Barker College

2010
 YEAR 12
 TRIAL HSC EXAMINATION

MATHEMATICS

Staff Involved:
THURSDAY $5^{\text {TH }}$ AUGUST

- TRW - LJP
- GIC • JGD
- VAB • KJL
- GPF* • AJD
- WMD*

130 copies
General Instructions

- Reading time - 5 minutes
- Working time - $\mathbf{3}$ hours
- Write using blue or black pen
- Write your Barker Student Number on all pages of your answers
- Board-approved calculators may be used
- A Table of Standard Integrals is provided at the back of this paper which may be detached for your use
- ALL necessary working MUST be shown in every question
- Marks may be deducted for careless or badly arranged working

Total marks - 120
Attempt Questions 1-10

- All questions are of equal value
- BEGIN your answer to EACH QUESTION on a NEW PIECE of the separate lined paper
- Write only on ONE SIDE of the separate lined paper
-BLANK PAGE -

Total marks - 120
Attempt Questions 1-10
All questions are of equal value
Answer each question on a separate A4 lined sheet of paper.

Question 1 (12 marks) [START A NEW PAGE]
(a) Evaluate, to 3 significant figures, $\frac{(-2.4)^{2}}{\sqrt{2 \pi-5}}$.
(b) Simplify fully $\frac{16 a^{3}-54 b^{3}}{4 a^{2}+6 a b+9 b^{2}}$.
(c) Solve for x : $|2 x-5|<8$.
(d) Write down the domain of the function $y=\frac{1}{\sqrt{9-x}}$.
(e) Solve for x : $9^{x}-7\left(3^{x}\right)-18=0$.
(f) Determine whether $f(x)=\frac{x}{x^{2}-3}$ is odd, even or neither, justifying your answer with appropriate working.2

End of Question 1

Question 2 (12 marks) [START A NEW PAGE]
The diagram shows the lines l and k :

NOT TO SCALE.

Redraw this diagram in your answer booklet.
(i) Calculate the gradient of the line l.
(ii) Calculate the length of AB .
(iii) Find in general form, the equation of the line l.
(iv) Calculate the angle of inclination of the line l (to the nearest degree).
(v) D is a point on the line l, such that AD and CD are perpendicular. Find the coordinates of D.
(vi) Show the area of the $\triangle A B C$ is 12 square units.
(vii) Find $\angle A B C$ (to the nearest degree).

End of Question 2

Question 3 (12 marks) [START A NEW PAGE]

(a) Differentiate the following expressions with respect to x :
(i) $\sqrt{x} \ln x \quad 2$
(ii) $\tan \left(\frac{\pi}{2}-x^{2}\right)$
(b) Find $\frac{d}{d x}\left[\frac{x}{e^{x^{2}}}\right]$ in simplest form.
(c) Find the values of k for which $x^{2}+(k+3) x-k=0$ has real roots.
(d) If α and β are the roots of $2 x^{2}-5 x+1=0$, 2 find the value of $\alpha^{2}+\beta^{2}$.

End of Question 3

Question 4 (12 marks) [START A NEW PAGE]

(a) For the function with the equation $y=3 \sin \left(\frac{x}{2}+\frac{\pi}{4}\right)$
(i) State the amplitude of the function. $\mathbf{1}$
(ii) State the period of the function. 1
(iii) Sketch the graph of the function over the domain $0 \leq x \leq 2 \pi$.
(b) Solve the equation $4 \sin x=3 \operatorname{cosec} x$ for $0^{\circ} \leq x \leq 360^{\circ}$.
(c) Prove $\frac{\cos \alpha}{1+\sin \alpha}=\sec \alpha(1-\sin \alpha)$.
(d) Find the $32^{\text {nd }}$ term of the series $(-6)+(-2)+2+\ldots$
(e) Find the limiting sum of the series $108+36+12+\ldots$

End of Question 4

Question 5 (12 marks) [START A NEW PAGE]
(a) Find $\int \frac{d x}{\sqrt[3]{x^{2}}}$.
(b) Evaluate $\int_{2}^{\sqrt{7}} \frac{x}{x^{2}-3} d x$.
(c) (i) In your answer booklet, copy and complete the table below for the function $f(x)=e^{x}$, giving your answers to 3 decimal places where necessary.

1

x	0	1	2
$f(x)$			

(ii) Using Simpson's rule with 3 function values, find an approximation to $\int_{0}^{2} e^{x} d x$.
(d) Find the volume of the solid of revolution formed by rotating the line $y=-2 x$ between $x=1$ and $x=5$ about the x-axis.
(e) In your answer booklet, copy the diagrams below. Use the graph of $y=f^{\prime}(x)$ to complete a possible graph of $y=f(x)$.

