Name_____

ASCHAM SCHOOL

MATHEMATICS TRIAL EXAMINATION 2013

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen. Black pen is preferred.
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- Show all necessary working in Questions 11–16.

Total marks –

Section I

10 marks

100

- Attempt Questions 1–10 using the Multiple Choice sheet.
- Allow about 15 minutes for this section.

Section II

90 marks

- Attempt Questions 11–16.
- Allow about 2 hours 45 minutes for this section.
- Do each question in a separate booklet.
- Write your name/number and your teacher's name on each booklet.
- Clearly label the front of each booklet with the number of the question.

Collection

- Start each question of Section II in a new booklet.
- If you use a second booklet for a question, place it inside the first.

Indicate on the outside of the first booklet that you have used two booklets for that question.

• Write your name/number, teacher's name and question number on each booklet.

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet at the back of this exam paper for Questions 1 - 10

1	Evaluate $\sqrt[3]{3\frac{3}{7}}$ to three significant figures.		
(A)	1.087		
(B)	1.09		
(C)	1.508		
(D)	1.51		
2	The first and last terms of an arithmetic serie If the sum of the series is 3535, how many to		
(A)	11		
(B)	101		
(C)	110		
(D)	51		
3	What is the equation of the graph drawn belo	ow?	
۲	y 5 4		y = 2x+3
	3	(B)	y = 2x - 3
		(C)	y = x - 1.5
	I		

- 4 The perimeter of a sector is 30cm. If the angle at the centre is 3 radians, what is the radius of the circle?
- (A) 10cm
- (B) 20cm
- (C) 6cm
- (D) 3cm

5 Find
$$\int \frac{1}{x^2} dx$$

(A) $\log(x^2) + c$

(B)
$$\frac{-2}{x^3} + c$$

(C)
$$\frac{-1}{x} + c$$

- (D) $2x \log(x^2) + c$
- 6 What is the equation of a parabola with focus (2, 3) and directrix y = -5?
- (A) $(x+1)^2 = 16(y-2)$
- (B) $(x-2)^2 = 16(y+1)$
- (C) $(x-2)^2 = 4(y-1)$
- (D) $(y+1)^2 = 4(x-2)$

- What is the limiting sum of the series $-\frac{1}{27} + \frac{1}{9} \frac{1}{3}$? 7 $\frac{-1}{108}$ (A) $\frac{1}{54}$ (B) Can't be found (C) $\frac{1}{108}$ (D) What is the derivative of $\frac{4}{3x^3}$? 8 (A) $-\frac{4}{x^4}$ (B) $-\frac{2}{3x^2}$ (C) $-\frac{4}{x^2}$ (D) $-\frac{36}{x^4}$ $(2\sqrt{3}-5)^2$ is equal to 9 $1 - 20\sqrt{3}$ (A) 37 (B) $37 - 20\sqrt{3}$ (C)
- (D) $37 10\sqrt{3}$

10	What is the compound interest on \$1000 invested for 5 years				
	at 6% per annum interest, compounded monthly? (to nearest dollar)				

- (A) \$1338
- (B) \$349
- (C) \$1349
- (D) \$1025

End of Multiple Choice

6

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section.

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use the Question 11 Writing Booklet

a)	Factorise	$2x^2 + 3x - 20$.	(1)

b)	Find the exact value of $\cos 210^{\circ}$.	(1)
----	--	----	---

c)	Find $\int \frac{2}{e^{2x}} dx$.		(1)
----	-----------------------------------	--	-----

d)	One of the roots of the equation $kx^2 - 2x - 3 = 0$ is -3 .	
	Find the value of k .	(1)

- e) Differentiate $\sin^2 2x$. (2)
- f) Solve $|2x-3| \le 5$. (2)
- g) Find $\int \frac{3x}{x^2 4} dx$. (2)
- h) Solve for x correct to 2 significant figures: $(\log_e 2x)^2 = 16$ (3)
- i) Is $f(x) = (x x^5)^2$ odd or even? Show all working. (2)

End of question 11

(3)

Question 12 (15 marks) Use a new booklet

a) Differentiate with respect to x:

i)
$$\frac{e^x}{\log_e 2x}$$
 (3)

ii)
$$\log\left[x^4(x-1)^2\right]$$
 (2)

b) Find the primitive of $\cos(\frac{1-x}{5})$. (1)

c) Find, in general form, the equation of the tangent to the curve
$$y = x \ln x$$

at the x intercept. (3)

- d) If α and β are the roots of the equation $2x^2 3x + 4 = 0$, find the value of $\alpha^2 + \beta^2$. (3)
- e) By proving 2 triangles similar, find the length of BC.

D

В

a) A, B and C are the points (-1,0), (2,4) and (-6,0) respectively. D is the point (-2,2) and is the midpoint of AE.

End of question 13

2

End of question 12

Question 14 (15 marks) Start a new booklet.

a)		what values of k will the equation $9x^2 - kx + 1 = 0$ have nd different roots?	(3)
b)	Evalı	hate $\int_{0}^{n} (1 + \sin 2\pi x) dx.$	(3)
c)	i)	Sketch the function $y = 4\cos 2x$ for $0 \le x \le \pi$.	(2)
	ii)	Find the area between the curve $y = 4\cos 2x$ and the x axis from $x = 0$ to $x = \frac{\pi}{2}$.	(3)

d) A tank contains 50 litres of water. A tap at the base of the tank allows water to flow out at a rate proportional to the quantity of water still in the tank at that time. After 2 minutes, 10 litres have run out.

