

Student Number

2015 TRIAL HIGHER SCHOOL CERTIFICATE

Section 1 – Multiple Choice

Mathematics

AM Friday 31 July

Sample	2 + 4 =	(A)	2	(B) 6	(C) 8	(D) 9
		(A)	0	(B) O	(C) O	(D) O
If you think	you have made	- a mist	ake m	ut a cross the	rough the incorre	ct answer and fill in th

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

(A) \bullet (B) \checkmark (C) \circ (D) \circ

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows.

				cori L	rect			
_		(A) •	(B)	(B)		Э	(D) O	
	Start	→ 1.	AO	вО	сO	DО		
	Here	2.	AO	вО	СО	DO		
		3.	AO	вО	СО	DO		
		4.	AO	вO	сО	DO		
		5.	AO	вО	СО	DO		
		6.	AO	вО	СО	DO		
		7.	AO	вO	СО	DO		
		8.	AO	вO	СО	DO		
		9.	AO	вO	СО	DO		
		10.	AO	вO	сO	DО		

BLANK PAGE

Mathematics

mathematical reasoning and/or calculations

Staff Involved:

- AJD* PJR*
- LMD DZP
- VAB GPF
- ARM WMD
- GIC JGD

120 copies

Total marks – 100 **General Instructions** Reading time - 5 minutes ٠ (Section I Working time - 3 hours Pages 2-3 ٠ • Write using black or blue pen 10 marks Black pen is preferred Attempt Questions 1 - 10 • Board-approved calculators may Allow about 15 minutes for this section • be used • A table of standard integrals is provided at (Section II Pages 5 - 12 the back of this paper 90 marks • Write your Barker Student Number on all • Attempt Questions 11 - 16 pages of your solutions • Allow about 2 hours and 45 minutes for this • In Questions 11 - 16, show all relevant section

Student Number

2015 TRIAL HIGHER SCHOOL CERTIFICATE

AM Friday 31 July

Section 1 - Multiple Choice (10 marks)

Attempt Questions 1 - 10

Use the multiple-choice answer sheet for Questions 1 - 10

 $\log_4 2 =$ 1. (A) $\frac{1}{2}$ (B) 1 (C) 2 (D) 4 Solve $|3 - x| \ge 6$ 2. (A) $x \ge 3$ or $x \le 9$ (B) $x \leq -3 \text{ or } x \geq 9$ (C) $x \leq -3$ or $x \leq 9$ (D) $-3 \le x \le 9$ The limiting sum of the series $1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - ...$ is 3. (B) $\frac{2}{3}$ (C) $1\frac{1}{2}$ (A) $\frac{1}{2}$ (D) 2 If $5\sqrt{2} - \sqrt{8} + \sqrt{32} = \sqrt{x}$, the value of x is: 4. (B) $\sqrt{98}$ (A) 26 (C) 98 (D) 130 5. The derivative of $\cos 2x$ is: (A) $-2\cos 2x$ (B) $2\cos 2x$ (C) $2\sin 2x$ (D) $-2\sin 2x$ Differentiate $\frac{x\sqrt{x}}{r^5}$ 6. (A) $\frac{-7}{2x^4\sqrt{x}}$ (B) $\frac{2\sqrt{x}}{7x^3}$ (C) $\frac{7}{2x^2\sqrt{x}}$ (D) $\frac{-7}{2x^3}$

7. Two-digit numbers are formed from the digits 2, 3, 4, 6 with no repetition of digits allowed.A two-digit number is then selected at random.What is the probability that the number is prime?

(A)
$$\frac{1}{12}$$
 (B) $\frac{1}{8}$ (C) $\frac{1}{6}$ (D) $\frac{5}{12}$

8. The solution of the inequality $x^2 - 6x + 8 \le 0$ is:

- (A) $x \ge 4 \text{ or } x \le 2$ (B) $2 \le x \le 4$
- (C) 2 < x < 4 (D) $x \le 4$ or $x \ge 2$
- 9. The quadratic equation with roots k and 3k is:

(A)
$$(x-k)(x-3) = 0$$
 (B) $x^2 - 4kx + 3k^2 = 0$

- (C) $x^{2} + 4kx + 3k^{2} = 0$ (D) $x^{2} + 3k^{2}x 4k = 0$
- 10. Which of the following correctly finds the shaded area in this diagram?

