Question 1:

(a) Express 0.04678 in scientific notation correct to 3 significant figures.
(b) Rationalise the denominator of $\frac{3+\sqrt{2}}{2-\sqrt{2}}$.

Simplify your answer as far as possible.
(c) Solve for θ if $2 \cos \theta=1$ and $0^{\circ} \leq \theta \leq 360^{\circ}$.
(d) Solve for k if $3(k-1)-2(k-2)>1$.
(e) Express the recurring decimal $0 . \dot{2} \dot{2}$ as a fraction in its lowest terms.
(a) Find the derivatives of each of the following with respect to x :
(i) $\quad x^{3}-5 x^{2}+7 x+e^{3}$
(ii) $\quad \ln \left(x^{2}+5\right)$
(iii) $\tan (3 x)$
(iv) $\frac{\sin x}{x^{3}}$
(b) The quadrilateral $A B C D$ is shown in the diagram - all measurements are in centimetres.

(Diagram not to scale)
(i) Find, using the Cosine Rule, or otherwise, the length of $A C$, correct to one decimal place.
(ii) Find the size of $\angle C A D$, giving your answer to the nearest degree.
(iii) Calculate, correct to one decimal place the area of quadrilateral $A B C D$.

A circle C, with centre $(-4,2)$ is tangent to the straight line l with the equation $3 x+4 y-16=0$. The perpendicular distance from the centre of this circle to the straight line l is equal to the radius of the circle.
(a) Find the x and y intercepts, A and B, respectively of the line l.
(b) Show that the radius of the circle, C, is 4 units.
(c) Write down the equation of the circle, C, in the form

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=r^{2} \tag{1}
\end{equation*}
$$

(d) On a suitable number plane, sketch the circle, C and the straight line, l.
(e) Verify that the coordinates of the point of intersection, E, of the circle, C, and the line, l is $(-1.6,5.2)$.
(f) Find the equation of the line, k, that passes through (4, -2), and is also perpendicular to the line l.
(g) Verify that the circle, C, intersects the y axis at the point D, with coordinates $(0,2)$.

Question 4: \quad Start a new sheet of paper
(a) (i) Find the number of terms there are in the arithmetic series

$$
-258+251+244+\ldots-288-295 ?
$$

(ii) Calculate the sum of the arithmetic series in (a)(i) above.
(b) (i) Find the discriminant of the quadratic equation

$$
x^{2}-(2-k) x+1=0
$$

(ii) Hence, or otherwise, determine the values of k for which the graph of

$$
y=x^{2}-(2-k) x+1
$$

cuts the x-axis in two distinct points.
(c) A parabola's equation is given by $y=x^{2}-2 x-3$.
(i) Find the focal length.
(ii) Determine the coordinates of the vertex V.
(iii) Find the coordinates of the focus S.

Question 5: \quad Start a new sheet of paper
(a) The common ratio r of a geometric progression satisfies the quadratic equation

$$
2 r^{2}-3 r-2=0
$$

(i) Solve for r

If the sum to infinity of the same progression is 6,
(ii) Explain why, in this case, r can only take on one value.

Hence, state the common ratio r.
(iii) Show that the first term a of this progression, is 9 .
(b) A population of eels in a certain river has become too large to be supported by its environment and it decreases from time $t=0$ to a stable level.

The size of the population in thousands of eels is given by $g(t)$, where t is measured in weeks.

The rate of change of the population is given by $g^{\prime}(t)=-5 e^{-2 t}$ for $t \geq 0$. It is known that when $t=0, g=10$.
(i) Find, by integrating $g^{\prime}(t)=-5 e^{-2 t}$, the size of the population of eels at any time t.
(ii) Sketch the graph of $y=g(t)$ on a number plane.
(iii) State the long-term stability level of the eel population in the river.
(a) Consider the function $f(x)=x^{3}-x^{2}-x+1$.
(i) By using the grouping in pairs method for factorising, or otherwise, factorise fully the expression $x^{3}-x^{2}-x+1$.
(ii) Evaluate $f(1)$ and $f(-1)$.
(iii) Hence, or otherwise, state the x intercepts of $f(x)$.
(iv) Determine the coordinates and the nature of the stationary points on $y=f(x)$.
(v) Find the coordinates of the point(s) of inflexion of $y=f(x)$.
(vi) Hence, sketch the graph of $y=f(x)$ on a number plane, showing all essential features.
(b) Forty five percent of a population are of blood group $O, 40 \%$ are of blood group A and the remainder are neither group O nor group A.

