

Student No:

2014 TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics

Section 1 – Multiple Choice

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample 2 + 4 = (A) 2 (B) 6 (C) 8 (D) 9A \bigcirc B \bigcirc C \bigcirc D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

 $A \bullet B \not \bullet C \circ D \circ$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows.

	A		В	×			D 🔿	
Start	→	1.	AO	вО	сO	DO		
Here		2.	AO	вО	СО	DO		
		3.	AO	вО	СО	DO		
		4.	AO	вO	сO	DO		
		5.	AO	вO	сO	DO		
		6.	AO	вO	СО	DO		
		7.	AO	вО	СО	DO		
		8.	AO	вО	СО	DO		
		9.	AO	вО	СО	DO		
		10.	AO	вО	СО	DO		

PM Friday 1 August

BLANK PAGE

2014 TRIAL **HIGHER SCHOOL CERTIFICATE**

Student Number:

Mathematics

Staff Involved:

- JGD* AJD
- LMD* DZP
- GPF BJB WMD
- ASC
- PJR

135 copies

General Instructions

- Reading time - 5 minutes
- Working time 3 hours ٠
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Write your Barker Student Number on all pages of your solutions
- In Questions 11 16, show all relevant • mathematical reasoning and/or calculations

Total marks – 100

(Section I Pages 2 - 4

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

(Section II Pages 5 - 12

90 marks

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section

PM Friday 1 August

Section 1 - Multiple Choice (10 marks)

Attempt Questions 1 - 10

Use the multiple-choice answer sheet for Questions 1 - 10

1 What is
$$\frac{2\sqrt{5}}{\sqrt{2} - \sqrt{5}}$$
 as a fraction with a rational denominator?
(A) $\frac{-5 - \sqrt{10}}{3}$ (B) $\frac{-5 + \sqrt{10}}{3}$ (C) $\frac{-10 + 2\sqrt{10}}{3}$ (D) $\frac{-10 - 2\sqrt{10}}{3}$

2 What is the value of $\sqrt{\frac{a^2+b^2}{c^2}}$, if a = 1.23, b = 0.85 and c = 4.81? Answer correct to three significant figures.

(A) 3.11 (B) 0.311 (C) 3.10 (D) 0.310

- **3** Given $\log_a 3 = 0.6$ and $\log_a 2 = 0.4$, find $\log_a 18$.
 - (A) 1.8 (B) 1.6 (C) 3.0 (D) 0.74

4 Evaluate
$$\sum_{r=3}^{10} 2r+1$$
.
(A) 120 (B) 91 (C) 122 (D) 112

5 For
$$f(x) = \begin{cases} x+1 & x \ge 3 \\ x^2 + 2x - 1 & -1 < x < 3 \\ 3^x & x \le -1 \end{cases}$$
, find the value of $f(2) + f(-2) - f(6)$.
(A) $\frac{1}{9}$ (B) $14\frac{1}{9}$ (C) 9 (D) $3\frac{8}{9}$

6 Evaluate $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$.

(A) 2 (B) 1 (C) undefined (D) 0

7 What is the domain and range of the function f(x) = |x-2|+1?

- (A) Domain: $x \ge 0$, Range: $y \ge 0$
- (B) Domain: x < 2, Range: $y \ge 1$
- (C) Domain: All real x, Range: $y \ge 1$
- (D) Domain: All real x, Range: $y \ge -1$

8 A primitive function of
$$4 + \sqrt{x}$$
 is

(A)
$$4x + \frac{2\sqrt{x^3}}{3}$$
 (B) $4x + \frac{3\sqrt{x^2}}{2}$ (C) $4x + \frac{1}{2\sqrt{x}}$ (D) $\frac{1}{2\sqrt{x}}$

9 Given
$$\sin A = \frac{20}{29}$$
 and $\frac{\pi}{2} \le A \le \pi$, what is $\cos A$ in exact form?

(A)
$$\frac{21}{29}$$
 (B) $\frac{-21}{29}$ (C) $\frac{21}{20}$ (D) $\frac{-21}{20}$

10 The derivative of $e^{\cos x}$ is

(A) $\cos x \cdot e^{\sin x}$ (B) $-\cos x \cdot e^{\sin x}$ (C) $\sin x \cdot e^{\cos x}$ (D) $-\sin x \cdot e^{\cos x}$

End of Section I

BLANK PAGE

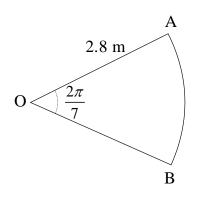
Section II – Extended Response (90 marks)

Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Answer each question on a separate writing booklet. Extra writing booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)	[START A NEW BOOKLET]	Marks
------------------------	-----------------------	-------


(a) Simplify
$$\frac{y^3 - 8}{y - 2}$$
. 2

(b) Find the perpendicular distance from the line y = 5x - 1 to the point (-3, 2).

