Name \qquad

ASCHAM SCHOOL

MATHEMATICS TRIAL EXAMINATION 2013

General Instructions

- Reading time -5 minutes
- Working time -3 hours
- Write using black or blue pen. Black pen is preferred.
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- Show all necessary working in Questions 11-16.

Total marks -

100

Section I

10 marks

- Attempt Questions $1-10$ using the Multiple Choice sheet
- Allow about 15 minutes for this section.

Section II

90 marks

- Attempt Questions 11-16.
- Allow about 2 hours 45 minutes for this section.
- Do each question in a separate booklet
- Write your name/number and your teacher's name on each booklet.
- Clearly label the front of each booklet with the number of the question.

Collection

- Start each question of Section II in a new booklet.
- If you use a second booklet for a question, place it inside the first. Indicate on the outside of the first booklet that you have used two booklets for that question
- Write your name/number, teacher's name and question number on each booklet.

Section I

10 marks
Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet at the back of this exam paper for Questions $1-10$
$1 \quad$ Evaluate $\sqrt[3]{3 \frac{3}{7}}$ to three significant figures.
(A) 1.087
(B) 1.09
(C) 1.508
(D) 1.51

2 The first and last terms of an arithmetic series are 10 and 60. If the sum of the series is 3535 , how many terms are there in the series?
(A) 11
(B) 101
(C) 110
(D) 51

3 What is the equation of the graph drawn below?

(A) $y=|2 x+3|$
(B) $\quad y=|2 x-3|$
(C) $y=|x-1.5|$
(D) $y=|x+1.5|$

4 The perimeter of a sector is 30 cm . If the angle at the centre is 3 radians, what is the radius of the circle?
(A) 10 cm
(B) 20 cm
(C) 6 cm
(D) 3 cm

5 Find $\int \frac{1}{x^{2}} d x$
(A) $\quad \log \left(x^{2}\right)+c$
(B) $\frac{-2}{x^{3}}+c$
(C) $\frac{-1}{x}+c$
(D) $2 x \log \left(x^{2}\right)+\mathrm{c}$

6 What is the equation of a parabola with focus $(2,3)$ and directrix $y=-5$?
(A) $(x+1)^{2}=16(y-2)$
(B) $(x-2)^{2}=16(y+1)$
(C) $\quad(x-2)^{2}=4(y-1)$
(D) $(y+1)^{2}=4(x-2)$

7 What is the limiting sum of the series $-\frac{1}{27}+\frac{1}{9}-\frac{1}{3}$?
(A) $\frac{-1}{108}$
(B) $\frac{1}{54}$
(C) Can't be found
(D) $\frac{1}{108}$
$8 \quad$ What is the derivative of $\frac{4}{3 x^{3}}$?
(A) $-\frac{4}{x^{4}}$
(B) $-\frac{2}{3 x^{2}}$
(C) $-\frac{4}{x^{2}}$
(D) $-\frac{36}{x^{4}}$
$9 \quad(2 \sqrt{3}-5)^{2}$ is equal to
(A) $1-20 \sqrt{3}$
(B) 37
(C) $37-20 \sqrt{3}$
(D) $37-10 \sqrt{3}$

10 What is the compound interest on $\$ 1000$ invested for 5 years at 6% per annum interest, compounded monthly? (to nearest dollar)
(A) $\$ 1338$
(B) $\$ 349$
(C) $\$ 1349$
(D) $\$ 1025$

Section II

90 marks
Attempt Questions 11 - 16
Allow about 2 hours and 45 minutes for this section.
Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions $11-16$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use the Question 11 Writing Booklet
a) Factorise $2 x^{2}+3 x-20$
b) Find the exact value of $\cos 210^{\circ}$.
c) Find $\int \frac{2}{e^{2 x}} d x$.
d) One of the roots of the equation $k x^{2}-2 x-3=0$ is -3 . Find the value of k.
e) Differentiate $\sin ^{2} 2 x$
f) Solve $|2 x-3| \leq 5$.
g) Find $\int \frac{3 x}{x^{2}-4} d x$.
h) Solve for x correct to 2 significant figures:

$$
\begin{equation*}
\left(\log _{e} 2 x\right)^{2}=16 \tag{3}
\end{equation*}
$$

i) Is $f(x)=\left(x-x^{5}\right)^{2}$ odd or even? Show all working.