(A)
$$\int_{b}^{a} f(x)dx$$
 (B) $\left|\int_{b}^{a} f(x)dx\right|$
(C) $\left|\int_{0}^{a} f(x)dx\right| + \int_{b}^{0} f(x)dx$ (D) $\int_{0}^{a} f(x)dx + \left|\int_{b}^{0} f(x)dx\right|$

End of Section I

BLANK PAGE

Section II – Extended Response (90 marks)

Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Answer each question on a separate writing booklet. Extra writing booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)	[START A NEW BOOKLET]	Marks
------------------------	-----------------------	-------

2

2

(a) Factorise fully: $4x^3 - 32$

(b) Find:
$$\lim_{x \to 0} \frac{x^2 - 4x}{2x}$$
 1

(c) Find the integers a and b such that:
$$\frac{4\sqrt{3}}{\sqrt{7} + \sqrt{3}} = a + b\sqrt{21}$$
 2

(d) Copy the following graph of y = f(x) into your answer booklet. Hence, clearly sketch and label y = f'(x)

Question 11 continues on page 6

Question 11 (continued)

(e) Solve for x:
$$4^x - 5 \times 2^x + 4 = 0$$
 2

(f) Find the domain of the function
$$f(x) = \sqrt{x^2 + x - 6}$$
 2

- (g) (i) Use Simpson's Rule with three function values to find an approximation to 2 the area under the curve $y = \frac{1}{x}$ between x = m and x = 3m, where m > 0
 - (ii) Hence, using integration, show that $\log_e 3 \approx \frac{10}{9}$ 2

End of Question 11

Question 12 (15 marks)

[START A NEW BOOKLET]

(a) Evaluate the arithmetic series 180 + 165 + 150 + ... - 15 - 30 **2**

(b) (i) Sketch the curve
$$y = \frac{3}{x-1}$$
 showing any intercepts. 2

(ii) State the domain and range of
$$y = \frac{3}{x-1}$$
 2

(iii) Hence, evaluate
$$\int_{2}^{4} \frac{3}{x-1} dx$$
 2

(c) Find

(i)
$$\int 3e^{7x} dx$$
 1

(ii)
$$\int \tan^2 x \, dx$$
 2

- (d) The roots of the equation $x^2 + 4x + 1 = 0$ are α and β . Find:
 - (i) $\alpha + \beta$ 1

(ii)
$$\alpha\beta$$
 1

(iii)
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$$
 2

End of Question 12

Marks

In the diagram the coordinates of the points are A(0, -4), B(-2, 4) and C(6, 8).

(i)	Show the equation of line BC is $x - 2y + 10 = 0$	2
(ii)	Find the perpendicular distance from A to the line BC	2
(iii)	Find point D such that ABCD is a parallelogram.	1
(iv)	Hence, find the area of the parallelogram ABCD	2

Question 13 continues on page 9

Question 13 (continued)

(b) Differentiate with respect to *x*.

(i)
$$y = \sqrt{7 - 3x^2}$$
 2

(ii)
$$y = \frac{3x}{\ln x}$$
 2

(c) The equation of the tangent to the curve $f(x) = 2e^{x}(x^{2}+1)$ at the point (0, 2) 4 is given by y = ax+bEvaluate a and b.

End of Question 13

Question 14 (15 marks)

Marks

2

(a) Sketch the parabola

$$(y+2)^2 = -4(x+3)$$
 clearly indicating the focus and directrix. 2

- (b) A deck contains six cards labelled the numbers 0, 1, 2, 2, 3 and 3 respectively. Ann draws two cards at random without replacement.
 - (i) Find the probability that the sum of the two cards equals 5 1
 - (ii) Find the probability that the sum of the two cards is less than five

A plane flies 54 km from A to B on a bearing of 055° .

The plane then continues onto C, flying a distance of 68 km on a bearing of 105° .

(i)	Copy the diagram into your answer booklet and use this diagram to show why $\angle ABC = 130^{\circ}$	1
(ii)	Find the distance CA (to nearest 0.1 km).	2
(iii)	Hence, calculate the size of $\angle BAC$ (to nearest degree).	2
(iv)	Hence, or otherwise, find the bearing of A from C (to nearest degree).	1

Question 14 continues on page 11

Question 14 (continued)

The above diagram shows the region bounded by the curve $y = \sqrt[3]{x}$, the y axis and the line y = 2.