End of Question 5

Question 6 (12 marks) [START A NEW PAGE]
(a)

The diagram shows the area bounded by the graph $y=\ln \left(\frac{x}{2}\right)$, the co-ordinates axes and the line $y=\ln 4$.

Find the area of the shaded region.
(b) The curve $y=f(x)$ has a gradient function of $\frac{d y}{d x}=(1-x)^{3}$.

The curve passes through the point $(-1,1)$.
Find the equation of the curve.
(c) If $\cos \beta=\frac{2}{5}$ and $\sin \beta<0$, find the exact value of $\tan \beta$.
(d) Find the exact value of $\operatorname{cosec}\left(\frac{5 \pi}{3}\right)$.
(e) Express $\frac{2}{\sqrt{5}-1}-\frac{3}{\sqrt{5}+1}$ in its simplest form.

End of Question 6

Question 7 (12 marks) [START A NEW PAGE]
(a) A town's population was recorded at the start of 2004. The population, P , t years later is given by the exponential equation $P=120000 e^{-0.05 t}$.
(i) What was the initial population of the town at the start of 2004?

1
(c) Write an expression for the shaded area shown in the diagram below.

End of Question 7

Question 8 (12 marks) [START A NEW PAGE]

(a) P is a point inside a square ABCD such that triangle PDC is equilateral. Prove that:

(i) $\triangle A P D \equiv \triangle B P C$.
(ii) $\triangle A P B$ is isosceles.
(b) Copy the following diagram onto your answer sheet.

(i) Prove $\triangle B F C$ III $\triangle E F D$.
(ii) Find the length of DF.
(c) Sketch the parabola $(y-1)^{2}=-8(x+2)$, clearly showing the:
(i) coordinates of the vertex
(ii) coordinates of the focus
(iii) equation of the directrix

Question 9 (12 marks) [START A NEW PAGE]

Two particles A and B move along the x-axis, both starting when $t=0$.
The displacement of particles A and B is given by $x=t+12-t^{2}$ and $x=t^{2}-4 t$ respectively. In both cases x is the displacement of the particle from O in metres and t is measured in seconds.
(i) Find when and where particle A is stationary.
(ii) On the same diagram, sketch each particle's displacement graph, showing all intercepts.
(iii) Show that the distance, D , between the two particles during $0 \leq t \leq 4$, is given by $D=5 t+12-2 t^{2}$.
(iv) During the first 4 seconds, when are the particles furthest apart?
(v) Find the time when both particles have the same velocity.
(vi) Make a statement about the accelerations of the particles, being sure to justify your statement with the aid of mathematical evidence.

End of Question 9

Question 10 (12 marks) [START A NEW PAGE]

(a) A block of wood is in the shape of a square-based prism.

The sum of the length of the block and the perimeter of the base is 12 cm .

(i) Show that $V=12 x^{2}-4 x^{3}$, where V is the volume of the block.
(ii) What is the volume of the largest block?
(b) (i) Greg borrows $\$ 400000$ is order to buy an apartment. The interest rate is 6% p.a. reducible and the loan is to be repaid in equal monthly repayments of $\$ M$ over 25 years with the interest calculated monthly. Let $\$ A_{n}$ be the amount owing after the nth repayment.
(α) Write down expressions for $\$ A_{1}$ and $\$ A_{2}$, the amounts owing after the first and second repayments have been made respectively.
(β) Show that the amount of each monthly repayment is $\$ 2577.21$ (correct to the nearest cent).
(ii) After 5 years (i.e. 60 repayments) the interest rate rises to 9% p.a. Find the new monthly repayment $\$ N$, correct to the nearest cent. (Assume that the period of the loan is still 25 years).
(iii) How much extra does Greg repay over the life of the loan as a result of the 3% p.a. interest rate rise?

End of Question 10

End of Paper

STANDARD INTEGRALS

$$
\text { NOTE: } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

(1) $\frac{2010 \text { Mathematics Trial Solutions }}{\frac{(-2.4)^{2}}{\sqrt{2 \pi-5}}=5.08484 .5882}$
$=5.08$ (3.f.2
(b) $\frac{16 a^{3}-54 b^{3}}{4 a^{2}+6 a b+3 b^{2}}$
$=\frac{2\left(8 a^{3}-27 b^{3}\right)}{4 a^{2}+6 a b+9 b^{2}}$
$=\frac{2(2 a-3 b)\left(4 a^{2}+6 a b+9 b^{2}\right)}{4 a^{2}+6 a b+9 b^{2}}$
$=2(22-36)$
(c) $|2 x-5|<8$
$\therefore-8<2 x-5<8$
$\therefore-3<2 x<13$
$-\frac{3}{2}<x<\frac{13}{2}$
(d) $\quad 9-x>0$
\Rightarrow Domain: $x<9$
$\Leftrightarrow \quad 9^{x}-7\left(3^{x}\right)-18=0$ $\left(3^{2}\right)^{2}-7\left(3^{x}\right)-18=0$ let $x=3^{x}$