Question 12 (15 marks) Use a new booklet
a) Differentiate with respect to x :
i) $\frac{e^{x}}{\log _{e} 2 x}$
ii) $\quad \log \left[x^{4}(x-1)^{2}\right]$
b) Find the primitive of $\cos \left(\frac{1-x}{5}\right)$.
(1)

Find, in general form, the equation of the tangent to the curve $y=x \ln x$ at the x intercept.
d) If α and β are the roots of the equation $2 x^{2}-3 x+4=0$, find the value of $\alpha^{2}+\beta^{2}$.
e) By proving 2 triangles similar, find the length of BC .
(3)

Question 13 (15 marks) Start a new booklet

a) A, B and C are the points $(-1,0),(2,4)$ and $(-6,0)$ respectively.

D is the point $(-2,2)$ and is the midpoint of AE .

i) Find the length of the interval AB
ii) Find the midpoint of BC
iii) Find the coordinates of E
iv) What type of quadrilateral is ABEC? Give a clear explanation for your answer
b) Find the equation of the locus of the point $P(x, y)$ which moves so that it is twice the distance from $\mathrm{R}(-3,4)$ as it is from $\mathrm{S}(-1,2)$.
c) The slope at any point on a curve is given by $3 \sec ^{2} 2 x$.

Find the equation of the curve if it passes through the point $\left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right)$.

Question 14 (15 marks) Start a new booklet.

a) For what values of k will the equation $9 x^{2}-k x+1=0$ have real and different roots?
(3)
b) Evaluate $\int_{0}^{n}(1+\sin 2 \pi x) d x$.
(3)
c) i) Sketch the function $y=4 \cos 2 x$ for $0 \leq x \leq \pi$.
ii) Find the area between the curve $y=4 \cos 2 x$ and the x axis from $x=0$ to $x=\frac{\pi}{2}$.
d) A tank contains 50 litres of water. A tap at the base of the tank allows water to flow out at a rate proportional to the quantity of water still in the tank at that time. After 2 minutes, 10 litres have run out.

Use the equation $W=W_{0} e^{-k t}$, where W is the amount of water in the tank and t is time in minutes.
i) Show that $k=-\frac{1}{2} \ln \frac{4}{5}$.
ii) How much water has run out after 10 minutes? (To the nearest litre)

Question 15 (15 marks) Start a new booklet

a) The graph of $y=x^{3}-x^{2}-x+6$ is sketched below.

Not to scale

Find the coordinates of the stationary points.
(3)
ii) Find any point(s) of inflexion
iii) For what values of x is the curve decreasing and concave up?
iv) For what values of p has the equation

$$
\begin{equation*}
x^{3}-x^{2}-x+6=p \text { exactly two real solutions? } \tag{2}
\end{equation*}
$$

b) Use Simpson's Rule with 5 function values to evaluate, to 2 decimal places, $\int_{1}^{3} \log _{e} x d x$.
c) A particle moves in a straight line such that its position at time t seconds is given by $x=t-\log _{e} t$.
i) When is the particle at rest?
ii) Find the exact distance travelled by the particle
between $t=\frac{1}{2}$ and $t=1 \frac{1}{2}$.

Question 16 (15 marks) Start a new booklet
a) Diana borrows $\$ 10000$ and arranges to pay it back with interest in 20 equal instalments every three months over 5 years. She is charged 6% per annum interest compounded monthly.
Let A_{n} be the amount owing after n months and let M be the instalment.
i) Find the amount owing after the first three months, just after she has made her first payment.
ii) Show that $M=\frac{10000\left(1.005^{63}-1.005^{60}\right)}{1.005^{60}-1}$
iii) Find the size of the instalment she pays.
iv) How much does Diana pay in interest?
b) The graph of $y=\log _{e} 2 x$ is given below.

Not to scale

Find the volume when the shaded region between the curve, the x axis and the line
$x=3$ is rotated about the y axis.
c)

Not to scale

Two poles, PQ and RS are 20 metres apart. PQ is 15 metres high and RS is 6 metres high. A length of wire is attached to the top of each pole and also staked to the ground at T somewhere between the two poles.