Given that the point of intersection of $y = \sqrt[3]{x}$ and y = 2 is (8, 2), find the <u>exact</u> volume of the solid formed when the region shown is rotated about the *x*-axis.

4

End of Question 14

(a) Triangles ABC and CDE are right angled at B and D respectively as shown in the diagram.

(i) Prove that $\triangle ABC \parallel \mid \triangle CDE$

2

- (ii) If AB = EC = 10 cm and DE = 6 cm, determine the length of AC. 2
- (b) Over the interval $a \le x \le b$, a curve y = f(x) has the following properties: 2

f(a) < 0, f'(x) > 0 and f''(x) < 0

Draw this section of the curve y = f(x) illustrating all of the above information.

(c) Starting with the number 3, Mike multiplies this by a whole number n.
3 After writing down the result, he then multiplies this answer by n again and continues multiplying until he reaches 3072. In total, he multiplies by n ten times. He then adds up all his answers (including the original 3). Find the total Mike calculated.

Question 15 continues on page 13

(d) The diagram below shows the curves $y = \sin 2x$ and $y = \sin x$ for $0 \le x \le \pi$ which intersect at the values x = 0, $x = \frac{\pi}{3}$ and $x = \pi$.

Find the exact area of the shaded region bounded by these two curves.

(e) Four towns A, B, C and D are joined by roads that are either straight or arcs of concentric circles with centre at O. Town B and C are 3x km from O. Towns A and D are both x km from B and C respectively. ∠AOD = θ radians as shown in the diagram below.

- (i) Write an expression in terms of x and θ for the length of arc AD
- (ii) A salesperson wants to travel from Town A to Town D but must visit town B and C on the way. Write an expression in terms of θ and x, for the length of this journey from Town A to Town D.
- (iii) Find the value of θ for which the journeys in (i) and (ii) are the same distance. 1

End of Question 15

Marks

1

Marks

2

(a) The curve y = f(x) has two stationary points at x = 1 and x = aIf f''(x) = 6x - 2, find the value of a.

(b) Solve the equation:

 $2\cos^2 x = 2\sin x \cos x$ where $0 \le x \le 2\pi$

(c) Rachael borrows P for an overseas holiday. This loan plus interest is to be repaid in equal monthly instalments of \$232 over five years. Interest of 6% p.a. is charged monthly on the balance owing at the start of each month.

Let A_n be the amount owing at the end of n months.

(i) Show that
$$A_2 = P(1.005)^2 - 232(1+1.005)$$
 2

(ii) Prove that
$$A_n = P(1.005)^n - 46\,400(1.005^n - 1)$$
 2

(iii) Hence, or otherwise, find the amount that Rachael borrowed.

(d) A basketball coach knows with certainty that the number of points scored during a season by a player with shirt number *n* is given by:

$$P = n^3 - 30n^2 + 225n$$

If the shirt numbers are only whole numbers from 1 to 20 inclusive, which player(s) will score the most points in this season and determine their score(s)?

End of Paper

3

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE :
$$\ln x = \log_e x$$
, $x > 0$

That HSC 2015 31715 Mathematics
Q1 a)
$$\log_{4} 2=x$$

 $\frac{1}{4}x = 2$
 $2^{2x} = 1$
 $2x = 2^{2x}$
 $2x$

$$|2) a) a = 180 d = -15$$

$$\int = a + (n-1)d + 15$$

$$-30 = 180 + (n-1)x - 15$$

$$-210 = -15n + 15$$

$$-15n = -225$$

$$n = 15$$

$$S_{15} = \frac{15}{2}(180 - 30)$$

$$= 1125$$

$$b) a) \int \frac{4}{1} + \frac{1}{12} = \frac{3 \ln (3x-1)}{7} + \frac{3}{2} = \frac{3 \ln (3x-1)}{7} = \frac{3 \ln 3}{7}$$