Three people are chosen at random from the population.
By drawing a tree diagram, or otherwise, find the probability that
(i) all three people are of blood group A;
(ii) two of the people are of blood group A and the other is group O;
(iii) there is one person each of group O, group A and neither group O nor group A.

In triangle $P Q R, B$ is a point on $Q R$ such that $P B$ is the angle bisector of angle $R P Q$. A is the midpoint of $Q P$. The straight line joining $A B$ is produced to a point C such that $C R \| Q P$.

(Diagram is not to scale)

Copy this diagram onto your answer sheet.

(a) Prove, with reasons, that $\triangle B A Q$ is similar to $\triangle B C R$.
(b) Hence, state why $\frac{R C}{Q A}=\frac{R B}{Q B}$.
(c) $\quad B D$ is a line drawn parallel to $Q P$ meeting $P R$ at D.

Show that $\frac{R D}{P D}=\frac{R B}{Q B}$.
(d) By showing $\triangle B R D$ is similar to $\triangle Q R P$, or otherwise, show that

$$
\begin{equation*}
\frac{R D}{P D}=\frac{P R}{P Q} \tag{3}
\end{equation*}
$$

(e) Hence, or otherwise, show that $R C=\frac{1}{2} P R$.
(a) (i) On a suitable number plane sketch the graph of $y=|x-1|$.
(ii) Solve the inequality $|x-1|<1$.
(iii) Hence, or otherwise, evaluate $\int_{0}^{2}|x-1| d x$.
(b) (i) Find $\int \frac{1}{2 x-5} d x$.
(ii) Find $\int_{0}^{\frac{\pi}{3}} \cos (6 x) d x$, leaving your answer in simplified form.
(c) Let A be the area enclosed by the curve $y=\sqrt{x}+\frac{1}{\sqrt{x}}$, the x axis and the lines $x=4$ and $x=9$.

Find the volume of the solid formed by rotating this area through 360° about the x axis.

Leave your answer in simplified form and in terms of π.

Question 9: \quad Start a new sheet of paper

The diagram shows part of the graph of the function $y=1-x^{4}$. where x is any real number.

(a) Calculate I, the area enclosed between the graph of $y=1-x^{4}$ and the x axis.
(b) The rectangle $P Q R S$ has coordinates

$$
P(-u, 0), Q(u, 0), R(u, y(\mathrm{u})) \text {, and } S(-u, y(-\mathrm{u}))
$$

where $0<u<1$.
Let the area of the rectangle $P Q R S$ be denoted by $A(u)$.
(i) State why $A(u)=2 u\left(1-u^{4}\right)$ square units.
(ii) Verify that $A(0.5)=\frac{15}{16}$.
(iii) Let u_{1} be the value of u for which $A(u)$ is a maximum. Find the value of u_{1} correct to five significant figures.
(iv) Calculate the maximum value of $A(u)$, giving your answer correct to 5 significant figures.
(v) Show that if $A(u)=u I$, then $u=u_{1}$.

Question 10: \quad Start a new sheet of paper

Dusty Lifesaver is retiring from the work force. Dusty has a lump sum (from a superannuation fund) of $\$ P$ to invest. Dusty is advised that it will take $\$ m$ to cover living expenses in any given year after retirement with the remainder invested at q per annum and compounded annually. The living expense of $\$ m$ is taken out of the remainder at the beginning of each year.

Let $R=1+\frac{r}{100}$ and assuming $P>R(P-m)$ is satisfied.
(a) Show that
(i) after 1 year Dusty has $\$ R(P-m)$ remaining.
(ii) after 2 years Dusty has $\$ P R^{2}-m R(1+R)$ remaining.
(iii) after 3 years Dusty has $\$ P R^{3}-m R\left(1+R+R^{2}\right)$ remaining.
(b) Show that $1+R+R^{2}=\frac{R^{3}-1}{R-1}$.
(c) By first observing the pattern established in (a), show that after n years the remaining superannuation in dollars is given by

$$
\begin{equation*}
P R^{n}-\frac{m R\left(R^{n}-1\right)}{R-1} \tag{2}
\end{equation*}
$$

(d) By first equating the expression in (c) to zero, show that Dusty's superannuation is exhausted when

$$
R^{n}=\frac{m R}{P-R(P-m)}
$$

(a) Hence, or otherwise, find the number of years Dusty can survive if $P=\$ 400000, m=\$ 40000$ and $r=7 \%$ per annum.

