquad -

Student Number:

SECTION I Mathematics Multiple Choice Answer Sheet
10 Marks
This sheet must handed in separately

Shade the correct answer:

1.	A	\bigcirc	B	C	0	D	\bigcirc
2.	A	0	B 0	C	-	D	\bigcirc
3.	A	\bigcirc	B	C	0	D	\bigcirc
4.	A	\bigcirc	B 0	C	-	D	\bigcirc
5.	A	\bigcirc	B 0	C	\bigcirc	D	-
6.	A	-	B 0	C	\bigcirc	D	\bigcirc
7.	A	\bigcirc	B	C	0	D	\bigcirc
8.	A	-	B 0	C	\bigcirc	D	\bigcirc
9.	A	\bigcirc	B \bigcirc	C	-	D	\bigcirc
10.	A	\bigcirc	B 0	C	-	D	\bigcirc

a) $\sin 4=-0.7568 \ldots$

$$
=-0.757(+3 \mathrm{sig} f i g s)
$$

b) $|2 x-1|<5$ $-5<2 x-1<5$ $-4<2 x<6$ $-2<x<3$
c) Primitive of $\frac{3}{\frac{3}{x}}-x^{2}$

$$
=3 \log x-\frac{x^{3}}{3}(+C)
$$

d) $8^{n} \times 2^{2 n}=2^{3 n} \times 2^{2 n}$
$=2^{5 n}$
e) $6 \sqrt{5}-\frac{1}{\sqrt{5}-2}=a+b \sqrt{5}$
$L H S=6 \sqrt{5}-\frac{1}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}$
$=6 \sqrt{5}-\frac{(\sqrt{5}+2}{s-4}$
$=6 \sqrt{5}-\sqrt{5}-2$
$=5 \sqrt{5}-2$
f) $\frac{a=-2 \quad b=5}{\log _{x}(3 x+4)=}$
$\begin{aligned} x^{2} & =3 x+4 \\ -3 x-4 & =0\end{aligned}$
$x^{2}-3 x-4=0$ $(x+1)(x-4)=0$
$x=-1$ or $x=4$
But $x>0 \quad \therefore x=4$
g) $\sec ^{2} \theta\left(1-\cos ^{2} \theta\right)$ $=\frac{1}{\cos ^{2} \theta} \times \sin ^{2} \theta$
$=\tan ^{2} \theta$
h) $50.307 \quad x^{\circ}=90^{\circ}$
(diagonals of a rhombus
bisect of right L's) bisect of right L's
$y^{\circ}=180^{\circ}-30^{\circ}-90^{\circ}$
$\begin{aligned} y & =60^{\circ} \\ & \end{aligned}$
($\angle \operatorname{sum}$ of Δ)
a) $243,81,27, \ldots \ldots$
$a=243 \quad r=\frac{1}{3}$
$T_{n}<\frac{1}{1000}$
$243\left(\frac{1}{3}\right)^{n-1}<\frac{1}{1000}$
$\left(\frac{1}{3}\right)^{n-1}<\frac{1000}{243000}$
$(n-1) \log \left(\frac{1}{3}\right)<\log \left(\frac{1}{24 \times 3000}\right.$ $n-1>\frac{\log \frac{1}{243000}}{\log \frac{1}{2}}$
$n>\frac{\log \frac{\log \frac{1}{3}}{243000}}{\log \frac{1}{3}}+1$
$>12.28^{3} 77$
\therefore Least value of n is 13
b) (i) $y=\frac{1}{2 x^{4}}$
$=\frac{1}{2} x^{-4}$
$y^{\prime}=\frac{-2}{x^{5}}$
(ii) $y=\log x \quad y=\log x \quad v=x$
$y^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \quad u^{\prime}=\frac{1}{x} \quad v^{\prime}=1$
$=\frac{x \times \frac{1}{x}-\log x \times 1}{x^{2}}$
$=\frac{1-\log x}{x^{2}}$
iii) $y=\cos ^{2} 3 x$
$=(\cos 3 x)^{2}$
$y^{\prime}=2(\cos 3 x)^{\prime} x-3 \sin 3 x$
$=-6 \cos 3 x \sin 3 x$
c) $\int \sec ^{2} 4 x d x=\frac{1}{4} \tan 4 x+C$
d) $\int_{-2}^{0} \frac{x^{2}}{5-x^{3}} d x=-\frac{1}{3} \int_{2}^{0} \frac{-3 x^{2}}{5-x^{3}} d x 0_{0}$ $=-\frac{1}{3}\left[\ln \left(5-x^{3}\right)\right]_{-2}^{0}$
$=-\frac{1}{3}[\ln 5-\ln 13]^{-2}$
$=\frac{1}{3} \ln \frac{13}{5}$
e) (i) $x>-3, x \neq 0$
(ii) $x=-2$ and $x=0$
(iii) $x=-3$