$$
u^{2}-7 u-18=0
$$

$$
(u-9)(u+2)=0
$$

$$
u=9 \text { or } u=-2
$$

$$
\begin{aligned}
\therefore \quad 3^{\pi x}=9 \text { or } 3^{x x}=-2 \\
\text { impossibie }
\end{aligned}
$$

$$
\therefore \quad 3^{x}=3^{2}
$$

$$
\therefore x=2
$$

(f) $\begin{aligned} f(x) & =\frac{x}{x^{2}-3} \\ f(-x) & =-x x^{2}\end{aligned}$ $f(-x)=\frac{-x}{(-x)^{2}-3}=\frac{-x}{x^{2}-3}$
$\Rightarrow f(x)$ is our odd function.

$$
\begin{aligned}
& \text { (i) cirad. of } l=\frac{3-0}{2 \cdots 2}=\stackrel{9}{\neq} \\
& \text { (ii) } d_{A B}=\sqrt{(2--3)^{2}+(3-0)^{2}}=5 \text { units } \\
& \text { (iii) } y-3=3(x-2) \\
& 4 y-12=3 x-6 \\
& \therefore 3 x-4 y+6=0 x \text { eqin of } l .
\end{aligned}
$$

(iv) $\tan \theta=\frac{3}{4}$
$\begin{aligned} \theta=\tan ^{-1}\left(\frac{3}{4}\right) & =36.86989765^{\circ} \\ & =37^{\circ}(n \cdot d 80 .)\end{aligned}$
(v) Grad. of ω D $=-\frac{4}{3}$
ε_{a} ~ of CD: $y-0=-\frac{4}{3}(x-6)$

$$
3 y=-4 z+24
$$

$$
\begin{aligned}
& 4 x+3 y-24=0 \\
& 2 x-4+6=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Nar }(\text { is } 3 x-4 y+6=0 \ldots \text { (2) } \\
& \text { (1) } \times 3 \Rightarrow 12 x+9 y-72=0 \ldots \text { (17) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } \times 3 \Rightarrow 12 x+9 y-72=0 \ldots \text { (10) } \\
& \text { (2) } \times 4 \Rightarrow 12 x-16 y+24=0 \cdots(20
\end{aligned}
$$

$$
\text { (1) } \text { (2) } \Rightarrow 25 y-96=0
$$

$$
\begin{aligned}
\text { an } y & =\frac{26}{25} \text { int } 20
\end{aligned}
$$

$$
\sin \mathrm{j}=\frac{20}{25} \text { int } 25 \text { : }
$$

$$
\begin{aligned}
& =\frac{58}{25} \text { int }(3): \\
& 3 x-4 \times \frac{96}{25}+6=0 \\
& =-\frac{28}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 3 x=\frac{78}{25}
\end{aligned}
$$

$$
D \text { is }\left(\frac{78}{25}, \frac{96}{25}\right)
$$

(i)

 $A D=B C$ (sidse of a square) $P D=P C$ (sides of equititeal Δ) $\therefore \triangle A P D E \triangle B P C$ (SAS)
(ii) $A P=B P$ (corresponding sides $\therefore \triangle A P B$ is isosceles.
(b)
(i) $\angle C B F=90^{\circ}=\angle D E F H$ (given) (i) $\begin{aligned} \angle C B F & =90^{\circ}=\angle D E F H \\ \angle B F L & =\angle D F E \text { (ravically given) }\end{aligned}$ $\triangle B F C I l \mid \triangle E F D$ (equiangion
(ii) $A_{G}=\sqrt{13^{2}-5^{2}}$
$=12$
$=B E=C H$
$C D=\sqrt{12^{2}+16^{2}}$
Let $P F=x \Rightarrow C F=20-x$
$\therefore \quad \frac{x}{10}=\frac{20-x}{6}\left\{\begin{array}{l}\text { criretepanding } \\ \text { sidee of simn. } \Delta \text { 's } \\ \text { arse in same ratio }\end{array}\right\}$

- $6 x=200-10 x$
$16 x=200$
$x=12.5$
$\therefore D F=12.5 \mathrm{~cm}$.