END OF EXAMINATION

1999 Barber 12 2U Trial MATts (AES)
Question 1
a) 4.68×10^{-2}

Question 2.
a) i) $3 x^{2}-10 x+7$

$$
\text { ii) } \frac{2 x}{x^{2}+5}
$$

$$
\text { b) } \begin{aligned}
\frac{3+\sqrt{2}}{2-\sqrt{2}} & =\frac{(3+\sqrt{2})(2+\sqrt{2})}{(2-\sqrt{2})(2+\sqrt{2})} \\
& =\frac{6+5 \sqrt{2}+2}{4-2} \\
& =\frac{8+5 \sqrt{2}}{2}
\end{aligned}
$$

(iii) $3 \sec ^{2} 3 x$

$$
\begin{aligned}
& \text { iv) } \frac{u^{\prime} v-v^{\prime}}{v^{2}}=\frac{\cos x \cdot x^{3}-\sin x \cdot 3 x}{x^{6}} \\
& =\frac{x \cos x-3 \sin x}{x^{4}} \quad x \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } \quad 2 \cos \theta=1 \quad 0^{\circ} \leqslant \theta \leqslant 360^{\circ} \\
& \Rightarrow \quad \cos \theta=\frac{1}{2} \\
& \Rightarrow \quad \theta=60^{\circ} \text { or } 300^{\circ}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { a) } & \Rightarrow 3(k-1)-2(k-2)>1 \\
& \Rightarrow 3 k-3-2 k+4>1 \\
& \Rightarrow & k+1>1 \\
& \Rightarrow & k>0
\end{array}
$$

e)

$$
\begin{aligned}
0 . \ddot{2} \dot{z} & =\frac{22}{99} \\
& =\frac{2}{9}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
\text { i } A C^{2} & =12.4^{2}+8.3^{2}-2 \times 12.4 \times 8.3 \times c 00 \% \\
& =179.853 \quad(3 \mathrm{dp}) \quad \text { CoB RULe } \\
\Rightarrow A C & =13.4 \text { correct to ld }
\end{aligned}
$$

$$
\text { ii) } \angle C A D=\sin ^{-1} \frac{.6 .9}{A C}
$$

$=31^{\circ}$ to nearest degree

$$
\begin{aligned}
& \text { iii) } \text { Area }=\text { Area } \triangle A D C+\triangle A C B \\
& =\frac{1}{2} A C \times C D \mathrm{sm}<D C A \\
& +\frac{1}{2} A B \times B C \times \operatorname{sm} 78^{\circ} \\
& =\frac{1}{2} \times 13.41 \times 6.9 \times \sin 59^{\circ} \\
& +\frac{1}{2} \times 12.4 \times 8.3 v \sin 78^{\circ} \\
& =36.66+50.34 \\
& =90.0 \mathrm{~cm}^{2}(1 \mathrm{dp}) \text {. }
\end{aligned}
$$

$$
\text { f) } m_{l}=-\frac{3}{4}
$$

Queshon 3
a) $l: 3 x+4 y-16=0$
x intercent $\left(5 \frac{1}{3}, 0\right)$
y mereent $(0,4)$
b) $r=d=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|$

$$
=\left|\frac{3(-4)+4(2)-16}{\sqrt{3^{2}+4^{2}}}\right|
$$

$$
1=\frac{20}{5}=4
$$

c) $(x+4)^{2}+(y-2)^{2}=4^{2}$
d)

e) $E(-1.6,5.2)$ sut in

$$
\begin{aligned}
d: & 3(-1.6)+4(5.2)-16 \\
= & -4.8+20.8-16 \\
= & 0 \text { hes on live } l .
\end{aligned}
$$