$$
\begin{aligned}
& \text { (i) In } \triangle A E B \text { and } \triangle C E O \\
& \frac{A E}{C E}=\frac{25}{15}=\frac{5}{3}
\end{aligned}
$$

$$
\frac{E B}{E D}=\frac{15}{9}=\frac{5}{3}
$$

$$
\angle A E B=\angle C E D
$$

Cvertically opposite
$\therefore \triangle \Lambda E B\|\| C E D$ (sides obout equal angles are in
(ii) $\angle B A E=\angle D C E\left(\begin{array}{c}\text { matching } \angle \text { 's in similar } \\ \Delta \text { 's) }\end{array}\right.$
$a B \| D C$ (o pair of olternate $<$'s
b)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} r^{2} \theta \\
18 & =\frac{1}{2} \times 3^{2} \times \theta \\
\theta & =4^{c} \\
& =4 \times \frac{180}{\pi}
\end{aligned}
$$

$$
=229 \cdot \bar{\pi} 3 \ldots
$$

$=229^{\circ}$ (nearest degree)
c) (i) $x^{2}+2 m x+(3 m-2)$
$\Delta=b^{2}-4 a c$
$=(2 m)^{2}-4 \times 1 \times(3 m-2)$
$=4 m^{2}-12 m+8$
ii) $\begin{aligned} & x^{2}+2 m s+(3 m-2)=0 \text { has real } \\ & \text { roots if } \Delta \geqslant 0\end{aligned}$ roots if $\Delta \geqslant 0$
$4 m^{2}-12 m+8 \geqslant 0$ $m^{2}-3 m+2 \geqslant 0$

$$
m \leqslant 1 \text { or } m \geqslant 2
$$

(i) $\begin{aligned} A B & =\sqrt{-0)^{2}+(0-3)^{2}} \\ & =\sqrt{4+a}\end{aligned}$

$$
=\sqrt{13} \text { units }
$$

(ii) $m_{A B}=\frac{0-3}{2-0}$
$=-\frac{3}{2}$
Equation of $A B \quad \begin{aligned} y & =-\frac{3}{2} x+3 \\ 2 y & =-3 x+6\end{aligned}$

$$
\text { as required } \quad 3 x+2 y-6=0
$$

(iii)

$$
\begin{aligned}
d & =\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\left|\frac{\mid 3 x-6+2 x-1-6}{\sqrt{3^{2}+2^{2}}}\right| \\
& =\frac{|-26|}{\sqrt{13}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{26}{\sqrt{13}} \times \frac{\sqrt{13}}{\sqrt{13}} \\
& =2 \sqrt{13} \text { units }
\end{aligned}
$$

(iv) In $\triangle A B C$ $\tan \angle A B C$

$=\frac{A C}{A B}$
 $=\frac{2 \sqrt{13}}{\sqrt{13}}$ $=2^{-1}$

$\angle A B C=63^{\circ} 26^{\prime}$ (nearest \min)
(v) $M N=\frac{1}{2} A B$ $=\frac{1}{2} \sqrt{13}$
(the line joining the midpoints of 2 sides of $\triangle A B C$ is /(to thind sic $(A B)$ and equal to hali
of $1 t$)

