Student Number:

2010 YEAR 12 TRIAL HSC EXAMINATION

MATHEMATICS

THURSDAY 5TH AUGUST

Staff Involved:

- TRW LJP
- GIC JGD
- VAB KJL
- GPF* AJD
- WMD*

130 copies General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Write your Barker Student Number on all pages of your answers
- Board-approved calculators may be used
- A Table of Standard Integrals is provided at the back of this paper which may be detached for your use
- ALL necessary working MUST be shown in every question
- Marks may be deducted for careless or badly arranged working

Total marks - 120

- Attempt Questions 1 10
- All questions are of equal value
- BEGIN your answer to EACH QUESTION on a NEW PIECE of the separate lined paper
- Write only on ONE SIDE of the separate lined paper

-BLANK PAGE -

Total marks - 120 Attempt Questions 1 - 10 All questions are of equal value

Answer each question on a separate A4 lined sheet of paper.

Question 1 (12 marks) [START A NEW PAGE]

(a) Evaluate, to 3 significant figures,
$$\frac{(-2.4)^2}{\sqrt{2\pi-5}}$$
.

Marks

(b) Simplify fully
$$\frac{16a^3 - 54b^3}{4a^2 + 6ab + 9b^2}$$
. 2

(c) Solve for *x*:
$$|2x-5| < 8$$
. 2

(d) Write down the domain of the function
$$y = \frac{1}{\sqrt{9-x}}$$
.

(e) Solve for x:
$$9^x - 7(3^x) - 18 = 0.$$
 3

(f) Determine whether $f(x) = \frac{x}{x^2 - 3}$ is odd, even or neither, justifying your answer with appropriate working. 2

Question 2 (12 marks) **[START A NEW PAGE]**

The diagram shows the lines *l* and *k*:

NOT TO SCALE.

Redraw this diagram in your answer booklet.

(i)	Calculate the gradient of the line <i>l</i> .	1
(ii)	Calculate the length of AB.	1
(iii)	Find in general form , the equation of the line <i>l</i> .	2
(iv)	Calculate the angle of inclination of the line l (to the nearest degree).	1
(v)	D is a point on the line <i>l</i> , such that AD and CD are perpendicular. Find the coordinates of D.	4
(vi)	Show the area of the $\triangle ABC$ is 12 square units.	1
(vii)	Find $\angle ABC$ (to the nearest degree).	2

Question 3 (12 marks) [START A NEW PAGE]

(a) Differentiate the following expressions with respect to *x*:

(i)
$$\sqrt{x} \ln x$$
 2

(ii)
$$\tan\left(\frac{\pi}{2} - x^2\right)$$
 2

(b) Find
$$\frac{d}{dx} \left[\frac{x}{e^{x^2}} \right]$$
 in simplest form. 3

(c) Find the values of k for which
$$x^2 + (k+3)x - k = 0$$
 has real roots. 3

(d) If α and β are the roots of $2x^2 - 5x + 1 = 0$, **2** find the value of $\alpha^2 + \beta^2$.

Question 4 (12 marks) [START A NEW PAGE]

(a)	For t	the function with the equation $y = 3\sin(\frac{x}{2} + \frac{\pi}{4})$	
	(i)	State the amplitude of the function.	1
	(ii)	State the period of the function.	1
	(iii)	Sketch the graph of the function over the domain $0 \le x \le 2\pi$.	2

(b) Solve the equation
$$4\sin x = 3\csc x$$
 for $0^{\circ} \le x \le 360^{\circ}$. 3

(c) Prove
$$\frac{\cos \alpha}{1+\sin \alpha} = \sec \alpha (1-\sin \alpha)$$
. 3

(d) Find the
$$32^{nd}$$
 term of the series $(-6) + (-2) + 2 + ...$ 1

(e) Find the limiting sum of the series
$$108 + 36 + 12 + ...$$
 1

Question 5 (12 marks) **[START A NEW PAGE]**

(a) Find
$$\int \frac{dx}{\sqrt[3]{x^2}}$$
.

(b) Evaluate
$$\int_{2}^{\sqrt{7}} \frac{x}{x^2 - 3} dx$$
. 3

(c) (i) **In your answer booklet,** copy and complete the table below for the function $f(x) = e^x$, giving your answers to 3 decimal places where necessary.

x	0	1	2
f(x)			

- (ii) Using Simpson's rule with 3 function values, find an approximation to $\int_{0}^{2} e^{x} dx$.
- (d) Find the volume of the solid of revolution formed by rotating the line y = -2x between x = 1 and x = 5 about the *x*-axis.
- (e) **In your answer booklet**, copy the diagrams below. Use the graph of y = f'(x) to complete a possible graph of y = f(x).

End of Question 5

Marks

2

1

2

3

1

[START A NEW PAGE]

The diagram shows the area bounded by the graph $y = ln\left(\frac{x}{2}\right)$, the co-ordinates axes and the line y = ln 4.

Find the area of the shaded region.

3

3

(b) The curve
$$y = f(x)$$
 has a gradient function of $\frac{dy}{dx} = (1-x)^3$.
The curve passes through the point $(-1, 1)$.
Find the equation of the curve.