Use the equation $W = W_0 e^{-kt}$, where W is the amount of water in the tank and t is time in minutes.

i) S	Show that $k = -\frac{1}{2} \ln \frac{4}{5}$.	(2)
------	--	-----

ii) How much water has run out after 10 minutes? (To the nearest litre) (2)

End of question 14

Question 15 (15 marks) Start a new booklet

End of Question 15

Question 16 (15 marks) Start a new booklet

a) Diana borrows \$10 000 and arranges to pay it back with interest in 20 equal instalments every three months over 5 years. She is charged 6% per annum interest compounded monthly.

Let A_n be the amount owing after *n* months and let *M* be the instalment.

i) Find the amount owing after the first three months, just after she has made her first payment. (1)

ii) Show that
$$M = \frac{10000(1.005^{63} - 1.005^{60})}{1.005^{60} - 1}$$
. (3)

iii) Find the size of the instalment she pays. (1)

b) The graph of $y = \log_e 2x$ is given below.

Find the volume when the shaded region between the curve, the x axis and the line

x = 3 is rotated about the y axis. (3)

Two poles, PQ and RS are 20 metres apart. PQ is 15 metres high and RS is 6 metres high. A length of wire is attached to the top of each pole and also staked to the ground at T somewhere between the two poles.

Let TS = x metres.

i) Show that the length of wire
$$L = \sqrt{36 + x^2} + \sqrt{625 - 40x + x^2}$$
. (2)

ii) Find the shortest length of wire that can be used. (4)

End of exam

12

Question 16c is on the next page

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = -\frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = -\frac{1}{a} \tan x, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = -\frac{1}{a} \tan x, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = -\frac{1}{a} \tan x, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = -\frac{1}{a} \tan x, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right) \quad x > a > 0$$

NOTE: $\ln x = \log_e x$, x > 0

Blank page

					15
Student Number:		-			
Name:					
SECTION I	Mathematics Multip	ole Choice	Answer Sheet		10 Marks
This sheet must b	e handed in separately	y. Detach it	from the question	on paper.	
Shade the correc	<u>ct answer:</u>				
1.	A O	BO	со	D O	
2.	A O	BO	C O	DO	
3.	A O	BO	C O	D O	
4.	A O	BO	СО	DO	
5.	A O	BO	СО	DO	
6.	A O	BO	C O	DO	
7.	A O	BO	СО	DO	
8.	A O	BO	СО	DО	
9.	A O	BO	СО	DО	
10.	A O	BO	СО	DО	

2013 YIZ MATHEMATICS	TRIAL
SECTIONI	1
MULTIPLE CHOICE,	d) kx -2x - 3 =0
	x=3:
1. D	9K+6-3=0
2. B	9k = -3
3. B	k= - = 1
4. C	
5. C	e) $\frac{d}{dx} \sin^2 2x = \frac{d}{dx} (\sin^2 x)^2$
6. B	
7. C	= 2 singe coo 2x × 2
8. A 9. C	= 4 sin 2x cos 2x 3
и. в	$f) 2x-3 \le 5$
	-5=22-3=5
QUESTION 11	
<u>AVESTION II</u> a) 2x ² +3x-20= (2x-5)(x+4)	$-2 \neq 2x \neq 8$ $-1 \neq x \neq 4$ (2)
b) cos 21:0° = - cos 30	$g = \int \frac{3x}{x^2 - 4} dx = \frac{3}{2} \int \frac{2x}{x^2 - 4} dx$
= - <u>13</u>	
2	= = 2 lage (22-4) + c
(2 - 2x)	h) (loge 2x) = 16
c) $\int \frac{2}{e^{2x}} dx = \int 2e^{-2x} dx$	lage 22 = -4 -4
$= \frac{2e^{-2\pi}}{2e^{-2\pi}} + c$	dX = E or $dX = E$
-2 + C	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$
- ,	= 27 or 9.2×10-3 (25f)
$\frac{-1}{e^{2x}} + c (1)$	i) $f(x) = (x - x^5)^2$
÷ •	$f(-x) = (-x - (-x)^{5})^{2}$
4	$=(-x+x^5)^2$ (2)
· · · · · · · · · · · · · · · · · · ·	$= (-x + x^{5})^{2}$ $f(x) = f(-x) (Ac squared)$
1	. even
1	
	25

$$\begin{array}{c} \begin{array}{c} \partial PESTIAN 1/2 \\ (a) \ j & d & \frac{\pi}{2} \\ (a$$

$$\begin{array}{c} \underline{avestiment}_{p} = x^{2} - \frac{x}{x^{2}} - \frac{x}{x^{2}} + \frac{x}{x^{2}} + \frac{x}{x^{2}} - \frac{x}{x^{2}} + \frac{x}{x^{2$$

$$\frac{Guastim 16}{2} \Rightarrow 10000$$

$$(uastim 16)$$

$$\Rightarrow 10000$$

$$(uastim 16)$$

$$\Rightarrow 10000$$

$$(uastim 16)$$

$$\Rightarrow 10000$$

$$(uastim 16)$$

$$\Rightarrow 20 \text{ parming 1} = \frac{1}{20000} (1005)$$

$$A_{3} = 100000 (1005)$$

$$A_{3} = 100000 (1005)$$

$$A_{4} = \frac{1}{2}(1005)$$

$$A_{5} = \frac{1}{2}(1$$

V2