C: $(-1.6+4)^{2}+(5.3-2)^{2}$

$$
=2.4^{2}+3.2^{2}
$$

- $16=r^{2} \mathcal{J}$ hes on circh
$\therefore E$ on on $60 / 2 \therefore E$ is
the untersuchon.
(1) -nestion 4

$$
\begin{aligned}
& \text { a) }{ }^{\prime} \text { i) } a=258, a=-7 \\
& T_{n}=-295=a+(n-1) \alpha \\
&=258+(n-1)(-7) \\
&=258-7 n+7 \\
& \Rightarrow \quad 7 n=560 \\
& \Rightarrow \quad n
\end{aligned}
$$

ii) $S_{n}=\frac{n}{2}(a+l)$

$$
\begin{aligned}
& =\frac{80}{2}(258-295) \\
& =-1480
\end{aligned}
$$

bi)

$$
\begin{aligned}
\Delta & =b^{2}-4 a c \\
& =\left(-(2-k)^{2}-4(1)(1)\right. \\
& =4-4 k+k^{2}-4 \\
& =k(-4+k)
\end{aligned}
$$

ii) $A>0$ fon 2 distimet $p t$
le $n(k-4)>0$
i.e. $k<0$ and $k>4$
c)

$$
\begin{aligned}
\text { i) } \begin{aligned}
y & =x^{2}-2 x-3 \\
& =(x-1)^{2}-1-3 \\
\Rightarrow y+4 & =(x-1)^{2} \\
|a| & =\frac{1}{4} \\
\Rightarrow V & =(1,-4) \\
\text { iii) } S & =\left(1,-3 \frac{3}{4}\right)
\end{aligned} \text { iii) }
\end{aligned}
$$

Question S

$$
\begin{aligned}
& \text { i) } 2 r^{2}-3 r-2=0 \\
& \Rightarrow(2 r+1)(r-2)=0 \\
& r=-\frac{1}{2} \quad \text { or } r=2
\end{aligned}
$$

If the sequence has a sum to infunty

$$
1<1 \quad 1 . e \quad r=-\frac{1}{2}
$$

$$
\text { i) } \begin{aligned}
S_{\infty} & =\frac{a}{1-r}=6 \\
\Rightarrow \quad a & =6 \times\left(1--\frac{1}{2}\right) \\
a & =9
\end{aligned}
$$

b)

$$
\begin{aligned}
& \text { i) } g^{\prime}(t)=-5 e^{-2 t} \\
& \Rightarrow g(t)=\frac{5}{2} e^{-2 t}+c \\
& g(0)=10 \\
& \Rightarrow 10=\frac{5}{2} e^{-2 x 0}+C \\
& \Rightarrow 10=2 \frac{1}{2}+C \\
& \Rightarrow \quad C=7 \frac{1}{2} \\
& \Rightarrow \cdots=\frac{5}{2} e^{-2 t}+7 \frac{1}{2}
\end{aligned}
$$

iii) 7500 eels

Question 6
a)

$$
\text { a) } \begin{aligned}
& \text { i) } x^{2}(x-1)-1(x-1) \\
= & \left(x^{2}-1\right)(x-1) \\
= & (x-1)(x+1)(x-1)
\end{aligned}
$$

ii) $f(1)=0, f(-1)=0$
iii) $(1,0),(-1,0)$
iv) For stakemary p p

$$
f^{\prime}(x) \geq 0
$$

11. $3 x^{2}-2 x-1=0$
le $(3 x+1)(x-1)=0$

$$
\begin{aligned}
& \Rightarrow x=-\frac{1}{3} \cdot 0_{2} R x-1 \\
& f^{\prime \prime}(x)=6 x-2 \\
& x=-\frac{1}{3} \quad f^{\prime \prime}(x)<0 \quad \max
\end{aligned}
$$

$x=1 \quad f^{\prime \prime}(x)>0 \quad$ min.
ctg
MAY at $\left(-\frac{1}{3}, \frac{32}{27}\right)$
Questow 7
$M \mathbb{N}$ at $(1,0)$
v) Now stationary inflechon of

$$
f^{\prime \prime}(x)=0\left(\operatorname{af} f^{\prime}(x) \neq 0\right)
$$

1.e $6 x-2=0$
i. $\quad x=\frac{1}{3}$

$$
\Rightarrow \quad y=\frac{16}{27}
$$

Coonds $\left(\frac{1}{3}, \frac{16}{27}\right)$

i) $P(0)=456 P(A)=40 \%$.
i) $P=(.4)^{3}=0.064$
ii.)