Quegtion 14

$$
\text { a) } \begin{aligned}
\int_{0}^{16} f(x) d x & \doteqdot \frac{4}{3}[1+4 \times 11+2 \times 34 \\
& +4 \times 26+17] \\
& \doteqdot \frac{4}{3} \times 234 \\
& \doteq 312
\end{aligned}
$$

b) $y=\frac{e^{3 x}}{4}-2$

$$
=0
$$

Equation of normal

$$
y-0=-\frac{1}{6}(x-\ln 2)
$$

$$
6 y=-x+\ln z
$$

$$
x+6 y-\ln z=0
$$

c) (i) $y=(1-x) e^{x}$
$u=1-x \quad v=e^{x}$
$u^{\prime}=-1 \quad v^{\prime}=e^{x}$
$y^{\prime}=v u^{\prime}+u v^{1}$

$$
=e^{x} \times-1+(1-x) e^{x}
$$

$$
=e^{x}[-1+1-x]
$$

$y^{\prime \prime}=-x e^{x}$ as required
$=v u^{\prime}+u v^{\prime} \quad u=-x \quad v=e^{x}$

$$
=e^{x} x-1+-x \times e^{x} u^{\prime}=-1 \quad v^{\prime}=e^{x}
$$

$$
=e^{x}[-1-x]
$$

$$
=-e^{x}(1+x)
$$

(ii) Whon $y^{\prime}=0-x e^{x}=0$

$$
x=0
$$

When $x=0 \quad \begin{aligned} y & =(1-0) e^{0} \quad \begin{aligned} y^{\prime \prime} & =-e^{0}(1+0) \\ & =1\end{aligned} \quad=-1<0\end{aligned}$
$\therefore \frac{\text { Turning point is }(0,1) \text { and }}{\text { it is a maximum turning point }}$
(iii) When $y^{\prime \prime}=0 \quad-e^{x}(1+x)=0$
When $x=-1 \quad y=(1+1) e^{-1}$

$=$

Point of inflexion is $\left(-1, \frac{2}{e}\right)$ as
required
(iv) $y=(1-x) e^{x}$
$A_{s} x \Rightarrow-\infty \quad y \rightarrow 0^{+}$
As $x \rightarrow \infty \quad y \rightarrow-\infty$

Range is $y \leqslant 1$
a) (i) $y \geq 0$ $y \leqslant 4-x^{2}$
(ii)

Volume $=\pi \int_{-2}^{1}(x+2)^{2} d x+\pi \int^{2}\left(4-x^{2}\right)^{2} d x$ $\begin{aligned} &=\pi \int_{-2}^{1} x^{2}+4 x+ 4 d x \\ &+\pi \int^{1}\end{aligned}$ $\left.=\pi\left[\frac{x^{3}}{3}+2 x^{2}+4 x\right]_{-2}^{1} 16\left[16 x-\frac{8}{3} x^{3}+\frac{x^{5}}{5}\right]^{2}\right]$ $=\pi\left[\left(\frac{1}{3}+2+4\right)-\left(\frac{-8}{3}+8-8\right)\right]$
$+\pi\left[\left(32-\frac{64}{3}+\frac{32}{5}\right)-\left(16-\frac{8}{3}+16\right)\right]$
$=\pi\left[6 \frac{1}{3}+2 \frac{2}{3}\right]+\pi\left[17 \frac{1}{5}-13 \frac{8}{15}\right]$
$=9 \pi+\frac{53}{15} \pi$
$=\frac{188}{15} \pi^{15}$ units 3
b) (i) $P=P_{0} e^{k t}$ $\begin{aligned} \frac{d P}{d t} & =k P_{0} e^{k t} \\ & =k P\end{aligned}$
$\therefore P=P_{0} e^{k t}$ satisfies $\frac{d P}{d t}=k P$
(ii) $P=P_{0} e^{k t}$

When $t=0 \quad P=30$
$30=P_{0}^{0} e^{\circ}$
$\therefore P_{0}=30$
When $t=10 \quad P=180$
$180=30 e^{10 k}$
$e^{10 k}=6$

When $\begin{aligned} t & =30 \\ P & \left.=30 e^{\left(\frac{1}{10} \ln 6\right.}\right) \times 30\end{aligned}$
$=30 e^{3 \ln 6}$
$=30 \times 6^{3}$
$=6480$
Expected population is 6480
(iv) $\frac{d p}{d t}=k p$