(c) Solve
$$x^2 - 8x < 0$$
. 2

(d) Let
$$\alpha$$
 and β be the roots of the equation $x^2 - 2x - 1 = 0$.
What is the value of $\frac{1}{\alpha} + \frac{1}{\beta}$?

(e) In the diagram, AB is an arc of a circle with centre O. The radius OA is 2.8 m and the angle AOB is $\frac{2\pi}{7}$ radians. Find the area of the sector AOB.

(f) Find the exact value of $\cos \frac{\pi}{4} + \sin \frac{5\pi}{6}$.

(g) Solve
$$\ln 4 = 2 \ln x$$
.

End of Question 11

2

3

2

Marks

(a) Differentiate with respect to *x*.

(i) $\sin(4x^2+1)$ 2

(ii)
$$x \ln x$$
 2

$$\begin{array}{l} \text{(iii)} \quad \frac{4x+5}{2x^2+5x} \end{array}$$

(b) Find

(i)
$$\int \sec^2 \frac{x}{2} dx$$
 2

(ii)
$$\int_{0}^{1} e^{2y+1} dy$$
 2

(c) For the function $y = 3 - \cos 2x$

(i)	State the period of the function.	1
(ii)	State the amplitude of the function.	1

(iii) Sketch the graph of the function for $0 \le \theta \le 2\pi$. **3**

End of Question 12

(a)

The diagram below shows $\triangle ABC$ where the vertices are A(-4, -3), B(6, -3) and C(4, 1).

- NOT TO SCALE C (4,1) C (4,1) X A (-4, -3) B (6, -3)
- (i) Find the gradient of the interval BC. 1 Prove A, B and C are the vertices of a right-angled triangle. 2 (ii) Find the distance BC in exact form. (iii) 1 (iv) Find the size of $\angle CAB$ to the nearest minute. 2 Show that the coordinates of M, the midpoint of AB are (1, -3). 1 (v) (vi) Show that the equation of the circle centre M, diameter AB 3 is $x^2 + y^2 - 2x + 6y - 15 = 0$ Sketch the curve $y = \ln(x+1)$ showing essential features. 2 (b) (i) 2 Using the Trapezoidal Rule with 4 sub-intervals, evaluate (ii) $\int_{1}^{2} \ln(x+1) dx$ correct to 3 decimal places. (iii) Would the Trapezoidal Rule used in Part (ii) above provide a value that 1 is greater or lesser than $\int_{1}^{2} \ln(x+1) dx$? Explain your answer.

End of Question 13

Question 14 (15 marks)

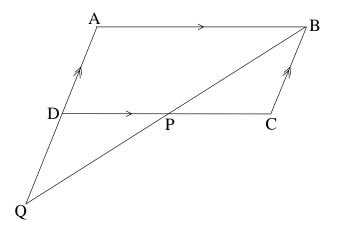
[START A NEW BOOKLET]

(a) (i) For what values of x can the geometric series $1+2x+4x^2+8x^3+...$ 1 have a limiting sum?

(ii) For what values of x does
$$\sum_{r=0}^{\infty} (2x)^r = \frac{5}{9}?$$
 2

(b) Simplify
$$\frac{2 \sec^2 A - 2}{4 \tan A}$$
.

(c) What are the coordinates of the focus of the parabola defined by the equation
$$y = -16x^2$$
 ?

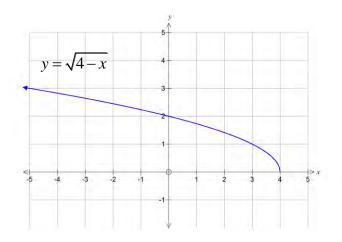

(d) For the curve
$$f(x) = \frac{2}{3}x^3 - 8x + 1$$
,

(i)	Find the coordinates of the stationary point(s) and determine their nature.	3
(ii)	Determine any point(s) of inflection.	2
(iii)	Sketch the curve, showing all of the above features.	2
(iv)	State the domain of x for which $f(x)$ is monotonic increasing.	1

End of Question 14

Marks

(a) ABCD is a parallelogram. DP = PC and P lies on DC. BP produced, meets AD produced at Q.