$$
\begin{aligned}
P & =3 \times(0.4)^{2} \times 0.45 \\
& =0.216
\end{aligned}
$$

iii) $P=6 \times 0.4 \times 0.45 \times .15$

$$
=0.162
$$

Tats

$$
=\pi \int_{4}^{9}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2} d x
$$

$$
=\pi \int_{1}^{4}\left(x+2+\frac{1}{x}\right) d x
$$

$$
=\pi\left(\frac{x^{2}}{2}+2 x+\ln x\right)_{\frac{4}{4}}^{4}
$$

$$
=\pi\left(\frac{81+18+\ln 9}{2}-\frac{4^{2}}{2}-8-\ln 4\right)
$$

$$
=\pi\left(\frac{85}{2}+\ln \frac{9}{4}\right)
$$

$O R \pi\left(\frac{85}{2}+2 \ln \frac{3}{2}\right)$
Queston 8
a) $2 \triangle \triangle B A Q, \triangle B C R$

$$
\angle Q A B=\angle R C B\left(\text { alt }{ }^{\prime} O Q A / / C R\right)
$$

(3) $\angle Q B A=\angle R B C$ (went $\angle<10$) $\Rightarrow \triangle B A Q$ III $\triangle B C R$ (equmaydala)
b) correpponding sides of
(sumplar Δ 's aremprepartan
c) $B D / / \varphi P \Rightarrow$
(1) $\frac{R D}{P D}=\frac{R B}{Q B}$ (untercent
d) $2, \triangle B R D, \triangle Q R P$
\angle Res common

$$
\begin{array}{r}
\angle D B R=\angle P Q R(\text { correp } \sim<0 \\
Q P / / B D)
\end{array}
$$

$\Rightarrow \triangle B C D \| D A P P$
$\Rightarrow \quad \frac{R D}{B D}-\frac{R P * / \text { correapondurg }}{Q P}$
But $\angle D B P=\angle A P B\left(\right.$ aer $\angle 1, A P / / A_{s}$
and $\angle D P B=\angle A P B$ (gordn)

$$
\begin{aligned}
& \Rightarrow \angle D B P=\angle D P B V \\
& \Rightarrow \triangle P B D N \text { soscelen } \\
& \Rightarrow B D=P D \\
& \therefore R D=\frac{R P}{D P} \text { from } \quad \therefore
\end{aligned}
$$

e) Proven $\frac{R C}{Q A}=\frac{R B}{Q B}, \frac{R D}{P D}=\frac{R B}{\rho B}$
$\Rightarrow \frac{R C}{\varphi A}=\cdots \frac{R D}{P D}$
hat $\frac{R D}{P D}=\frac{R P}{Q P}$
$\Rightarrow \quad \frac{R C}{Q A}=\frac{R P}{Q P}$
$\Rightarrow \quad \frac{R C}{P R}=\frac{Q A}{P Q}=\frac{1}{2}(A=\operatorname{mid}+$
$\Rightarrow \quad R C=\frac{1}{2} P R$ as required.

Ques tron 9
a)

$$
\int_{-1}^{1}\left(1-x^{4}\right) d x=\left[x-\frac{x^{5}}{5}\right]_{-1}^{1}
$$

$$
-2\left(1-\frac{1}{5}\right)=\frac{8}{5}
$$

$$
\begin{aligned}
& \Rightarrow \quad 1-\mu^{4}=\frac{4}{5} \quad(0<\mu<1) \\
& \Rightarrow \quad \mu^{4}=\frac{1}{5} \\
& \Rightarrow \quad \mu=\sqrt[4]{\frac{1}{5}}
\end{aligned}
$$

b)

$$
\text { i) } \begin{aligned}
\text { Area } & =l \times b \\
A(u) & =2 u \times f(\mu) \\
& =2 u \times\left(1-u^{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2 \mu \times\left(1-\mu^{4}\right) \\
i i) A(0.5) & =2(0.5) \times\left(1-0.5^{4}\right)
\end{aligned}
$$