Let TS $=x$ metres
i) Show that the length of wire $L=\sqrt{36+x^{2}}+\sqrt{625-40 x+x^{2}}$.
ii) Find the shortest length of wire that can be used.

End of exam

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, \quad n \neq \\
& \int \frac{1}{x} d x=\ln x, \quad x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x
\end{aligned}
$$

$$
\int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0
$$

$$
\int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0
$$

$$
\int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0
$$

$$
\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0
$$

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a
$$

$$
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0
$$

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
$$

$$
\text { NOTE: } \ln x=\log _{e} x, \quad x>0
$$

$$
n \neq-1 ; \quad x \neq 0, \text { if } n<0
$$

Student Number: \qquad

Name: \qquad

SECTION I Mathematics Multiple Choice Answer Sheet
10 Marks

This sheet must be handed in separately. Detach it from the question paper.

Shade the correct answer:

$$
\begin{gathered}
\text { d) } k x^{2}-2 x-3=0 \\
x=-3: \\
9 k+6-3=0 \\
9 k=-3
\end{gathered}
$$

$$
\frac{d}{d x} \sin ^{2} 2 x=\frac{d}{d x}(\sin 2 x)^{2}
$$

$$
=2 \sin z x \cos 2 x \times 2
$$

$$
=4 \sin 2 x \cos 2 x
$$

f) $|2 x-3| \leq 5$

$$
\begin{aligned}
& -5 \leqslant 2 x-3 \leq 5 \\
& -7 \leqslant 2 x \leqslant 8
\end{aligned}
$$

$$
\begin{equation*}
-1 \leq x \leq 4 \tag{2}
\end{equation*}
$$

g) $\begin{aligned} \int \frac{3 x}{x^{2}-4} d x & =\frac{3}{2} \int \frac{2 x}{x^{2}-4} d x \\ & =\frac{3}{2} \log _{e}\left(x^{2}-4\right)+c\end{aligned}$
h) $\left(\log _{e} 2 x\right)^{2}=16$

$$
x=\frac{e^{4}}{2} \text { or } \frac{e^{-4}}{2}=\frac{1}{2 e^{4}}
$$

$$
=27 \text { or } 9.2 \times 10^{-3}(25 f)
$$

i) $\begin{aligned} f(x) & =\left(x-x^{5}\right)^{2} \\ f(-x) & =\left(-x-(-x)^{5}\right)^{2}\end{aligned}$

$$
=\left(-x+x^{5}\right)^{2}
$$

$$
f(x)=f(-x) \text { (bp squared) }
$$

\therefore ever

QUESTION 12

$$
\begin{aligned}
& \text { a) i) } \frac{d}{d x} \frac{e^{x}}{\log _{e} 2 x} \\
& =\frac{\left(\log _{e} 2 x\right)\left(e^{x}\right)-e^{x} \cdot \frac{1}{2 x} \times 2}{\left(\log _{e} 2 x\right)^{2}} \\
& =\frac{e^{x} \log _{e} 2 x-\frac{e^{x}}{x}}{\left(\log _{e} 2 x\right)^{2}} \\
& =\frac{e^{x}\left(x \log _{e} 2 x-1\right)}{x\left(\log _{e} 2 x\right)^{2}}
\end{aligned}
$$

$$
\begin{align*}
& \text { ii) } \frac{d}{d x} \log \left[x^{4}(x-1)^{2}\right] \\
& =\frac{d}{d x}\left(\log x^{4}+\log (x-1)^{2}\right) \\
& =\frac{d}{d x}(4 \log x+2 \log (x-1)) \\
& =\frac{4}{x}+\frac{2}{x-1} \tag{2}
\end{align*}
$$

b)

$$
\begin{aligned}
& \int \cos \left(\frac{1-x}{5}\right) d x \\
:= & \frac{\sin \left(\frac{1-x}{5}\right)}{-\frac{1}{5}}+c \\
= & -5 \sin \left(\frac{1-x}{5}\right)+c
\end{aligned}
$$

c)

$$
\text { c) } \begin{aligned}
& y=x \ln x \\
& y^{\prime}=x \frac{1}{x}+\ln x \\
&=1+\ln x \\
& x \text { int: } y=0 \quad \therefore x \ln x=0 \\
& x=0 \text { or } \log _{e} x=0
\end{aligned}
$$