(i) Prove that
$$\Delta DPQ \equiv \Delta CPB$$
. 2

(ii) Hence, or otherwise, show that BP = PQ.

(b)	(i)	Find the points of intersection of the curves $y = \frac{1}{2-x}$ and $y = 2-x$.	3
-----	-----	---	---

- (ii) On the same large diagram, sketch and label these two curves showing any asymptotes and intercepts with the coordinate axes.
- (iii) Find the area bounded by the two curves and the *y*-axis. **3**

(c) Find the volume of the solid formed when the area bounded by $y = \sqrt{4-x}$, y = 0 3 and the *y*-axis is rotated around the *x*-axis.

End of Question 15

- (a) A Year 12 Biology student tested to see how much bacteria was present in a variety of food samples left in the classroom. It is known that after *t* hours the number of bacteria (*N*) present in a particular type of food is given by the formula $N = N_0 e^{kt}$.
 - (i) If initially there were 20 000 bacteria present and after three hours there
 were 45 000 bacteria present, calculate the value of *k* (correct to 2 decimal places).
 - (ii) How long would it take for the initial number of bacteria to triple in quantity? 2
 - (iii) What will be the rate of increase of the bacteria after $4\frac{1}{2}$ hours? 2
- (b) Jessica plans to work for the next ten years.

During that time she wants to save \$50 000.

She decides to invest a fixed amount of money at the beginning of each month during this time.

Interest is paid at a fixed rate of 6% p.a. compounded monthly.

- (i) Let M be the monthly investment in dollars. 2 Show that the total investment R after 10 years is given by $R = M \Big[(1.005) + (1.005)^2 + (1.005)^3 + ... + (1.005)^{120} \Big].$
- (ii) Find the amount M needing to be deposited each month to reach her goal. 3

(i) Show that the total combined area of these three shapes is given by 2

A =
$$\frac{(3-\pi r)^2}{8} + \pi r^2$$
.

(ii) Find the exact value of r which will make this total combined area a minimum. **3**

End of Paper

STANDARD INTEGRALS

$\int x^n dx$	$= \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ \text{if} \ n < 0$			
$\int \frac{1}{x} dx$	$= \ln x, x > 0$			
$\int e^{ax} dx$	$=rac{1}{a}e^{ax}, a \neq 0$			
$\int \cos ax \ dx$	$=\frac{1}{a}\sin ax, a \neq 0$			
$\int \sin ax dx$	$= -\frac{1}{a}\cos ax, \ a \neq 0$			
$\int \sec^2 ax \ dx$	$=\frac{1}{a}\tan ax, a \neq 0$			
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, \ a \neq 0$			
$\int \frac{1}{a^2 + x^2} dx$	$= \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$			
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a>0, -a< x< a$			
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$= \ln\left(x + \sqrt{x^2 - a^2}\right), x > a > 0$			
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$= \ln\left(x + \sqrt{x^2 + a^2}\right)$			

NOTE :
$$\ln x = \log_e x$$
, $x > 0$

HSC
2014 Year 12 Mathematics
Trial Examination.
1.
$$\frac{2J_{5}}{\sqrt{2}-J_{5}} \times \frac{J_{5}^{2}+J_{5}}{\sqrt{2}+J_{5}} = \frac{2J_{5}}{2-5} = \frac{2J_{5}+10}{2-5} = \frac{2J_{5}+10}{-3}$$

 $= \frac{-2\sqrt{10}-10}{3}$ (D).
2. $\sqrt{\frac{1+23^{2}+0.85^{2}}{4+81^{2}}} = 0.3108368842$
 $= 0.311$ (3 sig Figs) (B)
3. $\log_{A}/8 = \log_{A}(3^{2}\times2)$
 $= 2\log_{A}(3^{2}+\log_{A}2)$
 $= 2\log_{A}(3^{2}+\log_{A}2)$
 $= 2\log_{A}(3^{2}+\log_{A}2)$
 $= 2\log_{A}(3^{2}+\log_{A}2)$
 $= 2\log_{A}(3^{2}+\log_{A}2)$
 $= 112$ (D)
5. $f(2) = 2^{2}+2\times2-1=7$
 $f(-2) = 3^{-2} = \frac{1}{7}$
 $f(-2) = 3^{-2} = \frac{1}{7}$
 $f(-2) = -f(6) = 7+\frac{1}{7}-7=\frac{1}{7}$ (A)
6. $\lim_{X\to 1} \frac{\chi^{2}-1}{\chi^{-1}} = \lim_{X\to 1} \frac{(\chi-1)(\chi+1)}{\chi^{-1}}$
 $= \lim_{X\to 1} 2\chi+1$
 $= 1+1=2$ (A)