(i)

$\begin{aligned} x_{A} & =-t^{2}+t+12 \quad \& x_{B} & =t^{2}-4 t \\ & =(4-t)(3+t) & =t(t-4)\end{aligned}$
(ii) for $0 \leq t \leq 4$,

$$
\begin{aligned}
& =x_{A}-x_{B} \\
& =t+12-t^{2}-\left(t^{2}-4 t\right)
\end{aligned}
$$

$$
=t+12-t^{2}-t^{2}+4 t
$$

$$
=5 t+12-2 t^{2}
$$

(iv) $\frac{d D}{d t}=5-4 t$
\& $\frac{d^{2} D}{d t^{2}}=-4 \Rightarrow ص$
when $\frac{d D}{d t}=0, \begin{aligned} & 4 t=5 \\ & \text { i.e. } t=\frac{5}{4}\end{aligned}$
given distance fimetion is omeave down
for $24 t, D$ is n maximem at $t=\frac{3}{4}$
Hence $A<B$ wrefurhect aport afior ress

$$
\begin{aligned}
& \text { (9) } \\
& \text { (i) } x_{A}=t+12-t^{2} \\
& \dot{x}_{A}=1-2 t \\
& \text { When } \dot{x}_{A}=0,1-2 t=0 \\
& \text { when } t=\frac{1}{2}, x_{A}=\frac{1}{2}+12-\frac{1}{4} \\
& \therefore A \text { in ort. at } x=12.25 \mathrm{~m}
\end{aligned}
$$

> (v)
> $\dot{x}_{A}=1-2 t \& \dot{x}_{B}=2 t-4$
> $\dot{x}_{A}=\dot{x}_{B} \Rightarrow 1-2 t=2 t-4$
> $\therefore 4 t=5$
> $\therefore t=1.25 s$
> (ri) $\ddot{x}_{A}=-2 \mathrm{~ms}^{-2}$
> $\ddot{x}_{B}=2 \mathrm{~ms}^{-2}$

Both accelorations are constant
and the seme magnitude; howerer A^{3} s is positiver \& $B^{2} s$ is megative.
(10)
(a) (i)

$$
\begin{aligned}
& \quad l+4 x=12 \\
& \therefore \quad l=12-4 x \\
& V=x \times x \times(12-4 x) \\
& = \\
& =x^{2}(12-4 x) \\
& =12 x^{2}-4 x^{3}
\end{aligned}
$$

- (i)

$$
V=4 x^{2}(3-x)
$$

$$
\frac{d v}{d x}=24 x-12 x^{2}
$$

$$
\frac{d^{2} v}{d x^{2}}=24-24 x
$$

$$
\frac{d v}{d x}=0 \Rightarrow 12 x(2-x)
$$

$$
\begin{gathered}
\Rightarrow \quad x=0 \text { or } x=2 \\
\quad \times
\end{gathered}
$$

$$
\text { when } \begin{aligned}
x=2, \frac{d^{2} v}{d x^{2}} & =24-48 \\
& =-24
\end{aligned}
$$

$$
\begin{aligned}
& =-24 \\
& <0 \quad \downarrow
\end{aligned} \Rightarrow \text { max. } .
$$

when $x=2, V=48-32$

$$
=16
$$

\therefore Max, vol. $=16 \mathrm{~m}^{3}$
$(b)(\dot{4})(\alpha)$
$A_{1}=400000 \times 1.005-M$ $A_{2}=400000 \times 1.005^{2}-1.005 \mathrm{M}-\mathrm{M}$
(β) $A_{300}=400000 \times 1.005^{300}$
$-M\left(1+1.005^{1}+\cdots+1.005^{299}\right)$
But $A_{300}=0$, so
$M=\frac{400000 \times 1.005^{300}}{\frac{\left(1.005^{300}-1\right)}{0.005}} \cdots$
$=2577.205606$
$=\$ 2517.21$ (n .cent)
(ii) $A_{60}=400000 \times 1.005^{60}$
$-2577.21\left(1+1.005^{1}+\ldots+1.005^{59}\right)$
$=400000 \times 1.005^{60}$
1.005
$-2577.21 \times \frac{1.005^{60}-1}{0.005}$
$=359728.0407$
$=\$ 359728.04$ (n. © ant)
$A_{61}=359728.04 \times 1.0075-N$
$A_{62}=359728.0421 .0075^{2}-1.0075 N-N$
A_{8}
\vdots
A_{3}
$\begin{aligned} & A_{300}=359728.04 \times 1.0075^{240} \\ &-N\left(1+1.0075+\cdots+1.0075^{239}\right)\end{aligned}$
But $A_{300}=0$ so
$N=\frac{359728.04 \times 1.0075^{240}}{\frac{\left(1.0075^{240}-1\right)}{0.0075}}$
$=3236.566546$
\therefore Requ'd $\pi m^{\prime} t=\$ 3236.57$ (n. cent ${ }^{\prime}$)
(iii) $\varepsilon_{x} \mathrm{~T}^{+}$paid $=\$(3236.57-2577.21) \times 240$

$$
=\$ 158246.40
$$