$$
=\left(\frac{1}{10} \ln 6\right) \times 6480
$$

$$
=1151.060 \ldots
$$

Rate of increase is 1151 /yea.
c) Let $S A_{n}$ be amount owing aftern
(i) Let $\$ 4$ be each yearly instalment year
$\begin{aligned} \text { Let } & =200000+200000_{2}\left(\mathrm{HO}_{3}\right)^{2}-y\end{aligned}$
$\begin{aligned} & =200000+200000(103)^{2} \\ A_{1} & =200000(1+.03)^{2}-y\end{aligned}$
$=200000(1.03)^{2}-4$
(ii) $A_{2}=200000(1.03)^{4}-y(1.03)^{2}-y$
$n_{20}=200000(1.03)^{40}-y\left[1+1.03^{2}+\cdots\right.$ $\cdots 1.03$
[iii) $A_{20}=0$
$\therefore 200000(1.03)^{40}=4\left[1+1.03^{2}+\cdots+1.1\right.$ $20000(1.03)^{40} \quad a=1 \quad r=1.03^{2} n=$: $200000(1.03)^{40}=y \times 1\left(1.03^{40}-1\right)$ $\left(1.03^{2}-1\right)$
$y=\frac{200000(1.03)^{40} \times\left(1.03^{2}-1\right)}{\left(1.03^{40}-1\right)}$
$=17564.525 \ldots$.
Each yearly instalment is $\$ 17 \$ 640.5$: (hearest cent

2uestion 16
a) $x=5 e^{-2 t}-3+8 t$
(i) $\begin{aligned} v & =-10 e^{-2 t}+8 \\ a & =20 e^{-2 t}\end{aligned}$
(ii) When $t=0 \quad x=5-3=2$

$$
v=-10+8=-2
$$

$$
a=20
$$

Initially particle is 2 cm on the positive side of the origin, moving at $2 \mathrm{~cm} / \mathrm{s}$ in the negative direction and undergoing acceleration of $20 \mathrm{~cm} / \mathrm{s}^{2}$
down.
(iii) $v=-10 e^{-2 t}+8$

As $t \rightarrow \infty \quad v \rightarrow-10 \times 0+8$

$$
\begin{aligned}
& \text { : Limiting velocity is } 8 \mathrm{~cm} / \mathrm{s} \text { in } \\
& \text { the positive direction }
\end{aligned}
$$

b) (i) $y=-4 \cos 2 x$
$D: 0 \leqslant x \leqslant 2 \pi$
$R:-4 \leq y \leq 4$
$p: \frac{2 \pi}{2}=\pi$
A: L

(ii) $\int_{-4}^{2 \pi}$
(d) $4 \cos 2 x d x=0$ (bysymmetry)
(β) Area $=-8 \int_{0}^{\frac{\pi}{4}}-4 \cos 2 x d x$
$=-8[-2 \sin 2 x]_{0}^{\frac{\pi}{4}}$
$=16\left[\sin \frac{\pi}{2}-\sin 0\right]$
$=16\left[\begin{array}{ll}1 & -0\end{array}\right]$
$=16$ units 2
C) $C=4000+\frac{3}{20} x+\frac{x^{2}}{1000}$

$$
E=30-\frac{x}{200} \text { for }(x-30)
$$

(i) $S=E \times(x-30)$

$$
\begin{aligned}
& =\left(30-\frac{x}{200}\right)(x-30) \\
& =30 x-900-\frac{x^{2}}{200}+\frac{3 x}{20} \\
& =-\frac{x^{2}}{200}+\frac{603}{20} x-900 \\
& \text { as required. }
\end{aligned}
$$

(ii) $P=S-C$

$$
=\left(-\frac{x^{2}}{200}+\frac{603}{20} x-900\right)
$$

$$
\begin{array}{r}
-\left(4000+\frac{3}{20} x\right. \\
+\frac{x}{16}
\end{array}
$$

$$
=\frac{-3}{500} x^{2}+30 x-4900
$$

(hi) $\frac{d p}{d x}=-\frac{3}{250} x+30$
$\frac{d^{2} p}{d x^{2}}=\frac{-3}{250}<0$
\therefore maximum profit occurs when $\frac{\partial P}{D x}=0 \quad-\frac{3}{250} x+30=0$

$$
\begin{aligned}
\frac{3 x}{250} & =30 \\
x & =2500
\end{aligned}
$$

\therefore Maximum profit oceurs when $x=2500$
When $x=2500$
$E=30-\frac{2500}{200}$
$=17.5$
\therefore Cost of each T-shirt to achieve maximum profit is $\$ 17.50$