7. (c).
8.
$$y' = 4 + \sqrt{x}$$

 $= 4 + x^{\frac{1}{2}}$
 $y = 4x + \frac{2\sqrt{x^{2}}}{3}$
 $= 4x + \frac{2\sqrt{x^{2}}}{3}$ (A)
9. $x^{2} = 29^{2} - 20^{2} + \frac{1}{3}$
 $= 441$
 $x = 21$.
 $y' = e^{x}$.
 $y' = e^{$

11 c)
$$x^2 - 8x < 0$$

 $x(x-8) < 0$
 $y = 2x - 1 = 0$
 $x + p = 2$ $xp = -1$
 $\frac{1}{x} + \frac{1}{p} = \frac{p+x}{xp} = \frac{2}{-1} = -2$
e) $A = \frac{1}{2}r^2\theta$
 $= \frac{1}{2}x^2 \cdot 8^2 \times \frac{p}{7}$
 $= 3.52 \text{ m}^2 \text{ or } 1.12 \text{ Tm}^2$
f) $\cos \frac{\pi}{4} + \sin \frac{5\pi}{6} = \frac{1}{\sqrt{2}} + \sin \frac{\pi}{6}$
 $\frac{1}{\sqrt{2}} + \frac{1}{2}$
 $= \frac{\sqrt{2}}{\sqrt{2}} + \frac{1}{2}$
 $= \frac{1+\sqrt{2}}{2}$
 $y = \frac{1+\sqrt{2}}{2}$
 $x = \pm 2$
But $x \ge 0$ $\therefore x=2$
is the only solution.

12. a) (i)
$$y = \sin(4x^2+1)$$

 $y' = 8x \cos(4x^2+1)$
(ii) $y = x \ln x$
 $y' = \ln x + x \times \frac{1}{2x}$
 $= \ln x + 1$
(iii) $y = \frac{4x+5}{2x^2+5x}$
 $y' = (\frac{2x^2+5}{2x^2+5x})^2$
 $= \frac{4(2x^2+5x)^2}{(2x^2+5x)^2}$
b) i) $\int \sec^2 \frac{x}{2} dx$
 $= 2 \tan \frac{x}{2} + C$
(i) $\int_0^1 e^{2y+1} dy$
 $= \left[\frac{e^{2y+1}}{2}\right]_0^1$
 $= \frac{e^3 - e}{2}$
c) (i) $Period = \frac{2\pi}{2} = \pi$
(ii) $Amplitude = 1$