$$
x=0 \text { aot } \therefore e^{0}=x
$$

valid

$$
x=1
$$

$$
(1,0) \quad y=0
$$

grad of tayent $=1+l a 1$ $=1$

$$
\begin{gather*}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=1(x-1) \\
y=x-1 \tag{3}\\
x-y-1=0
\end{gather*}
$$

d)

$$
\text { 1) } \begin{aligned}
& 2 x^{2}-3 x+4=0 \\
& \alpha+\beta=\frac{3}{2} \quad \alpha \beta=2 \\
& \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta \\
&=\left(\frac{3}{2}\right)^{2}-2 \times 2 \\
&=\frac{9}{4}-4 \\
&=-1 \frac{3}{4}
\end{aligned}
$$

QUESTION 13

ii)

$$
\begin{aligned}
M & =\left(\frac{2-6}{2}, \frac{4-0}{2}\right) \\
& =(-2,2)
\end{aligned}
$$

$\therefore M$ is same pt as D

$$
\begin{align*}
& \text { (11) }(-2,2)=\left(\frac{x-1}{2}, \quad \frac{y+0}{2}\right) \\
& -2=\frac{x-1}{2} \quad \frac{y}{2}=2 \\
& x-1=-4 \quad y=4 \\
& x=-3 \\
& \therefore E(-3,4) \quad \text { (2) }
\end{align*}
$$

iv) Diagoals birect each other: \therefore parallelogramv
But $A C=A B=5$
\therefore Mombus.

$$
\begin{align*}
& \text { b) } \frac{P R=2 P S}{\sqrt{(x+3)^{2}+(y-4)^{2}}=2 \sqrt{(x+1)^{2}+(y-2)^{2}}} \tag{2}\\
& \begin{array}{l}
x^{2}+6 x+9+y^{2}-8 y+16= \\
\quad 4\left(x^{2}+2 x+1+y^{2}-4 y+4\right)
\end{array}
\end{align*}
$$

$$
\begin{align*}
& x^{2}+6 x+y^{2}-8 y+25=4 x^{2}+8 x+4 y^{2}-16 y t \\
& 3 x^{2}+2 x+3 y^{2}-8 y-5=0 \tag{4}
\end{align*}
$$

c)

$$
\begin{aligned}
& y^{\prime}=3 \sec ^{2} 2 x \\
& y=\frac{3 \tan 2 x}{2}+c \\
& \operatorname{Sub}\left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right) \\
& \frac{\sqrt{3}}{2}=\frac{3}{2} \tan \frac{2 \pi}{3}+c \\
& \begin{array}{l}
\frac{\sqrt{3}}{2}=-\frac{3}{2} \times \sqrt{3}+c \\
\sqrt{3}=-\frac{3 \sqrt{3}}{2}+c
\end{array} \\
& \frac{\sqrt{3}}{2}=\frac{-3 \sqrt{3}}{2}+c \\
& c=\frac{\sqrt{3}}{2}+\frac{3 \sqrt{3}}{2}=2 \sqrt{3} \\
& y=\frac{3}{2} \tan 2 x+2 \sqrt{3}
\end{aligned}
$$

a) $9 x^{2}-k x+1=0$
 $\Delta=k^{2}-36$

For real: different roots $\Delta>0$ $k^{2}-36>0$
$k<-6$ or $k>6$
(3) $\frac{1 / 6}{-6}$
b) $\int_{0}^{n}(1+\sin 2 \pi x) d x$
$=\left[x-\frac{\cos 2 \pi x}{2 \pi}\right]_{0}^{n}$
$=n-\frac{\cos 2 \pi n}{2 \pi}-0+\frac{\cos 0}{2 \pi}$
$=n-\frac{1}{2 \pi}+\frac{1}{2 \pi}$
$=n$
(3)
c) $y=4 \cos 2 x \quad 0 \leqslant x \leqslant \pi$

$$
\text { ii) } \begin{aligned}
\text { Area } & =2 \int_{0}^{\frac{\pi}{4}} 4 \cos 2 x d x \\
& =2 \times 4\left[\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{4}}
\end{aligned}
$$