(c) If
$$\cos\beta = \frac{2}{5}$$
 and $\sin\beta < 0$, find the exact value of $\tan\beta$. 2

(d) Find the exact value of
$$\operatorname{cosec}\left(\frac{5\pi}{3}\right)$$
. 2

(e) Express
$$\frac{2}{\sqrt{5}-1} - \frac{3}{\sqrt{5}+1}$$
 in its simplest form. 2

Marks

Question 7 (12 marks) **[START A NEW PAGE]**

(b) (i) Show the locus of a point P (x, y) which moves so that PA = 2PB, where A is the point (-2, 4) and B is (4,1) is:

$$x^2 + y^2 - 12x + 16 = 0$$
 3

- (ii) Find the centre and radius of the circle defined in (i). 2
- (c) Write an expression for the shaded area shown in the diagram below. 2

1

2

3

1

1

1

Question 8 (12 marks) **[START A NEW PAGE]**

(a) P is a point inside a square ABCD such that triangle PDC is equilateral. Prove that:

- (ii) $\triangle APB$ is isosceles.
- (b) Copy the following diagram onto your answer sheet.

Marks

Question 9 (12 marks) [START A NEW PAGE]

Two p The di both c and t i	particles A and B move along the x-axis, both starting when $t = 0$. Asplacement of particles A and B is given by $x = t + 12 - t^2$ and $x = t^2 - 4t$ respective ases x is the displacement of the particle from O in metres s measured in seconds.	ely. In
(i)	Find when and where particle A is stationary.	2
(ii)	On the same diagram, sketch each particle's displacement graph, showing all intercepts.	3
(iii)	Show that the distance, D, between the two particles during $0 \le t \le 4$, is given by $D = 5t + 12 - 2t^2$.	1
(iv)	During the first 4 seconds, when are the particles furthest apart?	2
(v)	Find the time when both particles have the same velocity.	2
(vi)	Make a statement about the accelerations of the particles, being sure to justify your statement with the aid of mathematical evidence.	2

Question 10 (12 marks) **[START A NEW PAGE]**

(a) A block of wood is in the shape of a square-based prism.The sum of the length of the block and the perimeter of the base is 12 cm.

End of Paper

Marks

STANDARD INTEGRALS

- $\int x^n \, dx \qquad = \frac{1}{n+1} x^{n+1}, \ n \neq -1 \ ; \ x \neq 0, \ \text{if} \ n < 0$
- $\int \frac{1}{x} dx = \ln x, \quad x > 0$
- $\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \ a \neq 0$
- $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \ a \neq 0$
- $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$
- $\int \sec^2 ax \ dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$
- $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$
- $\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$
- $\int \frac{1}{\sqrt{a^2 x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$
- $\int \frac{1}{\sqrt{x^2 a^2}} dx = \ln(x + \sqrt{x^2 a^2}), \quad x > a > 0$
- $\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

$$\begin{array}{c} \frac{1}{100} \quad \frac{1}{100} \frac{1}{1$$

(a)
$$y = (i_{2k} \left(\frac{\pi}{2}\right)$$

(b) $y = (i_{2k} \left(\frac{\pi}{2}\right)$
(c) $y = (i_{2k} \left(\frac{\pi}{2}\right)$
(d) $conc \left(\frac{\pi}{2k}\right)$
(e) $conc \left(\frac{\pi}{2k}\right)$
(f) $conc \left(\frac{\pi}{2k}\right)$
(f) $conc \left(\frac{\pi}{2k}\right)$
(g) $conc \left(\frac{\pi}{2k}\right)$
(g

$$(6)U_{3}(x)$$

$$A_{1} = 400 000 \times 1.005 - M$$

$$A_{2} = 400 000 \times 1.005^{3} - 1.005 M - M$$

$$(\beta) A_{300} = 0 \times 1.005^{300}$$

$$- M (1+1.005^{1} + ... + 1.005^{293})$$

$$Bwt A_{300} = 0, s0$$

$$M = \frac{400 000 \times 1.005^{300}}{(1.005^{300} - 1)}$$

$$= 2577, 20 5606$$

$$= $2577, 21 (A.Cent)$$

$$(i) A_{60} = 400 000 \times 1.005^{60}$$

$$- 2577, 21 (1+1.005^{1} + ... + 1.005^{53})$$

$$= 400 000 \times 1.005^{60}$$

$$- 2577, 21 (1+1.005^{1} + ... + 1.005^{53})$$

$$= 400 000 \times 1.005^{60}$$

$$- 2577, 21 (1+1.005^{1} + ... + 1.005^{53})$$

$$= 35972 \cdot 04 \times 1.0075$$

$$= 35972 \cdot 04 \times 1.0075 - M$$

$$A_{61} = 35972 \cdot 04 \times 1.0075 - M$$

$$A_{62} = 35972 \cdot 04 \times 1.0075 - M$$

$$A_{62} = 35972 \cdot 04 \times 1.0075$$

$$= N (1+1.0075^{1} - 1.0075 M - M$$

$$\frac{1}{300} = 35972 \cdot 04 \times 1.0075$$

$$= N (1+1.0075^{1} - 1.0075)$$

$$= 3236.566546$$

$$\therefore Rogrid Rm' 4 = $3236.57 (n.cm)$$

$$(iii) Extra poid : $(236.57 - 2577.21) \times 240$$

$$= $158 246.40$$