$$c) a) \frac{3}{7} \int 7e^{7x} dx = \frac{3}{7}e^{7x} + c$$

$$i) \int 4x^{2} dx = \int 2ec^{2}x - 1 dx$$

$$= 4anx - 2a + c$$

$$d) a = 1$$

$$i) d + B = \frac{-4}{1} = -4$$

$$b = 4$$

$$c = 1$$

$$i) d + B = \frac{-4}{1} = -4$$

$$d) a = 1$$

$$i) d + B = \frac{-4}{1} = -4$$

$$d) a = 1$$

$$i) d + B = \frac{-4}{1} = -4$$

$$d) a = 1$$

$$i) d + B = \frac{-4}{1} = -4$$

$$d) a = 1$$

$$i) d + B = \frac{-4}{1} = -4$$

$$d) a = 1$$

$$i) d + B = \frac{-4}{1} = -4$$

$$d) a = 1$$

$$i) d + B = \frac{-4}{1} = -4$$

$$d) a = 1$$

$$i) d + B = \frac{-4}{1} = -4$$

$$d = \frac{16-2}{1} = -4$$

$$d = 14$$

$$\begin{array}{l} \begin{array}{l} (3) ii \end{array}) m_{Bc} = \frac{8-4}{6+2} = \frac{4}{8} = \frac{1}{2} \\ (3) -4 = \frac{1}{2} (x+2) \\ (3) -8 = 20 + 2 \\ (2) -2y + 10 = 0 \\ (3) -2(-4) + 10 \\ (3) -2(-4) + 10 \\ (3) -2(-4) + 10 \\ (3) -2(-4) + 10 \\ (3) -2(-4) + 10 \\ (3) -2(-4) + 10 \\ (3) -2(-4) + 10 \\ (3) -2(-4) + 10 \\ (3) -2(-2) + 2x \\ (4) -2(-2$$

$$13 c) f(x) = 2e^{x}(x^{2}+1)$$

$$f(x) = 2e^{x}(x^{2}+1) + 2e^{x}x2x$$

$$= 3e^{x}(x^{2}+2x+1)$$

$$f(x) = 2e^{x}(x^{2}+2x+1)$$

$$f(x) = 2(1) = 3$$

$$2x = 0 + (0) = 3(1) = 2$$

$$y = 3x + 3$$

$$\therefore a = 2, b = 3$$

$$a = 2, b = 3$$

$$a = 3x + 3$$

$$\therefore a = 2, b = 3$$

$$a = 3x + 3$$

$$\therefore a = 2, b = 3$$

$$a = 3x + 3$$

$$a = 2x + 3$$

$$a = 3x - (75 + 12)$$

$$a = 1 + 5x^{2} + 2x^{2} + 2x^{2}$$

Bills
a)
$$f'(x) = 6x^{-2}$$

 $f'(x) = 3x^{2} - 2x + C$
 $dy = 0$ $c = 3a^{2} - 2a - 1$
 $f(a) = 0 = 3a^{2} - 2a - 1$
 $(3a + 1)(a - 1) = 0$
 $a = -\frac{1}{3}$
b) $2(cos^{2}x - 2sinxcos)(x = 0)$
 $2cosx(cosx - sinx) = 0$
 $cosx = 0$ $cosx = sinx$
 $-NC$ $fonx = 1 + \frac{1}{2}$
 $x = T/2, 3T/2$ $x = T/2, 5T/4$
 $x = T/2, 3T/2$ $x = T/2, 5T/4$
 $x = T/2, 3T/2$ $x = T/2, 5T/4$
 $x = T/2, 3T/2$ $y = T/2, 5T/4$
 $x = T/2, 3T/2$ $y = T/2, 5T/4$
 $x = T/2, 3T/2$ $y = T/2, 5T/4$
 $c) A_{1} = P(1.005) - 232$
 $= P(1.005)^{2} - 232(1.005) - 232$
 $= P(1.005)^{2} - 232(1.005)^{2} - 232$
 $= P(1$

Q16d)

$$P=n^{3}-30n^{2}+225n$$

 $df=3n^{2}-60n+225$
 $=3(n^{2}-20n+75)$ stat pts
 $0=3(n-5)(n-15)$ $dn=0$
Stat pts $n=5$, 15
 $d^{2}P$
 $dn^{2}=6n-60$
 $f''(5)=30-60=-30 < 0$
 $max value n=5$
 $f''(15)=90-60=30 > 0$
 $muvalue De=15$
 $kst Endpoints n=1: P=196$
 $n=20$
 $P=20^{3}-30(20)^{2}+225(20)$
 $=500$
 $n=5 P=5^{3}-30(5)^{2}+225(5)$
 $=500$
 $i: Players 5 and 20 have
highest score of 500$