$$12 c) (ii) \qquad 4 \qquad 19 \qquad 13 b)$$

$$13 c) (i) \qquad M_{BC} = \frac{-3-1}{6-4} = \frac{-4}{2} = -2$$

$$(i) \qquad M_{BC} = \frac{-3-1}{6-4-4} = \frac{-4}{2} = -2$$

$$(i) \qquad M_{AC} = \frac{-3-1}{-4-4} = \frac{-4}{-8} = \frac{1}{2}$$

$$(ii) \qquad M_{AC} = \frac{-3-1}{-4-4} = \frac{-4}{-8} = \frac{1}{2}$$

$$(iii) \qquad M_{AC} = \frac{-2\times1}{-4-4} = \frac{-4}{-8} = \frac{1}{2}$$

$$(iii) \qquad M_{AC} = \frac{-2\times1}{-4-4} = \frac{-4}{-8} = \frac{1}{2}$$

$$(iii) \qquad M_{AC} = \frac{-2\times1}{-4-4} = \frac{-4}{-8} = \frac{1}{2}$$

$$(iii) \qquad M_{AC} = \frac{-2\times1}{-4-4} = \frac{-4}{-8} = \frac{1}{2}$$

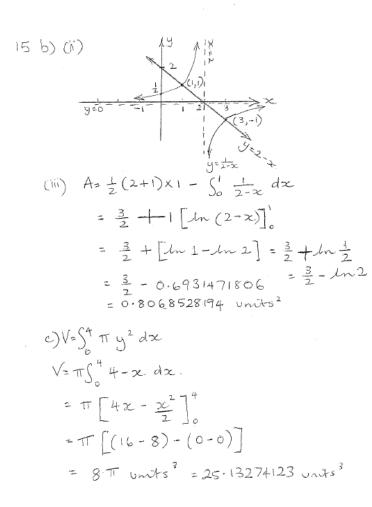
$$(iii) \qquad M_{AC} = \frac{-2\times1}{-4-4} = \frac{-4}{-8} = \frac{1}{2}$$

$$(iii) \qquad M_{AC} = \frac{-2\times1}{-4-4} = \frac{-4}{-8} = \frac{1}{2}$$

$$(iii) \qquad M_{AC} = \frac{-2\times1}{-4-4} = \frac{-4}{-8} = \frac{1}{2}$$

$$(iii) \qquad M_{AC} = \frac{-2\times1}{-4-4} = \frac{-4}{-8} = \frac{1}{2}$$

$$(iii) \qquad M_{AC} = \frac{-2\times1}{-4-4} = \frac{-4}{-8} = \frac{1}{2}$$


$$(iii) \qquad M_{AC} = \frac{-2\times1}{-4-4} = \frac{-4}{-8} = \frac{1}{2}$$

$$(iii) \qquad M_{AC} = \frac{-2\times1}{-2\times4} = \frac{2\sqrt{5}}{10} = \frac{-4}{2}$$

$$(iii) \qquad M_{AC} = \frac{2\sqrt{5}}{10} = \frac{2\sqrt{5}}{10$$

14 b)
$$\frac{2sec^2 A - 2}{4 + an A} = \frac{2(sec^2 A - 1)}{4 + (tan A)}$$

 $= \frac{j + tan^2 A}{4 + tan A}$
 $= \frac{j + tan^2 A}{4 + tan A}$
 $= \frac{j + tan^2 A}{2}$
c) $x^2 = \frac{1}{-16} y$
 $4a = \frac{1}{16}$
 $a = \frac{1}{64}$ Focus is $at(0, -\frac{1}{64})$
d) $f(x) = \frac{2}{3}x^3 - 8xc + 1$
(i) $f'(x) = 2x^2 - 8$
 $stationary points when $f'(x) = 0$
 $0 = 2x^2 - 8$
 $= x^2 - 4$
 $= (x - 2)(x + 2)$
 $\therefore x^2 = \pm 2$. $\therefore (-2, \frac{35}{3}) \max T.P.$
 $f''(x) = 16 + 10$
 $f''(x) = 4x$
when $x = 2$ $f''(x) = 8$ \therefore concave down
 $\bigcap \max T.P.$
 $\int \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \frac{1}{3}$$

14 d) (ii) Possible PoT when
$$f''(x) = 0$$

 $f''(x) = 4 - x$
 $4 - x = 0$
 $x = 0$
 $\frac{x - 1}{1} = \frac{1}{2}$, $(0, 1)$ is a
 $f''(x) = 4 - 1$
(0, 1) is a
point of inflexion.
(iii) $(-2, \frac{35}{3})$ y
 $(-2, \frac{12}{3})$
(iv) $(-2, \frac{35}{3})$ y
 $(-2, \frac{12}{3})$
(iv) $(-2, \frac{35}{3})$ y
 $(-2, \frac{12}{3})$
(iv) $(-2, \frac{35}{3})$ y
 $(2, -\frac{29}{3})$
(iv) $(-2, \frac{35}{3})$
(iv) $(-2, \frac{35}{3})$ y
 $(-2, \frac{12}{3})$
(iv) $(-2, \frac{35}{3})$ y
 $(-2, \frac{12}{3})$
(iv) $(-2, \frac{35}{3})$
 $(-2, \frac{29}{3})$
 $(-2, \frac{29}{3})$
 $(-2, \frac{29}{3})$
(iv) $(-2, \frac{35}{3})$
 $(-2, \frac{29}{3})$
(iv) $(-2, \frac{35}{3})$
(iv) $BP = PQ$ (corresponding sides in congruent A_{13}^{12}
(iv) $y = \frac{1}{2 - x}$
 $y = 2 - x$
 $y = 2 -$