$=4\left[\sin \frac{\pi}{2}-\sin \theta\right]$
$=4 \times 12$
d)
i) $W=W_{0} e^{-k t}$

$$
\begin{aligned}
& W_{0}=50 \\
& W=50 e^{-k t}
\end{aligned}
$$

$$
t=2 \quad W=40
$$

$$
\begin{aligned}
& =2 \quad W=40 \\
& 40=50 e^{-k \times 2} \text { Nor } \\
& 41,-2 k
\end{aligned}
$$

$$
4 / 5=e^{-2 k}
$$

$$
k=\frac{\log _{-2} \frac{4}{5}}{}
$$

$$
=\frac{\left(\log \frac{5}{4}\right)^{-1}}{-2}
$$

$$
=\frac{-\log \frac{5}{4}}{2}
$$

$$
\begin{array}{r}
\frac{1}{2} \\
=\frac{1}{2} \log \frac{5}{4}
\end{array}
$$

$$
\begin{aligned}
& \text { ii) } w=50 e^{-k t} \\
& t=10: \quad-\frac{1}{2} \ln \frac{5}{4}
\end{aligned}
$$

$$
t=10: \quad-\frac{1}{2} \ln \frac{5}{4} \times 10
$$

$$
\begin{aligned}
W & =50 e \\
& =50 e^{-5 \ln \frac{5}{4}}
\end{aligned}
$$

$$
=50 e
$$

$$
=16 \cdot 384
$$

$\therefore 16 \cdot 384$ litres are in tank ie. 33.616 litres has reed

$$
=34 l(\text { to } n \text { litre) } 2
$$

a) $y=x^{3}-x^{2}-x+6$
i) $\left.\begin{array}{c}\text { For Ahatroram points } y^{\prime}=0 \\ y^{\prime}=3 x^{2}-2 x-1 \\ (3 x+1)(x-1)=0 \\ x=-\frac{1}{3}, x=1 \\ y=6 \frac{5}{27} \quad y=5 \\ \therefore \text { stationary points are } \\ \left(-\frac{1}{3}, 6 \frac{5}{27}\right),(1,5)(3) \\ \frac{117}{27}\end{array}\right)$

b) | x | 1 | $1 \frac{1}{2}$ | 2 | $2 \frac{1}{5}$ | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\log x$ | $\log 1$ | $\log \frac{1}{2}$ | $\log 2\left(\log 2 \frac{1}{2}\right.$ | $\log 3$ | |
| $\quad y$ | | | | | |

$\int_{1}^{3} \log x d x \div \frac{h}{3}\left\{y_{0}+y_{4}+4\left(y_{1}+y_{3}\right)+z_{y}\right\}$

$$
\begin{gathered}
=\frac{1}{3}\{0+\log 3+4 \log 1 \cdot 5+\log 24 \\
+2 \log 2\}
\end{gathered}
$$

$$
\begin{align*}
& \doteq 1.29532 \ldots \tag{3}\\
& \doteq 1.30(2 \mathrm{dp})
\end{align*}
$$

ii) For points of inflexion $y^{\prime \prime}=$
c) $x=t-\log _{e} t$
$x=\frac{1}{3}$,
$y=5 \frac{16}{27}=\frac{151}{27}$
$\therefore\left(\frac{1}{3}, 5 \frac{16}{27}\right)$ is a possible point of inflexion
Check concavity

\therefore charge in concavity

$$
\begin{equation*}
\therefore\left(\frac{1}{3}, 5 \frac{76}{27}\right) \text { is a point } \tag{2}
\end{equation*}
$$

of inflexion
[if. State there is chare
in concavity on diagram
that is OK for the mark]
III) $\frac{1}{3}<x<1$
iv) $p=5$ and $p=6 \frac{5}{27}$
(1)
(2)

Parsee is a rest when $v=0$

$$
\begin{aligned}
1-\frac{1}{t} & =0 \\
\frac{1}{t} & =1
\end{aligned}
$$

$$
\begin{equation*}
t=1 \tag{1}
\end{equation*}
$$

\therefore Distance
$\begin{aligned} \therefore & \text { Distance } \\ & =\frac{1}{2}-\log \frac{1}{2}-1+1 \frac{1}{2}-\log 1 \frac{1}{2}-1 \\ & =-\log \frac{1}{2}-\log 1 \frac{1}{2} \\ & =-\left(\log \frac{1}{2}+\log 1 \frac{1}{2}\right) \\ & =-\log \frac{3}{4} \\ & =\log \frac{4}{3}\end{aligned}$