$$
=-1-\frac{1}{16}=\frac{15}{16}
$$

$$
\text { iii) } \frac{d A}{d u}=\frac{d}{d u}\left(2 u-2 u^{5}\right)
$$

$$
=2-10 u^{4}
$$

$$
=0 \text { fostahomany } t t
$$

$$
\begin{aligned}
\Rightarrow \mu^{4} & =\frac{1}{5} \\
\Rightarrow \mu & =\sqrt[4]{\frac{1}{5}} \\
& =0.66874 \text { to } 5 \text { sigfigs }
\end{aligned}
$$

Test nature of $S P$

$$
\begin{aligned}
& \frac{d^{2} A}{d u^{2}}=-40 \mu \\
&<0 \text { fr } \mu=\sqrt[4]{\frac{1}{5}}
\end{aligned}
$$

H. max S.P. at $\mu_{1}=0.66874$ (st)
iv)

$$
\begin{aligned}
A\left(u_{1}\right) & =2\left(\sqrt[4]{\frac{1}{5}}\right) f\left(-\frac{1}{5}\right) \\
& =\frac{8}{5}\left(\sqrt[4]{\frac{1}{5}}\right) \\
& =1.0 .6998 \\
& =1.0700 \text { to sig Kg. }
\end{aligned}
$$

Question 10
a) i) After yean:

$$
\begin{aligned}
+A_{1} & =(P-m)(1+r \eta) \\
& =(P-m) R \\
& =A(P-m)
\end{aligned}
$$

ii) After 2 yeans

$$
\begin{aligned}
A_{2} & =((P-m) R-m) R \\
& =P R^{2}-m R^{2}+m R \\
& =P R^{2}-m R(1+R)
\end{aligned}
$$

iii) A_{3} af $3 y r$

$$
\text { i11) } \begin{aligned}
& A_{3}\left\{\left[P R^{2}-m R(1+R)\right]-m\right\} R \\
&=\left\{R^{3}-m R^{2}(1+R)-m R\right. \\
&=P R^{3}-m R\left(R^{2}+1\right)-m R \\
&=P R^{3}-m R\left(1+R+R^{2}\right\} \\
& \text { b) }\left(1+R+R^{2}\right)(R-1) \\
&= R-1+R^{2}-R+R^{3}-R^{\prime} \\
&=R^{3}-1
\end{aligned}
$$

$$
\Rightarrow 1+R+R^{2}-\frac{R^{3}-1}{R-1}
$$

4) Following the paterson in a)

$$
\begin{aligned}
A_{n} & =P R^{n}-m R\left(1+R+R^{2}+\ldots+R^{n-1}\right) \\
& =P R^{n}-m R \frac{\left(R^{n}-1\right)}{R-1}
\end{aligned}
$$

$$
\text { v) } \begin{aligned}
& A(\mu)=\mu I \\
& \Rightarrow \quad 2 u\left(1-u^{2}\right.=\mu I \\
&=\mu \times \frac{8}{5}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \text { If } A_{n}=0 \\
& P R^{n}=\frac{m R\left(R^{n}-1\right)}{R-1}
\end{aligned}
$$

making R^{n} the sulyect:

$$
\begin{aligned}
& \Rightarrow R^{n}(P R-P)=m R R^{n}-m R \\
& \Rightarrow R^{n}(P R-P-m R)=-m R \\
& \Rightarrow R^{n}= \\
&=\frac{m R}{P-R P+R m} \\
&=\frac{m R}{P-R(P-m)} \cdot 3
\end{aligned}
$$

e).

$$
\begin{aligned}
& \text { e) } \begin{array}{l}
\text { } P P
\end{array}=\sqrt{400000} \$ \mathrm{~m}=\$ 40000 \\
& r=72 \\
& \Rightarrow 1.07^{n}=\frac{40000(1.07)}{400000-1.07(360000)} \\
& \Rightarrow 1.07^{n}=\frac{42800}{14800} \\
&=2.89189 \ldots
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad n & =\frac{\log (2.89189 \ldots)}{\log 1.07} \\
& =15.7 \text { grs }(3 \operatorname{sig} \mathrm{fg})
\end{aligned}
$$