Queation 16
a) $\$ 10000$

Every 3 mowths 5 yeas $\therefore 20$ paymento $6 \% \mathrm{pa}=0.005 \mathrm{p} /$ mouth
i)

$$
\begin{align*}
& A_{1}=10000(1.005)^{3} \\
& A_{3}=10000(1.005)^{3}-M \tag{1}
\end{align*}
$$

$$
\text { ii) } \begin{aligned}
& A_{6}=A_{3}(1.005)^{3}-M \\
&= {\left[10000(1.005)^{3}-M\right] 1.005^{3}-M } \\
&= 10000\left(1.005^{6}\right)-M\left(1+1.005^{3}\right) \\
& \vdots \\
& A_{60}=1000(1.005)^{60} \\
&-M\left(1+1.005^{3}+\ldots+1.005^{57}\right) \\
& A_{60}= 10000(1.005)^{60}-M\left(1.005^{00}-1\right) \\
& 1.005^{3}-1
\end{aligned}
$$

$$
\begin{aligned}
& A_{60}=0 \\
& 10000(1.005)^{60}=\frac{11\left(1.005^{60}-1\right)}{1.005^{3}-1}
\end{aligned}
$$

$$
\frac{10000(1.005)^{60}}{1.005^{60}-1}\left(1.005^{3}-1\right)=M
$$

$$
\begin{equation*}
M=\frac{10000\left(1.005^{63}-1005^{60}\right)}{1.005^{60}-1} \tag{3}
\end{equation*}
$$

III) $M=\$ 582.89$
iv) Interest $=582.89 \times 20-10000$

$$
=\$ 1657 \cdot 80
$$

(1)

$=\pi\left(9 \log 6-\frac{e^{2 \log 6}}{8}-\left(0-\frac{e^{0}}{8}\right)\right.$
$=79 \log 6-\frac{e^{\log 36}}{8}+\frac{1}{8}$
$=79 \log 6-\frac{36}{8}+\frac{1}{8}$
$=\pi\left(9 \log 6-\frac{35}{8}\right) u^{3}$
$O R$
$4.37 \pi u^{3} 11.75 \pi u^{3}$

OR
A3. $73 u^{3} \quad 36.92 u^{3}$ (2dp)
cb)

$$
\text { i) } \begin{align*}
P T^{2} & =15^{2}+(20-x)^{2} \\
& =225+400-40 x+x^{2} \\
& =625-40 x+x^{2} \\
R S^{2} & =6^{2}+x^{2} \\
& =36+x^{2} \tag{2}\\
\therefore L & =\sqrt{36+x^{2}}+\sqrt{625-40 x+x^{2}}
\end{align*}
$$

$$
\text { ii) } \begin{aligned}
& \text { For min } \angle, L^{\prime}=0 \\
& L^{\prime}=\frac{1}{2}(36\left.+x^{2}\right)^{-\frac{12}{2}} \times \not 2 x \\
&+\frac{1}{2}\left(625-40 x+x^{2}\right)^{-\frac{1}{2}}(2 x-40)
\end{aligned}
$$

$$
L^{\prime}=\frac{x}{\sqrt{x^{2}+36}}+\frac{x-20}{\sqrt{625-40 x+x^{2}}}
$$

$$
\frac{-x}{\sqrt{x^{2}+36}}=\frac{x-20}{\sqrt{625-40 x+x^{2}}}
$$

$$
\frac{x^{2}}{x^{2}+36}=\frac{x^{2}-40 x+400}{6.25-40 x+x^{2}} 1 / 2
$$

$625 x^{2}-40 x^{3}+x^{4}=x^{4}-40 x^{3}+400 x^{2}$

$$
+36 x^{2}-1440 x+14400
$$

$625 x^{2}=400 x^{2}+36 x^{2}-1440 x$ $+14400$

$$
1899^{2}+1440 x-14400=0
$$

\therefore shoateat L

$$
\begin{aligned}
& \sqrt{36+\left(\frac{40}{7}\right)^{2}}+\sqrt{625-40 \times \frac{40}{7}+\left(\frac{40}{7}\right)^{2}} \\
& =29 \mathrm{~m} . \quad 1 / 2
\end{aligned}
$$

